JP2952978B2 - Transparent yttria sintered body and method for producing the same - Google Patents

Transparent yttria sintered body and method for producing the same

Info

Publication number
JP2952978B2
JP2952978B2 JP2186892A JP18689290A JP2952978B2 JP 2952978 B2 JP2952978 B2 JP 2952978B2 JP 2186892 A JP2186892 A JP 2186892A JP 18689290 A JP18689290 A JP 18689290A JP 2952978 B2 JP2952978 B2 JP 2952978B2
Authority
JP
Japan
Prior art keywords
sintered body
yttria
temperature
pressure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2186892A
Other languages
Japanese (ja)
Other versions
JPH0474764A (en
Inventor
明人 藤井
憲一郎 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2186892A priority Critical patent/JP2952978B2/en
Publication of JPH0474764A publication Critical patent/JPH0474764A/en
Application granted granted Critical
Publication of JP2952978B2 publication Critical patent/JP2952978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた透光性と機械的強度とを兼ね備え、
特に厚さ3mm以上で使用する赤外透過窓等の用途に好適
な透光性イツトリア焼結体、及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has both excellent translucency and mechanical strength,
In particular, the present invention relates to a translucent yttria sintered body suitable for use as an infrared transmission window having a thickness of 3 mm or more, and a method for producing the same.

〔従来の技術〕[Conventional technology]

イツトリア(Y2O3)は2350℃以下において結晶型が立
方晶であるため結晶粒界での散乱が少なく、高密度に焼
結した場合非常に高い透光性を示すことが知られてい
る。
It is known that yttria (Y 2 O 3 ) has a cubic crystal form at 2350 ° C or less, so it has little scattering at the crystal grain boundaries and exhibits very high light transmittance when sintered at high density. .

通常、イツトリア焼結体の透光性は可視領域の波長0.
3μm付近から急激に高くなり、赤外領域の波長3〜6
μm付近で最高となる。従つて、イツトリア焼結体は光
学窓のような透光性材料として有望視され、従来から各
種の方法によつて製造が試みられている。
Normally, the light transmittance of the yttria sintered body is 0.
It rises sharply from around 3 μm and has a wavelength of 3 to 6 in the infrared region.
It is highest near μm. Therefore, the yttria sintered body is regarded as promising as a translucent material such as an optical window, and its production has been attempted by various methods.

例えば、特開昭54−17911号公報や特開昭54−17910号
公報に記載されるように、焼結助剤として酸化ランタン
(La2O3)やアルミナ(Al2O3)を添加して低O3雰囲気中
で焼結する方法がある、しかし、この焼結助剤を用いる
方法では、緻密化が容易で機械的強度が高くなるもの
の、焼結助剤が焼結体中に残留するため部分的に第2相
が出現し易く、組織的不均一性により光が散乱されて透
過率が低くなる欠点があり、従つて又直径50mm以上のよ
うな大型材について光学的に均一な材料を得ることが困
難であつた。又、La2O3等を添加すると熱伝導率が7W/m
・K程度に低下し、耐熱衝撃性も低下する欠点があつ
た。
For example, as described in JP-A-54-17911 and JP-A-54-17910, lanthanum oxide (La 2 O 3 ) or alumina (Al 2 O 3 ) is added as a sintering aid. There is a method of sintering in a low O 3 atmosphere.However, in the method using this sintering aid, although the densification is easy and the mechanical strength is high, the sintering aid remains in the sintered body. Therefore, there is a disadvantage that light is scattered due to systematic inhomogeneity and the transmittance is reduced, and therefore, a large material having a diameter of 50 mm or more is optically uniform. It was difficult to obtain the material. Also, when La 2 O 3 etc. is added, the thermal conductivity becomes 7 W / m
-There is a disadvantage that the temperature decreases to about K and the thermal shock resistance also decreases.

米国特許第3,878,280号には、イツトリア粉末を真空
中でホツトプレスする方法が開示されている。しかし、
この方法ではグラフアイト型の強度上の制約から500kg/
cm2以上の高圧をかけることが難しく、そのため充分な
緻密化が進行せず、透過率が低いという欠点があつた。
U.S. Pat. No. 3,878,280 discloses a method of hot pressing yttria powder in a vacuum. But,
With this method, 500kg /
It is difficult to apply a high pressure of 2 cm 2 or more, so that sufficient densification does not proceed and the transmittance is low.

