JPS62260369A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPS62260369A
JPS62260369A JP10320686A JP10320686A JPS62260369A JP S62260369 A JPS62260369 A JP S62260369A JP 10320686 A JP10320686 A JP 10320686A JP 10320686 A JP10320686 A JP 10320686A JP S62260369 A JPS62260369 A JP S62260369A
Authority
JP
Japan
Prior art keywords
layer
thin film
film
thin
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10320686A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Yutaka Minamino
裕 南野
Yoshiya Takeda
悦矢 武田
Seiichi Nagata
清一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10320686A priority Critical patent/JPS62260369A/en
Publication of JPS62260369A publication Critical patent/JPS62260369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To elevate the formation temperature of an N<+>-a-Si layer to 150 deg.C or more, and to obtain a thin-film transistor, ON-state currents of which do not run short and which has excellent characteristics, by shaping a pattern to be removed for a lift-off method by a photosensitive layer while also forming the pattern to a heat-resistant thin-film layer. CONSTITUTION:A first metallic thin-film 2 is shaped onto a transparent substrate 1, a first insulating layer 3 and a semiconductor layer 4 are formed onto the thin-film 2, and a heat- resistant thin-film layer 5 and a photosensitive layer 6 are shaped onto the semiconductor layer 4. The photosensitive layer 6 is etched, the heat-resistant thin-film layer 5 is etched, a second metallic thin-film 7 is formed, and the heat-resistant thin-film layer 5 is removed. The thin-film 2 such as a first electrode 2 consisting of an NiCr film as a gate is formed to the substrate 1 such as a glass substrate 1, and the layer 3 such as an SiNx film 3 and the layer 4 such as an I-a-Si film 4 are deposited continuously through a plasma CVD method. The layer 5 such as a polyimide resin thin-film layer 5 and the layer 6 such as a positive type resist layer 6 are shaped, and a pattern for a lift-off is formed through irradiation by ultraviolet rays from the transparent substrate 1 side, exposure, development and fixation. An N<+>-a-Si layer is deposited within a temperature range of 150-300 deg.C and NiCr at room temperature as the second metallic thin-film 7, and the polyimide resin 5 is removed, thus manufacturing a thin-film transistor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電圧印加により電流制御を行なう自己整合型の
薄膜トランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a self-aligned thin film transistor in which current is controlled by applying a voltage.

(従来の技術) 第4図は従来の薄膜トランジスタの製造方法を示す断面
図である。従来の薄膜トランジスタは透明基板(たとえ
ば、コーニング社製7059ガラス)11上に、選択的
に膜厚0.2pmのNiCr膜のゲートとなる第1金属
薄膜12を形成し、絶縁層13としてSin。
(Prior Art) FIG. 4 is a cross-sectional view showing a conventional method for manufacturing a thin film transistor. In a conventional thin film transistor, a first metal thin film 12 is selectively formed on a transparent substrate (for example, 7059 glass manufactured by Corning Corporation) 11 to serve as a gate of a NiCr film with a film thickness of 0.2 pm, and an insulating layer 13 is made of Sin.

を0.4ptn積層し、半導体層14としてi −a 
−3i(アモルファスシリコン)を0.1μm積層し、
感光層15として、たとえばポジ型レジストA Z 1
400−31(シブレイファーイースト社製)を塗布し
、透明基板11側から紫外光Q(波長0.3μm〜0.
4μm)を照射する〔第4図(a)〕。NiCr膜から
なる第1電極(第1金属薄膜)12は遮光膜として働き
、未露光部16が残り、第4図(b)に示すようにパタ
ーン形成される。
0.4ptn is laminated as the semiconductor layer 14 i - a
-3i (amorphous silicon) is laminated to a thickness of 0.1 μm,
As the photosensitive layer 15, for example, a positive resist A Z 1
400-31 (manufactured by Sible Far East Co., Ltd.) and exposed to ultraviolet light Q (wavelength 0.3 μm to 0.5 μm) from the transparent substrate 11 side.
4 μm) [Figure 4(a)]. The first electrode (first metal thin film) 12 made of a NiCr film functions as a light shielding film, and an unexposed portion 16 remains, which is patterned as shown in FIG. 4(b).