又、特開昭63−201061号公報に示されるように、Y2O3
粉末を1700〜1900℃で無加圧焼結して閉気孔とした後、
圧力25000〜30000psi及び温度1700〜1900℃でHIP処理す
る方法も知られている。しかし、この方法では焼結温度
及びHIP温度が共に1700℃以上高いため、Y2O3焼結体の
平均結晶粒径が150μm程度と粗大になり、曲げ強度も1
10MPa程度に留まり、残留歪の発生も多いため、充分な
耐熱衝撃性が得られない欠点があつた。
Further, as disclosed in JP-A-63-201061, Y 2 O 3
After pressureless sintering the powder at 1700-1900 ° C to make closed pores,
A method of performing HIP processing at a pressure of 25000 to 30000 psi and a temperature of 1700 to 1900 ° C. is also known. However, in this method, since both the sintering temperature and the HIP temperature are higher than 1700 ° C., the average crystal grain size of the Y 2 O 3 sintered body is as coarse as about 150 μm, and the bending strength is 1
There was a drawback that sufficient thermal shock resistance could not be obtained because the residual strain remained at about 10 MPa and many residual strains were generated.

従つて、上記した従来の各方法で製造されたイツトリ
ア焼結体では、試料厚さ2.5mmにおける波長3〜6μm
での直線透過率が最高のもので80%程度であつて、直線
透過率の高いものほど曲げ強度が低く且つ残留歪の発生
も多くなるので、厚さ3mm以上で使用される赤外透過窓
等の材料として用いるためには、直線透過率と曲げ強度
を同時に向上させ、残留歪を低減させる必要があつた。
Therefore, in the yttria sintered body manufactured by each of the conventional methods described above, the wavelength is 3 to 6 μm at a sample thickness of 2.5 mm.
Infrared transmission window used with a thickness of 3 mm or more, since the maximum linear transmittance at about 80% is about 80%, and the higher the linear transmittance, the lower the bending strength and the more the occurrence of residual strain. In order to use these materials, it is necessary to simultaneously improve the linear transmittance and the bending strength and reduce the residual strain.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明はかかる従来の事情に鑑み、高純度且つ高強度
であつて同時に優れた透光性を有し、特に厚さ3mm以上
の赤外透過窓材等として好適な直線透過率を有し、大型
材であつても光学的に均一で割れや残留歪のない透光性
イツトリア焼結体、及びそを製造方法を提供することを
目的とする。
In view of such conventional circumstances, the present invention has excellent translucency with high purity and high strength at the same time, and particularly has a linear transmittance suitable as an infrared transmitting window material having a thickness of 3 mm or more, An object of the present invention is to provide a translucent yttria sintered body that is optically uniform even with a large material and has no crack or residual strain, and a method for producing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明の透光性イツトリア
焼結体の製造方法においては、純度99.9%以上及び比表
面積(BET値)2m2/g以上10m2/g未満のイツトリア粉末
を、温度1300〜1700℃及び圧力100〜500kg/cm2での真空
中におけるホツトプレスにより理論密度比95%以上に緻
密化し、次に温度1400〜1900℃及び圧力500kg/cm2以上
にてHIP処理することを特徴とする。
In order to achieve the above object, in the method for producing a translucent yttria sintered body of the present invention, an yttria powder having a purity of 99.9% or more and a specific surface area (BET value) of 2 m 2 / g or more and less than 10 m 2 / g is subjected to temperature 1300-1700 densified to 95% or more theoretical density ratio by Hotsutopuresu in a vacuum at ° C. and a pressure 100 to 500 kg / cm 2, to HIP treatment then at a temperature from 1,400 to 1,900 ° C. and a pressure of 500 kg / cm 2 or more Features.

又、上記方法により製造される透光性イツトリア焼結
体は純度99.9%以上の多結晶イツトリア焼結体からな
り、試料厚さ3mmでの直線透過率が波長3〜6μmの赤
外領域で80%以上であつて、平均結晶粒径が100μm以
下で、4点曲げ強度が120MPa以上であることを特徴とす
る。
The translucent yttria sintered body produced by the above method is composed of a polycrystalline yttria sintered body having a purity of 99.9% or more and has a linear transmittance at a sample thickness of 3 mm in the infrared region having a wavelength of 3 to 6 μm. % Or more, the average crystal grain size is 100 μm or less, and the four-point bending strength is 120 MPa or more.

〔作用〕[Action]

本発明方法では、真空中でのホツトプレス及びその後
のHIP(熱間等方圧プレス)により、焼結助剤を用いる
ことなく、直線透過率が空間的に均一で高く同時に曲げ
強度に優れたイツトリア焼結体を得ることが出来る。
In the method of the present invention, hot press in vacuum and subsequent HIP (hot isostatic press) are performed without using a sintering aid, and the linear transmittance is spatially uniform and high, and at the same time, it is excellent in bending strength. A sintered body can be obtained.

焼結体の原料であるイツトリア粉末は、不純物吸収に
よる透光性の低下を防ぐために99.9%以上の純度のもの
を使用し、特にFe等の遷移金属元素の含有は好ましくな
い。
The yttria powder, which is a raw material of the sintered body, has a purity of 99.9% or more in order to prevent a decrease in translucency due to absorption of impurities, and particularly contains no transition metal element such as Fe.

又、イツトリア粉末は一次粒子の粒径が約0.4〜0.2μ
m以下、即ち表面積がBET値で2m2/g以上10m2/g未満であ
ることが必要である。BET値が10m2/g以上の粉末では粒
子同士のブリツジングによりホツトプレス中に割れが生
じやすく、又割れが生じなかつた場合でも過大な歪が残
留するため精密な光学部品としては不適当である。一
方、2m2/g未満の場合には、ホツトプレス中に密度が上
りにくくHIPによる緻密化が不充分となり、透過率が低
下する。即ち、イツトリア粉末の表面積がBET値で2m2/g
以上10m2/g未満であることが、透光性に優れ且つ残留歪
や割れが発生せず、結晶粒径が微細で緻密な焼結体を得
るために必要な条件の一つである。
In addition, the yttria powder has a primary particle size of about 0.4 to 0.2 μm.
m, that is, the surface area needs to be 2 m 2 / g or more and less than 10 m 2 / g in BET value. A powder having a BET value of 10 m 2 / g or more is not suitable as a precision optical component because cracks are likely to occur in a hot press due to bridging of particles and even if cracks do not occur, excessive strain remains. On the other hand, if it is less than 2 m 2 / g, it is difficult to increase the density during hot pressing, and the densification by HIP becomes insufficient, and the transmittance decreases. That is, the surface area of the yttria powder is 2m 2 / g in BET value.
When it is less than 10 m 2 / g, one of the conditions necessary for obtaining a dense sintered body which is excellent in light transmittance, free of residual strain and cracks, and has a fine crystal grain size.

更に、La2O3等の焼結助剤を添加しないので、従来の
ような第2相による透過率の低下や空間的の不均一、熱
伝導率の低下が発生しない。
Furthermore, since a sintering aid such as La 2 O 3 is not added, the transmittance, the spatial nonuniformity, and the thermal conductivity due to the second phase do not occur.