次にオーミック接合を得るために導体層17としてn 
” −a−3i(50nm)/NiCr(100nm)
を順次積層して〔第4図(C)〕、いわゆるフォトオフ
法によりフォトレジストを除去し、ソースとなる第2金
属薄膜18、ドレインとなる第2金属薄膜19を形成し
〔第4図(d)〕、薄膜トランジスタを製造していた。
Next, in order to obtain an ohmic connection, the conductor layer 17 is
”-a-3i (50nm)/NiCr (100nm)
The photoresist is removed by a so-called photo-off method to form a second metal thin film 18 that will become a source and a second metal thin film 19 that will become a drain [Fig. 4 (C)]. d)], which manufactured thin film transistors.

[参考文献:信学技報E D83−70 (1983)
 P 47](発明が解決しようとする問題点) 従来の薄膜トランジスタの製造方法では、第2゜第3電
極を構成する導体層の形成温度を150℃以下にする必
要がある。すなわち、150℃以上ではリフトオフ法に
係るポジ型レジストが硬化変質し。
[Reference: IEICE Technical Report E D83-70 (1983)
P47] (Problems to be Solved by the Invention) In the conventional manufacturing method of a thin film transistor, the formation temperature of the conductor layer constituting the second and third electrodes needs to be 150° C. or lower. That is, at temperatures above 150° C., the positive resist used in the lift-off method hardens and changes in quality.

溶媒(たとえば、アセトン、発煙硝酸)に溶解せずパタ
ーニングができない。一方、150℃以下ではn′″−
a−5iの形成温度が低いのでn′″−a −5iの活
性度が低く、シート抵抗が大きくなる。したがって、薄
膜トランジスタのオン電流が充分得られず、特性を活か
し得ないという欠点を有していた。
It does not dissolve in solvents (e.g., acetone, fuming nitric acid) and cannot be patterned. On the other hand, below 150℃, n'''-
Since the formation temperature of a-5i is low, the activity of n'''-a-5i is low and the sheet resistance is high.Therefore, it has the disadvantage that a sufficient on-current of the thin film transistor cannot be obtained and its characteristics cannot be utilized. was.

本発明の目的は、従来の欠点を解消し、薄膜トランジス
タを構成するn“−a −3i層の形成温度を150℃
以上にし、オン電流不足が生ぜず、特性の優れた薄膜ト
ランジスタの製造方法を提供することである。
An object of the present invention is to eliminate the conventional drawbacks and to reduce the formation temperature of the n"-a-3i layer constituting a thin film transistor to 150°C.
In view of the above, it is an object of the present invention to provide a method for manufacturing a thin film transistor that does not suffer from insufficient on-current and has excellent characteristics.

(問題点を解決するための手段) 本発明の薄膜トランジスタの製造方法は、透明基板上に
少なくとも第1金屓薄膜を設ける第1工程と、第1絶縁
層と半導体層を設ける第2工程と、耐熱薄膜層と感光層
を設ける第3工程と、この感光層を食刻し、さらに耐熱
薄膜層を食刻する第4工程と、第2金属薄膜を設ける第
5工程と、前記耐熱薄膜層を除去する第6工程とを有す
るものである。
(Means for Solving the Problems) The method for manufacturing a thin film transistor of the present invention includes a first step of providing at least a first metal thin film on a transparent substrate, a second step of providing a first insulating layer and a semiconductor layer, A third step of providing a heat-resistant thin film layer and a photosensitive layer, a fourth step of etching this photosensitive layer and further etching the heat-resistant thin film layer, a fifth step of providing a second metal thin film, and a step of etching the heat-resistant thin film layer. and a sixth step of removing.

また、第2工程において、第2絶I#層をさらに設ける
工程と、この第1絶縁層を第4工程により農作された耐
熱V膜層をマスクとして食刻する工程を有するものであ
る。
Further, the second step includes a step of further providing a second insulating I# layer, and a step of etching this first insulating layer using the heat-resistant V film layer produced in the fourth step as a mask.

また、第1金属薄膜をゲート電極、第2金属薄膜をソー
ス電極ならびにドレイン電極とするものである。
Further, the first metal thin film is used as a gate electrode, and the second metal thin film is used as a source electrode and a drain electrode.