本発明方法のホツトプレス工程において、温度を1300
〜1700℃とするのは、1300℃未満では理論密度比95%以
上の高密度な焼結体を得ることが難しく、1700℃を超え
ると真空中ではY2O3中の酸素イオンが表面から抜けて組
成比にずれを起し、光学的に均一な焼結体を得ることが
難しくなるからである。又、圧力が100kg/cm2未満では
やはり理論密度比95%以上の高密度な焼結体を得ること
が難しく、500kg/cm2を超えると強度的にグラフアイト
型の使用が難しくなる。尚、ホツトプレスで得られる焼
結体の理論密度比が95%未満の場合には、残留気孔の多
くがいわゆる解放気孔となり、後のHIP処理で高圧ガス
がこの気孔を通つて内部に進入し、HIP処理でほ高密度
化が充分に進行しない結果となるからである。
In the hot pressing step of the method of the present invention, the temperature was raised to 1300
It is difficult to obtain a high-density sintered body with a theoretical density ratio of 95% or more when the temperature is lower than 1300 ° C, and when the temperature exceeds 1700 ° C, oxygen ions in Y 2 O 3 are removed from the surface in a vacuum. The reason for this is that the composition ratio deviates and the composition ratio shifts, making it difficult to obtain an optically uniform sintered body. If the pressure is less than 100 kg / cm 2, it is still difficult to obtain a high-density sintered body having a theoretical density ratio of 95% or more, and if it exceeds 500 kg / cm 2 , it becomes difficult to use a graphite type in terms of strength. When the theoretical density ratio of the sintered body obtained by the hot press is less than 95%, most of the residual pores become so-called open pores, and high-pressure gas enters the interior through the pores in the subsequent HIP treatment, This is because the HIP treatment does not sufficiently increase the density.

又、HIP工程において、温度を1400〜1900℃(好まし
くは1400〜1700℃)とするのは、1400℃未満では気孔の
除去作用が不充分となり満足すべき透光性が得られず、
1900℃を超えると粒成長が著しく粗大となるため、充分
な曲げ強度が得られないからである。HIP圧力が500kg/c
m2未満でも気孔の除去が不充分となり満足すべき透光性
が得られないが、圧力の上限はHIP装置の能力的な制限
から通常2000kg/cm2程度となる。HIP処理で用いるガス
は、Ar等の不活性ガス、窒素ガス又は酸素ガス、若しく
はこれらの混合ガスが好ましく、特に酸素ガスを混合す
ることによつて、焼結体からの脱酸素による透光性の低
下を防止出来る利点がある。
In the HIP step, the temperature is set to 1400 to 1900 ° C. (preferably 1400 to 1700 ° C.). If the temperature is lower than 1400 ° C., the effect of removing pores becomes insufficient and satisfactory light transmittance cannot be obtained.
If the temperature exceeds 1900 ° C., the grain growth becomes extremely coarse and sufficient bending strength cannot be obtained. HIP pressure 500kg / c
If the pore size is less than m 2 , the pores are not sufficiently removed and satisfactory translucency cannot be obtained. However, the upper limit of the pressure is usually about 2000 kg / cm 2 due to the limited capacity of the HIP device. The gas used in the HIP treatment is preferably an inert gas such as Ar, a nitrogen gas or an oxygen gas, or a mixed gas thereof. In particular, by mixing an oxygen gas, the translucent property by deoxygenation from the sintered body is obtained. There is an advantage that a decrease in the temperature can be prevented.

上記の如く本発明方法では、ホツトプレス温度が1300
〜1700℃及びHIP温度が1400〜1900℃と従来方法に比べ
て明らかに低温でのプロセスが可能となるので、結晶粒
成長が抑制され微細で高強度の焼結体が得られる。即
ち、得られるイツトリア焼結体の平均結晶粒径は従来よ
り微細な2〜100μmの範囲となり、4点曲げ強度も120
MPa以上であつて最高で180MPaと高く、赤外透過窓材と
して重要な特性である耐熱衝撃性が従来よりも著しく改
善向上される。
As described above, in the method of the present invention, the hot press temperature is 1300
Since the process at 1700 ° C. and the HIP temperature at 1400 ° C. to 1900 ° C. can be clearly performed at a lower temperature than the conventional method, crystal grain growth is suppressed and a fine and high-strength sintered body can be obtained. That is, the average crystal grain size of the obtained yttria sintered body is in the range of 2 to 100 μm, which is finer than the conventional one, and the four-point bending strength is also 120.
It is higher than MPa but as high as 180 MPa at the maximum, and the thermal shock resistance, which is an important property as an infrared transmission window material, is remarkably improved and improved as compared with the conventional one.

〔実施例〕〔Example〕

実施例1 純度99.9%、比表面積4.6m2/g(BET値)の高純度Y2O3
粉末を、内径120mmのグラフアイト型を用いて3×10-3t
orrの真空中において温度1450℃及び圧力300kg/cm2で3
時間ホツトプレスして、理論密度比98%白色の焼結体を
得た。次にこの焼結体をHIP装置に入れ、Arガスを用い
て温度1620℃及び圧力2000kg/cm2で2時間のHIP処理を
行なつた。得られたY2O3焼結体は外観的に無色透明であ
つた。
Example 1 High purity Y 2 O 3 having a purity of 99.9% and a specific surface area of 4.6 m 2 / g (BET value)
The powder was 3 × 10 -3 t using a graphite mold with an inner diameter of 120 mm.
3 at a temperature of 1450 ° C and a pressure of 300 kg / cm 2 in a vacuum of orr
Hot pressing was performed for a time to obtain a white sintered body having a theoretical density ratio of 98%. Next, this sintered body was put into a HIP apparatus, and HIP treatment was performed for 2 hours at a temperature of 1620 ° C. and a pressure of 2000 kg / cm 2 using Ar gas. The obtained Y 2 O 3 sintered body was colorless and transparent in appearance.

得られたY2O3焼結体を厚さ3mmに鏡面研磨加工し、分
光光度計で直線透過率を測定したところ、波長3〜6μ
mの赤外領域で82%以上の透光性を示した。又、光弾性
装置で歪を測定したところ、残留歪による干渉縞は観測
されなかつた。この焼結体の平均結晶粒径は25μmで、
JIS R 1601に基づく4点曲げ強度は156MPaであつた。
The obtained Y 2 O 3 sintered body was mirror-polished to a thickness of 3 mm, and the linear transmittance was measured with a spectrophotometer.
m showed a translucency of 82% or more in the infrared region. When the strain was measured with a photoelastic device, no interference fringes due to residual strain were observed. The average crystal grain size of this sintered body is 25 μm,
The four-point bending strength based on JIS R 1601 was 156 MPa.

実施例2 純度99.9%、比表面積3.5m2/g(BET値)の高純度Y2O3
粉末を、内径120mmのグラフアイト型を用いて3×10-3t
orrの真空中において温度1650℃及び圧力150kg/cm2で3
時間ホツトプレスして、理論密度比97%の白色の焼結体
を得た。次にこの焼結体をHIP装置に入れ、Arガスを用
いて温度1750℃及び圧力2000kg/cm2で1時間のHIP処理
を行なつた。得られたY2O3焼結体は外観的に無色透明で
あつた。
Example 2 High purity Y 2 O 3 having a purity of 99.9% and a specific surface area of 3.5 m 2 / g (BET value)
The powder was 3 × 10 -3 t using a graphite mold with an inner diameter of 120 mm.
3 at a temperature of 1650 ° C and a pressure of 150 kg / cm 2 in a vacuum of orr
Hot pressing was performed for a time to obtain a white sintered body having a theoretical density ratio of 97%. Next, this sintered body was placed in a HIP apparatus, and HIP treatment was performed for 1 hour at a temperature of 1750 ° C. and a pressure of 2000 kg / cm 2 using Ar gas. The obtained Y 2 O 3 sintered body was colorless and transparent in appearance.

得られたY2O3焼結体を厚さ3mmに鏡面研磨加工し、分
光光度計で直線透過率を測定したところ、波長3〜6μ
mの赤外領域で81%以上の透光性を示した。又、光弾性
装置で歪を測定したところ、残留歪による干渉縞は観測
されなかつた。この焼結体の平均結晶粒径は90μmで、
JIS R 1601に基づく4点曲げ強度は124MPaであつた。
The obtained Y 2 O 3 sintered body was mirror-polished to a thickness of 3 mm, and the linear transmittance was measured with a spectrophotometer.
m showed a translucency of 81% or more in the infrared region. When the strain was measured with a photoelastic device, no interference fringes due to residual strain were observed. The average crystal grain size of this sintered body is 90 μm,
The four-point bending strength based on JIS R 1601 was 124 MPa.