また第6工程の最高基板温度が150℃以上であり耐熱
薄膜層を有機樹脂層とするものであり、さらに耐熱薄膜
層をポリミド樹脂層とするものである。
Further, the maximum substrate temperature in the sixth step is 150° C. or higher, the heat-resistant thin film layer is an organic resin layer, and the heat-resistant thin film layer is a polymide resin layer.

(作 用) 本発明の製造方法によると、リフトオフ法用の除去する
パターンを感光層により形成すると共に耐熱薄膜層にも
形成している。したがって、オーミック接合を得るn”
−a−3i層を150℃ないし300℃の温度範囲で製
作できるためn”−a−3i層の活性度が高く、シート
抵抗が低い。これにより薄膜トランジスタのオン電流を
充分にとることができ、特性の優れた薄膜トランジスタ
を製造できる。
(Function) According to the manufacturing method of the present invention, the pattern to be removed for the lift-off method is formed not only by the photosensitive layer but also by the heat-resistant thin film layer. Therefore, we obtain an ohmic junction n”
Since the -a-3i layer can be manufactured in a temperature range of 150°C to 300°C, the n''-a-3i layer has high activity and low sheet resistance.This makes it possible to obtain a sufficient on-current of the thin film transistor. Thin film transistors with excellent characteristics can be manufactured.

(実施例) 本発明の実施例を第1図ないし第3図に基づいて説明す
る。
(Example) An example of the present invention will be described based on FIGS. 1 to 3.

第1図は本発明の薄膜トランジスタの製造方法の工程図
である。
FIG. 1 is a process diagram of a method for manufacturing a thin film transistor according to the present invention.

第1図(a)において、透明基板1上に第1金属薄膜2
を設ける第1工程と、同図(b)に示す絶縁層3、半導
体層4を設ける第2工程と、同図(c)に示す耐熱薄膜
層5と感光層6を設ける第3工程と、同図(d)に示す
感光層6を食刻し、さらに耐熱薄膜層5を選択食刻する
第4工程と、同図(e)に示す第2金属薄膜7を設ける
第5工程と、同図(f)に示す耐熱薄膜層5を除去する
第6工程を経て薄膜トランジスタを製作する。
In FIG. 1(a), a first metal thin film 2 is formed on a transparent substrate 1.
a second step of providing an insulating layer 3 and a semiconductor layer 4 as shown in FIG. 3(b), and a third step of providing a heat-resistant thin film layer 5 and a photosensitive layer 6 as shown in FIG. The fourth step of etching the photosensitive layer 6 and selectively etching the heat-resistant thin film layer 5 shown in FIG. A thin film transistor is manufactured through a sixth step of removing the heat-resistant thin film layer 5 shown in FIG. 5(f).

次に本実施例を具体的に説明する。第1図(a)に示す
ように透明基板1(たとえば、コーニング社製7059
ガラス)を使用し、ゲートとなる膜厚1100nのNi
Cr膜の第1電極(第1金属薄膜)2を形成し、絶縁層
3として膜厚400止のSiN、膜、半導体層4として
膜厚1100nのi −a−3i膜をプラズマCVD法
により連続堆積させた1次に耐熱薄膜層5としてポリミ
ド樹脂溶液(たとえば、東し社@5p910)を1 、
0pm膜厚でスピナ塗布し、キュア温度140°Cない
し160℃で乾燥硬化させた耐熱薄膜層である。ポリミ
ド樹脂5上に感光層6としてポジ型レジスト(たとえば
、シブレイファーイースト社製A Z 1400−27
)を膜厚1.4μmでスピナ塗布し、透明基板1側より
紫外線(波長0.3pts〜0.5μm)で照射し露光
させた。NiCr膜からなる第1電極2は遮光マスクと
して働くので、現像、定着により、ポリミド樹脂5とポ
ジ型レジストは同図(d)のように食刻され、リフトオ
フ用のパターンが製作できた。
Next, this example will be explained in detail. As shown in FIG. 1(a), a transparent substrate 1 (for example, Corning 7059
glass) with a thickness of 1100 nm to form the gate.
A first electrode (first metal thin film) 2 of Cr film is formed, an SiN film with a thickness of 400 nm is formed as an insulating layer 3, and an i-a-3i film with a thickness of 1100 nm is continuously formed as a semiconductor layer 4 by plasma CVD. As the deposited primary heat-resistant thin film layer 5, a polyimide resin solution (for example, Toshisha @ 5p910) is added to
It is a heat-resistant thin film layer coated with a spinner to a thickness of 0 pm and dried and cured at a curing temperature of 140°C to 160°C. A positive resist (for example, AZ 1400-27 manufactured by Sible Far East Co., Ltd.) is applied as a photosensitive layer 6 on the polyimide resin 5.
) was spin-coated to a film thickness of 1.4 μm, and exposed to ultraviolet light (wavelength: 0.3 pts to 0.5 μm) from the transparent substrate 1 side. Since the first electrode 2 made of the NiCr film acts as a light-shielding mask, the polyimide resin 5 and the positive resist were etched by development and fixation as shown in FIG.