実施例3 純度99.9%、比表面積8.5m2/g(BET値)の高純度Y2O3
粉末を、内径120mmのグラフアイト型を用いて3×10-3t
orrの真空中において温度1320℃及び圧力450kg/cm2で5
時間ホツトプレスして、理論密度比98%の白色の焼結体
を得た。次にこの焼結体をHIP装置に入れ、Arガスを用
いて温度1600℃及び圧力2000kg/cm2で2時間のHIP処理
を行なつた。得られたY2O3焼結体は外観的に無色透明で
あつた。
Example 3 High purity Y 2 O 3 having a purity of 99.9% and a specific surface area of 8.5 m 2 / g (BET value)
The powder was 3 × 10 -3 t using a graphite mold with an inner diameter of 120 mm.
5 at 1320 ° C and 450 kg / cm 2 in orr vacuum
Hot pressing was performed for a time to obtain a white sintered body having a theoretical density ratio of 98%. Next, this sintered body was put into a HIP apparatus, and HIP treatment was performed for 2 hours at a temperature of 1600 ° C. and a pressure of 2000 kg / cm 2 using Ar gas. The obtained Y 2 O 3 sintered body was colorless and transparent in appearance.

得られたY2O3焼結体を厚さ3mmに鏡面研磨加工し、分
光光度計で直線透過率を測定したところ、波長3〜6μ
mの赤外領域で80%以上の透光性を示した。又、光弾性
装置で歪を測定したところ、残留歪による干渉縞は観測
されなかつた。この焼結体の平均結晶粒径は2μmで、
JIS R 1601に基づく4点曲げ強度は172MPaであつた。
The obtained Y 2 O 3 sintered body was mirror-polished to a thickness of 3 mm, and the linear transmittance was measured with a spectrophotometer.
m showed a light transmittance of 80% or more in the infrared region. When the strain was measured with a photoelastic device, no interference fringes due to residual strain were observed. The average crystal grain size of this sintered body is 2 μm,
The four-point bending strength based on JIS R 1601 was 172 MPa.

実施例4 実施例1と同様にして理論密度比98%の白色の焼結体
を得た。この焼結体をHIP装置に入れ、N2ガスを用いて
温度1600℃及び圧力2000kg/cm2で2時間のHIP処理を行
なつた、得られたY2O3焼結体は外観的に無色透明であつ
た。
Example 4 In the same manner as in Example 1, a white sintered body having a theoretical density ratio of 98% was obtained. This sintered body was put in an HIP apparatus, N 2 gas line the HIP treatment for 2 hours at a temperature 1600 ° C. and a pressure of 2000 kg / cm 2 using a Natsuta, Y 2 O 3 sintered body obtained is aesthetically It was colorless and transparent.

得られたY2O3焼結体について実施例1と同様の測定を
行なつた結果、試料厚さ3mmの波長3〜6μmでの直線
透過率は81%以上であり、残留歪による干渉縞は観測さ
れず、また焼結体の平均結晶粒径は20μmであつてJIS
R 1601に基づく4点曲げ強度は160MPaであつた。
The same measurement as in Example 1 was performed on the obtained Y 2 O 3 sintered body. As a result, the linear transmittance at a wavelength of 3 to 6 μm with a sample thickness of 3 mm was 81% or more, and interference fringes due to residual strain were observed. Is not observed, and the average crystal grain size of the sintered body is
The four-point bending strength based on R 1601 was 160 MPa.

実施例5 実施例3と同様にして理論密度比98%の白色の焼結体
を得た。この焼結体をHIP装置に入れ、Ar−4%O2ガス
を用いて温度1500℃及び圧力2000kg/cm2で4時間のHIP
処理を行なつた。得られたY2O3焼結体は外観的に無色透
明であつた。
Example 5 In the same manner as in Example 3, a white sintered body having a theoretical density ratio of 98% was obtained. This sintered body was put into a HIP apparatus, and HIP was performed at a temperature of 1500 ° C. and a pressure of 2000 kg / cm 2 for 4 hours using Ar-4% O 2 gas.
Processing was performed. The obtained Y 2 O 3 sintered body was colorless and transparent in appearance.

得られたY2O3焼結体について実施例1と同様の測定を
行なつた結果、試料厚さ3mmの波長3〜6μmでの直線
透過率は80%以上であり、残留歪による干渉縞は観測さ
れず、また焼結体の平均結晶粒径は15μmであつてJIS
R 1601に基づく4点曲げ強度は162MPaであつた。
The same measurement as in Example 1 was performed on the obtained Y 2 O 3 sintered body. As a result, the linear transmittance at a wavelength of 3 to 6 μm with a sample thickness of 3 mm was 80% or more, and interference fringes due to residual strain were observed. Is not observed, and the average crystal grain size of the sintered body is
The four-point bending strength based on R 1601 was 162 MPa.

比較例 純度99.9%比表面積19.6m2/g(BET値)の高純度Y2O3
粉末を、内径120mmのグラフアイト型を用いて3×10-3t
orrの真空中において温度1350℃及び圧力250kg/cm2で3
時間ホツトプレスし、理論密度比98%の白色の焼結体を
得たが一部に割れが生じていた。この焼結体をHIP装置
に入れ、Arガスを用いて温度1650℃及び圧力2000kg/cm2
で2時間のHIP処理を行なつた。得られたY2O3焼結体は
外観的に無色透明であつた。
Comparative Example High purity Y 2 O 3 with 99.9% purity and specific surface area of 19.6 m 2 / g (BET value)
The powder was 3 × 10 -3 t using a graphite mold with an inner diameter of 120 mm.
3 at a temperature of 1350 ° C and a pressure of 250 kg / cm 2 in a vacuum of orr
Hot pressing was performed for a time to obtain a white sintered body having a theoretical density ratio of 98%. This sintered body was placed in a HIP device, and a temperature of 1650 ° C. and a pressure of 2000 kg / cm 2 were used using Ar gas.
HIP treatment for 2 hours. The obtained Y 2 O 3 sintered body was colorless and transparent in appearance.

得られたY2O3焼結体について実施例1と同様の測定を
行なつた結果、試料厚さ3mmの波長3〜6μmでの直線
透過率は81%以上であつたが、残留歪による干渉縞が観
測された。また焼結体の平均結晶粒径は20μmであつて
JIS R 1601に基づく4点曲げ強度は160MPaであつた。
The same measurement as in Example 1 was performed on the obtained Y 2 O 3 sintered body, and as a result, the linear transmittance at a wavelength of 3 to 6 μm with a sample thickness of 3 mm was 81% or more, but due to residual strain. Interference fringes were observed. The average grain size of the sintered body is 20 μm.
The four-point bending strength based on JIS R 1601 was 160 MPa.

〔発明の効果〕〔The invention's effect〕

本発明によれば、焼結助剤を用いることなく、微細な
結晶粒径を有し高強度であつて、同時に波長3〜6μm
の赤外領域での直線透過率に優れ、直径50mm以上で厚さ
3mm以上の大型材であつても光学的に均一で等れや歪の
ない透光性イツトリア焼結体を得ることが出来る。
According to the present invention, without using a sintering aid, it has a fine crystal grain size and high strength, and simultaneously has a wavelength of 3 to 6 μm.
Excellent linear transmittance in the infrared region, thickness of 50 mm or more
Even with a large material of 3 mm or more, it is possible to obtain a translucent yttria sintered body that is optically uniform and free from equality and distortion.