ポリミド樹脂5のキュア温度を140℃ないし160℃
で乾燥硬化させた場合、ポジ型レジストの現像液でレジ
ストと同時に食刻することができる。
Cure temperature of polymide resin 5 from 140℃ to 160℃
If the resist is dried and hardened, it can be etched with a positive resist developer at the same time as the resist.

次にポストベークとして、150℃、30分間乾燥硬化
させたのち、同図(e)に示すように第2金属薄膜7と
して、150℃ないし300℃の温度範囲でn”−a−
Si層を50nm、室温でNiCrを200止m堆積さ
せた。かかるのちに、発煙硝酸によりポリミド樹脂5を
除去することにより薄膜トランジスタを製造した。
Next, as a post-bake, after drying and curing at 150°C for 30 minutes, as shown in the figure (e), the n"-a-
A Si layer was deposited to a thickness of 50 nm, and a NiCr layer was deposited to a thickness of 200 nm at room temperature. Thereafter, the polyimide resin 5 was removed using fuming nitric acid to produce a thin film transistor.

第1実施例において、第5工程の最高基板温度が150
℃以下ではn”−a−3iliの活性度が低く、本発明
の目的ではない。ポリミド樹脂からなる耐熱簿膜層を用
いているので、150℃以上の温度でn″″−a −5
i膜の製作できる本発明の効果が現われる。また、ポリ
ミド樹脂からなる有機樹脂層の耐熱絶縁層を用いている
ので、溶液状態で塗布できるので製作が容易であるとい
う利点を有している。
In the first embodiment, the maximum substrate temperature in the fifth step is 150
At temperatures below 150°C, the activity of n''-a-3 is low, and this is not the purpose of the present invention.Since a heat-resistant film layer made of polyimide resin is used, at temperatures above 150°C, n''-a-5
The effect of the present invention, which allows the production of i-films, appears. Furthermore, since the heat-resistant insulating layer is an organic resin layer made of polymide resin, it has the advantage of being easy to manufacture because it can be applied in a solution state.

第2図は第2実施例の薄膜トランジスタの製造方法の工
程図である。
FIG. 2 is a process diagram of a method for manufacturing a thin film transistor according to a second embodiment.

同図(a)において、第1実施例に示した第2工程のS
iN、膜からなる第1絶縁層3とi −a −5i膜か
らなる半導体層4に加えてSiNx膜からなる第2絶縁
層8を設ける第28工程とした。同図(b)に示すよう
に、ポリミド樹脂5、ポジ型レジスト層6を積層し、ゲ
ートとなる第1電極(第1金属薄膜)2をマスクとして
透明基板1側より紫外線を照射し、ポジ型レジスト層を
露光、現像することにより、ポリミド樹脂5をパターニ
ングした。次にBHF(フッ酸−フッ化アンモニウム)
溶液によりSiNx膜8を食刻する第4工程を行なった
s 5IN11膜8はi −a−3i膜からなる半導体
層4のパッシベーションとして用いた。続いて同図(C
)に示すように、n” −a−5i/NiCr膜をおの
おの150℃ないし300℃、室温の温度範囲で堆積さ
せたのち、発煙硝酸により、ポリミド樹脂5を除去し、
同図(d)に示すように薄膜トランジスタを製造した。
In the same figure (a), S of the second step shown in the first embodiment is shown.
In addition to the first insulating layer 3 made of an iN film and the semiconductor layer 4 made of an i-a-5i film, a second insulating layer 8 made of an SiNx film was provided in the 28th step. As shown in the same figure (b), a polymide resin 5 and a positive resist layer 6 are laminated, and ultraviolet rays are irradiated from the transparent substrate 1 side using the first electrode (first metal thin film) 2 serving as a gate as a mask. The polymide resin 5 was patterned by exposing and developing the mold resist layer. Next, BHF (hydrofluoric acid-ammonium fluoride)
The s5IN11 film 8 subjected to the fourth step of etching the SiNx film 8 with a solution was used as passivation for the semiconductor layer 4 made of the i-a-3i film. Next, the same figure (C
), after each n''-a-5i/NiCr film was deposited at a temperature range of 150°C to 300°C and room temperature, the polymide resin 5 was removed using fuming nitric acid.
A thin film transistor was manufactured as shown in FIG. 4(d).

第3図は第3実施例の薄膜トランジスタの製造方法の工
程図である。本実施例では第4工程においてポリミド樹
脂を食刻したのち、ポジ型レジスト層を除去し、ポリミ
ド樹脂だけでリフトオフ法を用いるものである。すなわ
ち、同図(a)はポジ型レジスト層6を酢酸nブチルに
より除去した状態を示す。次にn ” −a −Si/
NiCr膜(第2金属薄膜)7をおのおの150℃ない
し300℃、室温の温度範囲で同図(b)に示すように
形成した。ポリミド樹脂5を発煙硝酸により除去し、同
図(c)に示すように薄膜トランジスタが製作できた。
FIG. 3 is a process diagram of a method for manufacturing a thin film transistor according to a third embodiment. In this embodiment, after etching the polymide resin in the fourth step, the positive resist layer is removed, and a lift-off method is used only with the polymide resin. That is, FIG. 3A shows a state in which the positive resist layer 6 has been removed with n-butyl acetate. Then n ” −a −Si/
A NiCr film (second metal thin film) 7 was formed in the temperature range of 150° C. to 300° C. and room temperature, as shown in FIG. 2(b). The polymide resin 5 was removed using fuming nitric acid, and a thin film transistor was fabricated as shown in FIG. 2(c).

以上の実施例において、 W/L=50(ゲート幅/ゲ
ート長)で製作した場合いずれも、ゲート・ドレイン間
容量Cdg<IPF以下、オン電流I。N=60pA(
ゲート電圧Vg=20V、ソース・ドレイン間電圧Vd
s =12V)と自己整合型でなくn”−a−3i層を
250℃で形成した薄膜トランジスタと同等の特性が得
られた。
In the above embodiments, when manufactured with W/L=50 (gate width/gate length), the gate-drain capacitance Cdg<IPF or less and the on-current I. N=60pA(
Gate voltage Vg=20V, source-drain voltage Vd
s = 12 V), and characteristics equivalent to those of a non-self-aligned thin film transistor in which an n''-a-3i layer was formed at 250° C. were obtained.

以上の実施例の説明において、第1金属薄膜は紫外光を
遮光できる導体層であればよ(、NiCr膜に限定され
るものではない。すなわち、Cr’、 Cr/MoSi
、 Cr/Ti、 Cr/Au、 AQ、 All/M
o5it AllTin TiN+Ta+Mo膜などの
材料も本発明に含まれる。
In the description of the above embodiments, the first metal thin film may be any conductive layer that can block ultraviolet light (and is not limited to a NiCr film; that is, Cr', Cr/MoSi, etc.).
, Cr/Ti, Cr/Au, AQ, All/M
Materials such as o5it AllTin TiN+Ta+Mo films are also included in the invention.

第1.第2絶縁層もSiNx膜に限定されない。たとえ
ば、Sin□、 Tame、 、 A(120s * 
y2o、 l ZrO2等の絶縁体も本発明に含まれる
。また第2金属薄膜は導体層であればよ< 、 a −
3i/NiCr膜に限定されるもノテはない。すなわち
、AQ、 All/Ti、 Ail/MoSi、。
1st. The second insulating layer is also not limited to the SiNx film. For example, Sin□, Tame, , A (120s *
Insulators such as y2o, lZrO2 are also included in the present invention. Further, the second metal thin film may be a conductive layer < , a −
Although it is limited to 3i/NiCr film, there is no note. That is, AQ, All/Ti, Ail/MoSi.

iTo、 Ta、 Mo、 TiN膜などの材料も本発
明に含まれる。
Materials such as iTo, Ta, Mo, and TiN films are also included in the present invention.

(発明の効果) 本発明によれば、耐熱薄膜層を用いることにより、薄膜
トランジスタのオーミック接合用のn”−a−3i膜を
150℃以上の温度で形成できる。
(Effects of the Invention) According to the present invention, by using a heat-resistant thin film layer, an n''-a-3i film for ohmic junction of a thin film transistor can be formed at a temperature of 150° C. or higher.

したがって、n”−a−5i膜の活性度が高くシー1−
抵抗が低いので、オーミック接合でしかも低コンタクト
抵抗が得られる。このため、従来コンタクト抵抗のため
不足した薄膜トランジスタのオン電流工。8を特性どう
り得ることができ、実用上きわめて効果が大である。
Therefore, the activity of the n''-a-5i film is high and the
Since the resistance is low, it is possible to obtain an ohmic contact with low contact resistance. For this reason, the on-state current of thin film transistors was insufficient due to conventional contact resistance. 8 can be obtained, and it is extremely effective in practice.

【図面の簡単な説明】 第1図は本発明の実施例による薄膜トランジスタの製造
方法の工程断面図、第2図は同第2実施例の工程断面図
、第3図は同第3実施例の工程断面図、第4図は、従来
の薄膜トランジスタの製造方法を示す工程断面図である
。 1・・・透明基板、 2・・・ゲートとなる第1電極(
第1金属薄膜)、  3・・・絶縁層、 4・・・半導
体層、 5・・・耐熱薄膜層、 6・・・感光層、  
7− n ” −a −Si/NiCr膜(第2金属薄
膜)、 8・・・第2絶縁層。 特許出願人 松下電器産業株式会社 第1図 第1図 7−−−乃’l’lL属博牒 第2図 第3図 第4図 1日 第4図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a cross-sectional view of a method for manufacturing a thin film transistor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a process of a second embodiment of the present invention, and FIG. FIG. 4 is a process cross-sectional view showing a conventional thin film transistor manufacturing method. 1... Transparent substrate, 2... First electrode serving as a gate (
(first metal thin film), 3... insulating layer, 4... semiconductor layer, 5... heat-resistant thin film layer, 6... photosensitive layer,
7-n''-a-Si/NiCr film (second metal thin film), 8... second insulating layer. Patent applicant: Matsushita Electric Industrial Co., Ltd. Figure 2 Figure 3 Figure 4 Figure 1 Day Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板上に少なくとも第1金属薄膜を設ける第
1工程と、第1絶縁層と半導体層を設ける第2工程と、
耐熱薄膜層と感光層を設ける第3工程と、前記感光層を
食刻し、さらに前記耐熱薄膜層を食刻する第4工程と、
第2金属薄膜を設ける第5工程と、前記耐熱薄膜層を除
去する第6工程とを有することを特徴とする薄膜トラン
ジスタの製造方法。
(1) a first step of providing at least a first metal thin film on a transparent substrate; a second step of providing a first insulating layer and a semiconductor layer;
a third step of providing a heat-resistant thin film layer and a photosensitive layer; a fourth step of etching the photosensitive layer; and further etching the heat-resistant thin film layer;
A method for manufacturing a thin film transistor, comprising: a fifth step of providing a second metal thin film; and a sixth step of removing the heat-resistant thin film layer.
(2)第2工程において、第2絶縁層をさらに設ける工
程と、該第2絶縁層を、前記第4工程により製作された
耐熱薄膜層をマスクとして食刻する工程を有することを
特徴とする特許請求の範囲第(1)項記載の薄膜トラン
ジスタの製造方法。
(2) The second step is characterized by comprising the steps of further providing a second insulating layer and etching the second insulating layer using the heat-resistant thin film layer produced in the fourth step as a mask. A method for manufacturing a thin film transistor according to claim (1).
(3)第1金属薄膜をゲート電極、第2金属薄膜をソー
ス電極ならびにドレイン電極とすることを特徴とする特
許請求の範囲第(1)項記載の薄膜トランジスタの製造
方法。
(3) The method for manufacturing a thin film transistor according to claim (1), characterized in that the first metal thin film is used as a gate electrode, and the second metal thin film is used as a source electrode and a drain electrode.
(4)第6工程の最高基板温度が150℃以上であるこ
とを特徴とする特許請求の範囲第(1)項記載の薄膜ト
ランジスタの製造方法。
(4) The method for manufacturing a thin film transistor according to claim (1), wherein the maximum substrate temperature in the sixth step is 150° C. or higher.
(5)耐熱薄膜層を有機樹脂層とすることを特徴とする
特許請求の範囲第(1)項記載の薄膜トランジスタの製
造方法。
(5) The method for manufacturing a thin film transistor according to claim (1), wherein the heat-resistant thin film layer is an organic resin layer.
(6)耐熱薄膜層をポリミド樹脂層とすることを特徴と
する特許請求の範囲第(5)項記載の薄膜トランジスタ
の製造方法。
(6) The method for manufacturing a thin film transistor according to claim (5), wherein the heat-resistant thin film layer is a polyimide resin layer.
JP10320686A 1986-05-07 1986-05-07 Manufacture of thin-film transistor Pending JPS62260369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10320686A JPS62260369A (en) 1986-05-07 1986-05-07 Manufacture of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10320686A JPS62260369A (en) 1986-05-07 1986-05-07 Manufacture of thin-film transistor

Publications (1)

Publication Number Publication Date
JPS62260369A true JPS62260369A (en) 1987-11-12

Family

ID=14348040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320686A Pending JPS62260369A (en) 1986-05-07 1986-05-07 Manufacture of thin-film transistor

Country Status (1)

Country Link
JP (1) JPS62260369A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020982A1 (en) * 1993-03-01 1994-09-15 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
EP0643420A2 (en) * 1993-09-03 1995-03-15 General Electric Company Lift-off fabrication method for self-aligned thin film transistors
US5541128A (en) * 1993-04-05 1996-07-30 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
EP0766296A2 (en) * 1995-09-29 1997-04-02 Sony Corporation Method of manufacturing a thin film transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020982A1 (en) * 1993-03-01 1994-09-15 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
US5527726A (en) * 1993-03-01 1996-06-18 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
US5541128A (en) * 1993-04-05 1996-07-30 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
EP0643420A2 (en) * 1993-09-03 1995-03-15 General Electric Company Lift-off fabrication method for self-aligned thin film transistors
EP0643420A3 (en) * 1993-09-03 1997-04-02 Gen Electric Lift-off fabrication method for self-aligned thin film transistors.
EP0766296A2 (en) * 1995-09-29 1997-04-02 Sony Corporation Method of manufacturing a thin film transistor
EP0766296A3 (en) * 1995-09-29 1998-05-13 Sony Corporation Method of manufacturing a thin film transistor

Similar Documents

Publication Publication Date Title
US4700458A (en) Method of manufacture thin film transistor
KR100686228B1 (en) apparatus and method for photolithography, and manufacturing method for a thin film transistor array panel of a liquid crystal display using the same
US7663143B2 (en) Thin film transistor having a short channel formed by using an exposure mask with slits
US11316049B2 (en) Thin-film transistor and manufacturing method thereof
JPS62260369A (en) Manufacture of thin-film transistor
JPS60103677A (en) Manufacture of thin film transistor
JPS62152174A (en) Manufacture of thin-film transistor
KR100817215B1 (en) Self-aligned organic field effect transistors and manufacturing method the same
JPS6222463B2 (en)
TWI511302B (en) Manufacturing method of thin film transistor, and display array substrate using same
JPS6142914A (en) Manufacture of semiconductor device
JPS61181169A (en) Manufacture of field-effect transistor
JPS616871A (en) Manufacture of field-effect transistor
JP2690805B2 (en) Method for forming thick film metal wiring
TW594349B (en) Liquid crystal display device and method of the same
JPH059940B2 (en)
JPS6040184B2 (en) Manufacturing method of semiconductor device
JPS60235467A (en) Manufacture of thin-film transistor
JPS60247948A (en) Manufacture of semiconductor device
JPS6341077A (en) Manufacture of thin-film transistor
JPS60257171A (en) Manufacture of thin-film semiconductor element
KR950013795B1 (en) Making method of tft
JP2513722B2 (en) Method of manufacturing thin film transistor matrix
JPS59165459A (en) Manufacture of thin film transistor
JPS61224362A (en) Manufacture of thin film transistor