この透光性イツトリア焼結体は厚さ3mm以上で使用さ
れる赤外透過窓材として特に有用である。
This translucent yttria sintered body is particularly useful as an infrared transmission window material having a thickness of 3 mm or more.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01F 17/00 C04B 35/42 - 35/50 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C01F 17/00 C04B 35/42-35/50 CA (STN) REGISTRY (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】純度99.9%以上及び比表面積(BET値)2m2
/g以上10m2/g未満のイツトリア粉末を、温度1300〜1700
℃及び圧力100〜500kg/cm2での真空中におけるホツトプ
レスにより理論密度比95%以上に緻密化し、次に温度14
00〜1900℃及び圧力500kg/cm2以上にてHIP処理すること
を特徴とする透光性イツトリア焼結体の製造方法。
(1) a purity of 99.9% or more and a specific surface area (BET value) of 2 m 2;
/ g or more and less than 10 m 2 / g yttria powder, temperature 1300-1700
Densification to a theoretical density ratio of 95% or more by hot pressing in vacuum at 100 ° C. and a pressure of 100 to 500 kg / cm 2.
A method for producing a translucent yttria sintered body, characterized by performing HIP treatment at 00 to 1900 ° C. and a pressure of 500 kg / cm 2 or more.
【請求項2】HIP処理は不活性ガス、窒素ガス又は酸素
ガス、若しくはこれらの混合ガスを用いることを特徴と
する、請求項(1)記載の透光性イツトリア焼結体の製
造方法。
2. The method for producing a translucent yttria sintered body according to claim 1, wherein the HIP treatment uses an inert gas, a nitrogen gas, an oxygen gas, or a mixed gas thereof.
【請求項3】純度99.9%以上の多結晶イツトリア焼結体
からなり、試料厚さ3mmでの直線透過率が波長3〜6μ
mの赤外領域で80%以上であり、平均結晶粒径が100μ
m以下で、4点曲げ強度が120MPa以上であることを特徴
とする透光性イツトリア焼結体。
3. A sintered body made of polycrystalline yttria having a purity of 99.9% or more, and a linear transmittance at a sample thickness of 3 mm having a wavelength of 3 to 6 μm.
m is at least 80% in the infrared region, and the average crystal grain size is 100μ.
m, and a four-point bending strength of 120 MPa or more.
JP2186892A 1990-07-13 1990-07-13 Transparent yttria sintered body and method for producing the same Expired - Fee Related JP2952978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2186892A JP2952978B2 (en) 1990-07-13 1990-07-13 Transparent yttria sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186892A JP2952978B2 (en) 1990-07-13 1990-07-13 Transparent yttria sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0474764A JPH0474764A (en) 1992-03-10
JP2952978B2 true JP2952978B2 (en) 1999-09-27

Family

ID=16196514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186892A Expired - Fee Related JP2952978B2 (en) 1990-07-13 1990-07-13 Transparent yttria sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2952978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336596B1 (en) 2001-07-05 2012-11-14 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
WO2007010831A1 (en) 2005-07-15 2007-01-25 Toto Ltd. Sintered yttria, anticorrosion member and process for producing the same

Also Published As

Publication number Publication date
JPH0474764A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
US5152940A (en) Method of producing a light-transmitting spinel sintered body
EP2112127B1 (en) Transparent spinel ceramics, method for production thereof, and optical material using the transparent spinel ceramics
JP5819992B2 (en) Method for producing polycrystalline aluminum oxynitride with improved transparency
JP2773193B2 (en) Method for producing translucent yttria sintered body
CN107352994B (en) Preparation method of magnesia-alumina spinel transparent ceramic
JP7056624B2 (en) Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
JP4806952B2 (en) Translucent ceramics
JPH0218354A (en) Light transparent spinel sintered body and its production
JP5458552B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
JP2964786B2 (en) Method for producing translucent barium fluoride sintered body
JP2952978B2 (en) Transparent yttria sintered body and method for producing the same
JP3420377B2 (en) Method for producing yttrium-aluminum-garnet sintered body
JP2001158660A (en) Optically transmitting rare earth-aluminum garnet sintered product and production method therefor
US20190241440A1 (en) Low-cost process of manufacturing transparent spinel
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JP2620287B2 (en) Method for producing translucent spinel sintered body
JPH0459658A (en) Light-transmitting sintered yttria and production thereof
JP2620288B2 (en) Method for producing translucent spinel sintered body
JPH06171930A (en) Spinel powder for light transmitting spinel sintered compact and its production
JPH03275561A (en) Light-transmissive yag sintered body and production thereof
JPH0248462A (en) Production of light-transmitting spinel calcined compact
KR102244157B1 (en) A method of manufacturing a transparent translucent yttria excellent in thermal shock characteristics and a translucent yttria sintered component
JPH0323269A (en) Transparent aluminum oxynitride sintered body and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees