JPS6225984B2 - - Google Patents
Info
- Publication number
- JPS6225984B2 JPS6225984B2 JP56071571A JP7157181A JPS6225984B2 JP S6225984 B2 JPS6225984 B2 JP S6225984B2 JP 56071571 A JP56071571 A JP 56071571A JP 7157181 A JP7157181 A JP 7157181A JP S6225984 B2 JPS6225984 B2 JP S6225984B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- light
- dust
- window
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/86—Investigating moving sheets
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明はシート状の物体の特性を測定する装置
に関する。
シート状の物体の特性を測定する装置として抄
造紙に含まれる、又は、吸着する水分を連続して
測定する多重散乱・透過方式水分計がある(特願
昭54―63362号)。
第1図は、上記水分計の構成説明図である。第
1図において、検出ヘツド1は、照射窓4及び5
と、反射材を被覆した散乱面21と、円板状の板
面に2個の貫通穴を設け、一方の穴に基準光用フ
イルタ14を、他方の穴に測定光用フイルタ15
を埋設支承して、連続した定速回転をする回転セ
クタ13と、円板状の板面に複数の貫通穴17,
18……等を設け、その一部に標準サンプル1
9,20……等を埋設支承して、外部から与えら
れる制御信号によつて、定期的、又は、必要に応
じて、定められた角度で回転するサンプルホルダ
16と、照射窓4を通る平行光線及び照射窓5を
通る平行光線を作成するランプ7,レンズ8,ミ
ラー9及びレンズ10とを有する。一方、下ヘツ
ド2は、入射窓6と、反射材を被覆した散乱面2
2と、入射窓6に入射する光を収束するレンズ1
1と、収束された入射光を検出するセンサ12と
を有する。
上・下ヘツド1及び2はシート状の紙3を挾ん
で対向状態にあり、ランプ7,レンズ8,照射窓
4,散乱面21及び22,入射窓6,レンズ11
並びにセンサ12で多重散乱光学系を、ランプ
7,ミラー9,レンズ10,照射窓5,入射窓
6,レンズ11及びセンサ12で透過光学系を
夫々構成している。そして、通常の測定状態にあ
つては、貫通穴17を照射窓4の上に、貫通穴1
8を照射窓5の上に夫々位置させ、照射窓4及び
5から、回転セクタ13による断続光を紙3に照
射し、紙3と相互作用をもつた光、即ち、多重散
乱光学系における測定光Mn及び基準光Rn並びに
透過光学系における測定光Mt及び基準光Rtから
成る時系列信号をセンサ12で検出し、次段の演
算・制御部(図示せず)に送出し、所定の演算を
して紙の水分を測定するようになつている。ま
た、校正状態にあつては、上・下ヘツド1と2の
間に紙3がない状態でサンプルホルダ16を間欠
的に回転させ、照射窓4及び5の上に、標準サン
プル、即ち、零サンプル、スパンサンプル、チエ
ツクサンプル等を順次配設し、各サンプルによる
測定光Mn及びMt並びに基準光Rn及びRtに対応
する信号を得るようになつている。
このような水分計において、演算・制御部で実
際の演算に用いる信号は、水分信号としてMn信
号(測定光Mnに対応する信号。以下、各光に対
応する信号をRn信号、Mt信号、Rt信号と言う)
とRn信号の比、即ちMn/Rn信号を用い、この信
号に含まれる誤差要因、例えば、透過率fの変動
(原料パルブに故紙を含有した抄造紙に多い)を
Rn/Rt信号で補償演算を行うようになつてい
る。演算にMn/Rn信号及びRn/Rt信号を用い
るのは、光学系を構成するランプ、センサ等の特
性変動をキヤンセルするためと、Rn,Mn,Rt,
Mtの各信号と紙の光学的特性を左右する変数、
即ち、層数n・透過率f,反射率γ及び水分量
MWとの間に、次表に示す感度特性を呈し、
Mn/Rn信号が水分量に対し、また、Rn/Rt信
号が透過率fに対し、夫々感度が大となる特性を
示すためである。
The present invention relates to a device for measuring properties of sheet-like objects. As a device for measuring the properties of sheet-like objects, there is a multiple scattering/transmission moisture meter that continuously measures the moisture contained in or adsorbed in papermaking (Japanese Patent Application No. 63362/1982). FIG. 1 is an explanatory diagram of the structure of the moisture meter. In FIG. 1, the detection head 1 includes irradiation windows 4 and 5.
, a scattering surface 21 coated with a reflective material, and two through holes are provided in the disk-shaped plate surface, with a reference light filter 14 in one hole and a measurement light filter 15 in the other hole.
A rotary sector 13 that is embedded and supported and rotates continuously at a constant speed, and a plurality of through holes 17 in a disc-shaped plate surface.
18... etc., and standard sample 1 is included in some of them.
9, 20, etc., and rotates at a predetermined angle periodically or as needed by a control signal given from the outside. It has a lamp 7, a lens 8, a mirror 9 and a lens 10 for creating a light beam and a parallel light beam passing through the illumination window 5. On the other hand, the lower head 2 has an entrance window 6 and a scattering surface 2 covered with a reflective material.
2, and a lens 1 that converges the light incident on the entrance window 6.
1 and a sensor 12 that detects the converged incident light. The upper and lower heads 1 and 2 are opposed to each other with a sheet of paper 3 in between, and include a lamp 7, a lens 8, an irradiation window 4, scattering surfaces 21 and 22, an entrance window 6, and a lens 11.
The sensor 12 constitutes a multiple scattering optical system, and the lamp 7, mirror 9, lens 10, irradiation window 5, entrance window 6, lens 11, and sensor 12 constitute a transmission optical system. In normal measurement conditions, the through hole 17 is placed above the irradiation window 4 and the through hole 1 is placed above the irradiation window 4.
8 are positioned above the irradiation window 5, and the paper 3 is irradiated with intermittent light from the rotating sector 13 from the irradiation windows 4 and 5, and the light that interacts with the paper 3, that is, the measurement in the multiple scattering optical system. A time series signal consisting of light Mn, reference light Rn, measurement light Mt and reference light Rt in the transmission optical system is detected by the sensor 12, and sent to the next stage calculation/control unit (not shown) to perform predetermined calculations. It is now possible to measure the moisture content of paper. In addition, in the calibration state, the sample holder 16 is rotated intermittently with no paper 3 between the upper and lower heads 1 and 2, and a standard sample, that is, a zero sample, is placed above the irradiation windows 4 and 5. Samples, span samples, check samples, etc. are arranged in sequence, and signals corresponding to measurement lights Mn and Mt and reference lights Rn and Rt from each sample are obtained. In such a moisture meter, the signal used for actual calculation in the calculation/control section is the Mn signal (signal corresponding to measurement light Mn) as a moisture signal.Hereinafter, the signals corresponding to each light are called Rn signal, Mt signal, Rt signal. (called a signal)
The ratio of the Mn and Rn signals, that is, the Mn/Rn signal, is used to calculate error factors included in this signal, such as fluctuations in transmittance f (which is common in papermaking where raw material pulp contains waste paper).
Compensation calculations are performed using the Rn/Rt signals. The reason why the Mn/Rn signal and Rn/Rt signal are used in calculations is to cancel characteristic fluctuations of the lamps, sensors, etc. that make up the optical system, and to cancel changes in the characteristics of the lamps, sensors, etc. that make up the optical system, and to
Variables that affect each signal of Mt and the optical properties of paper,
That is, the number of layers n, transmittance f, reflectance γ, and water content.
MW, exhibits the sensitivity characteristics shown in the table below,
This is because the sensitivity of the Mn/Rn signal increases with respect to the water content, and the sensitivity of the Rn/Rt signal increases with respect to the transmittance f.
【表】
ところで、Mn/Rn信号及びRn/Rt信号は所
望の因子以外による影響を受けないことが理想で
あるが、現実には、Rn,Mn,Rt,Mtの各信号
は、散乱面21や22,照射窓4や5,入射窓6
等に付着するダストの付着量によつて変動し、し
かも、ダストの色(白色、黒色、灰色等がある)
によつて異なる特性を示すので、ダスト雰囲気で
測定精度を維持することが難しかつた。そこで、
先に、本発明者らは、ダスト付着量のみを補償す
る方法及び装置を発明した(特願昭55―104766
号、特願昭55―104769号)。上記発明によれば、
Mn/Rn信号(これをK値と言う)とダスト付着
量は、第2図に示す関係を有し、補償演算式は(1)
式となる。なお、(1)式において補償量はDK1・F
(ΔMz)である。
K=Kon−DK1・F(ΔMz) (1)
ΔMz=Rnd/Rtd−Rnp/Rtp (2)
ただし、Kon…測定状態(オンライン)におけ
るK値(Mn/Rn信号)
DK1…実験によつて求めた定数
F(ΔMz)…ダスト付着量を示す信号
Rnd,Rtd…散乱面等にダストが付着してい
る時、零サンプルを用いて得たRn信号及び
Rt信号の値
Rnp,Rtp…散乱面等にダストが付着してい
ない時、零サンプルを用いて得たRn信号及
びRt信号の値
第2図において、縦軸はK値、横軸はダスト付
着量及び校正回数を示す。グラフイはサンプルホ
ルダ16の零サンプルを用いて得たグラフ、グラ
フロは被測定体である紙を流す位置に、零サンプ
ルと同じ物性のシート状物体を配設して得たグラ
フである。
なお、実際に検出ヘツドを据付ける現場におい
て、ダストの付着量は時間と共に比例的に増加す
るので、校正を一定間隔で行う場合、ダストの付
着量は校正回数に対応するので、ダスト付着量は
校正回数に比例する。
グラフイにおいて、A点は、上・下ヘツドの散
乱面、各窓等にダストが付着していない状態にお
けるK値でKzpとなつている。B点は、一定時間
後の校正(これを第1回目の校正と言う)におけ
る値をプロツトしたもので、ダスト付着量d=
d1,K値=Kz1となつている。同様に、C点は、
第2回目の校正によるもので、ダスト付着量d=
d2,K値=Kz2であり、D点は、第3回目の校正
によるもので、ダスト付着量d=d3,K値=Kz3
である。
一方、グラフロにおけるA点、B′点、C′点及
びD′点は、グラフイにおけるA点、B点、C点
及びD点に対応している。このように、サンプル
を配設する位置によつてK値が異なるのは、実際
に紙を流す位置にシート状のサンプルを配設した
場合、多重散乱の度合が、サンプルホルダのサン
プルによる場合に比べて極めて大きいためである
と考えられている。
同様に、Rn/Rt信号(これをM値と言う)に
ついても第2図と同様の特性を示し、M値の補償
演算式は(3)式となる。
M=Mon−DK2・F(ΔMz) (3)
ただし、Mon…測定状態(オンライン)にける
M値(Rn/Rt信号)
DK2…実験によつて求めた定数
F(ΔMz)…(1)式におけると同じ
ところで、(1)式及び(3)式における定数DK1及び
DK2はダストの色が一定している場所では定数と
みなし得るが、ダストの色が変るとDK1及びDK2
も変る。しかも、検出ヘツドが据付けられる現場
は、紙粉(白色)、紙粉+カーボン(灰色)、カー
ボン(黒色)等が混在する雰囲気が多いので、(1)
式及び(3)式を用いてダストによる影響を完全に補
償することが難しい。
第3図及び第4図は(1)式及び(3)式における補償
量DK1・F(ΔMz)≡ΔKpp及びDK2・F(Δ
Mz)≡ΔMppの特性図である。各図のグラフに
付した符号の添字1は散乱面等に白色ダスト(紙
粉)が付着した時の特性である。同様に、添字2
は灰白色ダスト(紙粉+少量のカーボン)、添字
3は灰黒色ダスト(紙粉+多量のカーボン)、添
字4は黒色ダスト(カーボン)が付着した時の特
性である。これら添字の意味するところは、後述
する第5図においても同様である。
第5図は、第1図の検出ヘツドにおける零サン
プルを用い、Rn信号とRt信号の関係を求めたも
のである。第5図から明らかなように、Rn信号
は白色ダストが付着している場合、増加特性を示
すのに対し、黒色、又は、黒色に近い色のダスト
が付着している場合、減少特性を示す。一方、
Rt信号はダストの色に関係なく減少特性となつ
ている。
上記現象は、照射窓4を透過する光が白色ダス
トの存在によつて散乱光となり、かつ、上・下ヘ
ツドで形成するギヤツプ中を多重散乱してきた光
が照射窓5に付着する白色ダストによつて、より
多く入射窓6に入射するために起るものと考えら
れる。
本発明は、かかる点に鑑みてなされたものであ
り、散乱面(対向面)、照射窓、入射窓等に付着
するダストの量や性状に関係なく精度の良い測定
信号を得るために、ダストの色に対して一定の特
性を有する検出信号を得ると共に、ダストの付着
量による影響を演算によつて補償する装置を提供
することを目的とする。
本発明の構成は、上ヘツドと下ヘツドを対向配
設して照射部と受光部を構成すると共に、該上・
下ヘツドで形成する間隙にシート状の物体を配設
し、前記照射部からの光を照射窓から前記物体に
照射し、該物体と複数回相互作用をもつた光を、
入射窓を介して検出する多重散乱光学系と、前記
物体を挾んで前記入射窓にほぼ真向いに対向する
照射窓から前記物体に光を照射し、前記入射窓を
介して、該物体を透過した光を検出する透過光学
系とを設け、各光学系毎に測定光信号および基準
光信号を検出し、これら信号を用いて前記物体の
特性に対応する信号を得ると共に、前記上・下ヘ
ツドの間に前記物体が存在しないとき前記−のヘ
ツドの内部に設けられた標準サンプルに前記照射
部からの光を照射し校正動作を行う装置におい
て、前記2つの照射窓および前記入射窓を散乱材
で構成し、前記上・下ヘツドの対向面にダストが
付着していない状態での校正動作により求めた校
正信号、および定期的又は必要に応じてかけた校
正動作により求めた校正信号を使用してダスト付
着による誤差を補償するようにしたことにある。
以下、本発明について詳しく説明する。
第6図は、本発明の一実施例による測定装置の
構成説明図である。第6図に付した符号で、第1
図と同一のものは同一意味を有するので、ここで
の説明を省略する。
第6図における装置の特徴は、オパールガラ
ス、乳白色ガラス等の散乱材31,32及び33
を用いて、多重散乱光学系の照射窓4,透過光学
系の照射窓5及び両光学系の入射窓6を夫々構成
した点にある。尚、特開昭49―66194号(薄物材
料の特性を測定する装置」において、放射線源と
検出器の開口を拡散材で覆う構造が示されてい
る。この公知例では、テイツシユーのような重量
の軽い紙でも感度良く水分量を測定出来るように
する為に拡散材が使用される。これに対し本発明
では前記上・下ヘツドの対向面にダストが付着し
た場合にダストの色によつて検出光が異なつた影
響を受けるのを防ぐ為に散乱材が使用され、この
公知例と本発明とでは散乱材を用いる目的と効果
が異なる。
更に、本発明では照射窓4,5および入射窓6
を散乱材で構成したことに加え、上・下ヘツド
1,2の窓面、散乱面にダストが付着していない
状態での校正動作により求めた校正信号、および
ダストが付着した後での校正動作により求めた校
正信号を使用してダスト補償を行う点に構成上の
特徴がある。
上記構成において、回転セクタ13及びサンプ
ルホルダ16は、第1図におけると同一な動作を
行い、センサ12は、Rn,Mn,Rt,Mtの時系
列信号を検出し、演算・制御部に送出する。この
時のRn信号とRt信号の関係は、付着するダスト
の色によつて第7図に示すように変る。第7図に
おいて、縦軸は、ダスト付着量が零の時のRn信
号を基準にしたRn信号の変化率であり、横軸
は、同じ状況におけるRt信号の変化率である。
グラフC1,C2,C3及びC4は、前記した白色ダス
ト、灰白色ダスト、灰黒色ダスト及び黒色ダスト
を、各窓面、散乱面等に付着して得たグラフであ
る。図に示すように、Rn信号は、窓面、散乱面
等にダストが付着していない時、最大を示し、ダ
ストが付着すると、その色に関係なく減少傾向を
示す。即ち、第5図の特性と異なり、ダストが
上・下ヘツドの対向面に付着すると、Rn信号は
必ず減少する。この現象について以下のように考
えることができる。
照射窓からの光は、レンズ8を介して得る平行
光線を、散乱材31によつて2π方向に投光する
散乱光となり、ダストがない状態で理想的な散乱
光となる。また、上・下ヘツド間のギヤツプを散
乱してきた散乱光が、照射窓5と入射窓6間で散
乱を繰返して入射する場合、各窓面が散乱材32
と33で構成されているので、ダストが付着して
いない状態が理想的な散乱面となる。このため、
照射窓4,5及び入射窓6の窓面にダストが付着
すると、たとえ、それが白色であつても散乱光が
減少する。
上記理由によつて上・下ヘツドの対向面にダス
トが付着するとRn信号は減少傾向を示す。
このように、Rn信号が散乱面等に付着するダ
ストの色に関係なく、減少傾向を呈することによ
つて、補償量ΔKpp及びΔMppは第8図及び第
9図に示すように、ダストの色に影響されない補
償係数を有する特性をとなる。第8図及び第9図
は、本発明による装置におけるK値の補償量Δ
Kpp及びM値の補償量ΔMppとダスト付着量信
号ΔMzの関係を示したものであり、データの・
印は白色ダスト、○・は灰白色ダスト、△・印は灰色
ダスト、□・印は黒色ダストを示す。
なお、上記実施例は、抄造紙の水分計について
説明したが、本発明はこれに限定するものではな
く、フイルムの厚さ測定装置等のシート状の物体
の物理量測定装置を含むものである。
また、上記実施例は、Mn/Rn信号及びRn/
Rt信号を用いて所定の演算を行つているが、本
発明はこれに限定するものではなく、他の信号を
用いて演算を行う装置であつてもよい。
さらに、各窓の開口部を、散乱面21及び22
を構成する部材で構成しても、上記実施例と同様
な作用効果を得ることができる。
以上詳しく説明したように、本発明による測定
装置によれば、散乱面等に付着するダストの色に
対して一定の特性を有する検出信号を得ると共
に、ダストの付着量を所定の演算をして補償して
いるので、散乱面等に付着するダストの量や性状
に関係なく、精度の良い測定信号を得ることがで
きる。[Table] By the way, it is ideal that the Mn/Rn signal and the Rn/Rt signal are not affected by factors other than desired factors, but in reality, each signal of Rn, Mn, Rt, and Mt is affected by the scattering surface 21. 22, irradiation window 4 and 5, entrance window 6
It varies depending on the amount of dust attached to the surface, etc., and the color of the dust (white, black, gray, etc.)
It has been difficult to maintain measurement accuracy in a dusty atmosphere because the characteristics vary depending on the type of material. Therefore,
Previously, the present inventors invented a method and device for compensating only the amount of dust adhesion (Japanese Patent Application No. 104766/1986).
(Special Application No. 104769, No. 104769). According to the above invention,
The Mn/Rn signal (this is called the K value) and the amount of dust adhesion have the relationship shown in Figure 2, and the compensation calculation formula is (1)
The formula becomes In addition, in equation (1), the amount of compensation is DK 1・F
(ΔMz). K=Kon−DK 1・F(ΔMz) (1) ΔMz=Rn d /Rt d −Rn p /Rt p (2) However, Kon...K value (Mn/Rn signal) in measurement state (online) DK 1 ...Constant F (ΔMz) determined by experiment...Signal indicating the amount of dust adhesion
Rn d , Rt d ...When dust is attached to the scattering surface, the Rn signal obtained using zero sample and
Rt signal values Rn p , Rt p ...Rn signal and Rt signal values obtained using zero samples when no dust is attached to the scattering surface, etc. In Figure 2, the vertical axis is the K value, and the horizontal axis is the K value. Shows the amount of dust attached and the number of calibrations. Graphi is a graph obtained by using the zero sample in the sample holder 16, and Graphi is a graph obtained by disposing a sheet-like object having the same physical properties as the zero sample at the position where the paper, which is the object to be measured, flows. In addition, at the site where the detection head is actually installed, the amount of attached dust increases proportionally with time, so when calibration is performed at regular intervals, the amount of attached dust corresponds to the number of times of calibration, so the amount of attached dust is Proportional to the number of calibrations. In the graph, point A has a K value of Kz p when no dust is attached to the scattering surfaces of the upper and lower heads, each window, etc. Point B is a plot of the value after the calibration after a certain period of time (this is called the first calibration), and the amount of dust adhesion d=
d 1 , K value=Kz 1 . Similarly, point C is
Due to the second calibration, dust adhesion amount d=
d 2 , K value = Kz 2 , D point is due to the third calibration, dust adhesion amount d = d 3 , K value = Kz 3
It is. On the other hand, points A, B', C', and D' in the grapho correspond to points A, B, C, and D in the graphi. The reason why the K value differs depending on the position where the sample is placed is that when a sheet-like sample is placed at the position where the paper is actually flowed, the degree of multiple scattering is due to the sample in the sample holder. This is thought to be because it is extremely large in comparison. Similarly, the Rn/Rt signal (referred to as the M value) also exhibits the same characteristics as shown in FIG. 2, and the compensation calculation formula for the M value is equation (3). M=Mon−DK 2・F(ΔMz) (3) However, Mon...M value (Rn/Rt signal) in measurement state (online) DK 2 ...Constant F(ΔMz) found by experiment...(1 ), constants DK 1 and DK in equations (1) and (3)
DK 2 can be considered a constant in places where the dust color is constant, but when the dust color changes, DK 1 and DK 2
It also changes. Moreover, the site where the detection head is installed often has an atmosphere containing a mixture of paper dust (white), paper dust + carbon (gray), carbon (black), etc. (1)
It is difficult to completely compensate for the influence of dust using equations and equations (3). Figures 3 and 4 show the compensation amount DK 1・F (ΔMz)≡ΔKpp and DK 2・F (ΔMz) in equations (1) and (3).
FIG. 2 is a characteristic diagram of Mz)≡ΔMpp. The suffix 1 attached to the graph in each figure indicates the characteristics when white dust (paper powder) adheres to the scattering surface or the like. Similarly, subscript 2
is a characteristic when gray-white dust (paper powder + a small amount of carbon) is attached, subscript 3 is a gray-black dust (paper powder + a large amount of carbon), and subscript 4 is a characteristic when black dust (carbon) is attached. The meanings of these subscripts are the same in FIG. 5, which will be described later. FIG. 5 shows the relationship between the Rn signal and the Rt signal using zero samples in the detection head of FIG. 1. As is clear from Figure 5, the Rn signal shows an increasing characteristic when white dust is attached, whereas it shows a decreasing characteristic when black or near-black dust is attached. . on the other hand,
The Rt signal has a decreasing characteristic regardless of the color of the dust. The above phenomenon occurs because the light transmitted through the irradiation window 4 becomes scattered light due to the presence of white dust, and the light that has been multiple scattered in the gap formed by the upper and lower heads is scattered by the white dust adhering to the irradiation window 5. Therefore, it is considered that this occurs because more light is incident on the entrance window 6. The present invention has been made in view of these points, and is aimed at obtaining accurate measurement signals regardless of the amount and properties of dust adhering to the scattering surface (opposing surface), irradiation window, entrance window, etc. It is an object of the present invention to provide a device that obtains a detection signal having constant characteristics for each color and compensates for the influence of the amount of attached dust by calculation. The structure of the present invention is such that an upper head and a lower head are disposed facing each other to constitute an irradiating section and a light receiving section.
A sheet-like object is disposed in the gap formed by the lower head, and the light from the irradiation section is irradiated onto the object through the irradiation window, so that the light interacts with the object multiple times,
A multiple scattering optical system detects the object through an entrance window, and irradiates the object with light from an irradiation window that sandwiches the object and faces almost directly to the entrance window, and transmits light through the object through the entrance window. A transmission optical system for detecting light is provided, and each optical system detects a measurement light signal and a reference light signal, and uses these signals to obtain a signal corresponding to the characteristics of the object, and to detect the characteristics of the upper and lower heads. In an apparatus that performs a calibration operation by irradiating light from the irradiation section onto a standard sample provided inside the - head when the object is not present in between, the two irradiation windows and the entrance window are made of a scattering material. using the calibration signal obtained by the calibration operation with no dust attached to the opposing surfaces of the upper and lower heads, and the calibration signal obtained by the calibration operation applied periodically or as necessary. The purpose is to compensate for errors caused by dust adhesion. The present invention will be explained in detail below. FIG. 6 is an explanatory diagram of the configuration of a measuring device according to an embodiment of the present invention. Number 1 is the number given in Figure 6.
Components that are the same as those in the drawings have the same meaning, so their explanations will be omitted here. The features of the device in FIG. 6 include scattering materials 31, 32 and 33 such as opal glass and milky glass
is used to construct the irradiation window 4 of the multiple scattering optical system, the irradiation window 5 of the transmission optical system, and the entrance window 6 of both optical systems. Furthermore, in Japanese Patent Application Laid-Open No. 49-66194 (Apparatus for Measuring Characteristics of Thin Materials), a structure is shown in which the apertures of the radiation source and detector are covered with a diffusing material. A diffusing material is used in order to be able to measure the moisture content with high sensitivity even with light paper.On the other hand, in the present invention, when dust adheres to the opposing surfaces of the upper and lower heads, it is possible to measure the moisture content with high sensitivity. A scattering material is used to prevent the detection light from being affected differently, and the purposes and effects of using the scattering material are different between this known example and the present invention.Furthermore, in the present invention, the irradiation windows 4 and 5 and the entrance window 6
In addition to being made of scattering material, the calibration signal obtained by the calibration operation with no dust attached to the window surfaces and scattering surfaces of the upper and lower heads 1 and 2, and the calibration after dust has adhered. The configuration is characterized in that dust compensation is performed using a calibration signal obtained through operation. In the above configuration, the rotating sector 13 and sample holder 16 perform the same operations as in FIG. 1, and the sensor 12 detects time-series signals of Rn, Mn, Rt, and Mt and sends them to the calculation/control unit . The relationship between the Rn signal and the Rt signal at this time changes as shown in FIG. 7 depending on the color of the attached dust. In FIG. 7, the vertical axis is the rate of change of the Rn signal with respect to the Rn signal when the amount of dust adhesion is zero, and the horizontal axis is the rate of change of the Rt signal in the same situation.
Graphs C 1 , C 2 , C 3 and C 4 are graphs obtained by depositing the above-described white dust, gray-white dust, gray-black dust, and black dust on each window surface, scattering surface, etc. As shown in the figure, the Rn signal is at its maximum when no dust is attached to the window surface, scattering surface, etc., and when dust is attached, it shows a decreasing tendency regardless of its color. That is, unlike the characteristics shown in FIG. 5, when dust adheres to the opposing surfaces of the upper and lower heads, the Rn signal always decreases. This phenomenon can be considered as follows. The light from the irradiation window is a parallel light beam obtained through the lens 8, and becomes scattered light that is projected in the 2π direction by the scattering material 31, and becomes ideal scattered light in the absence of dust. In addition, when the scattered light that has been scattered through the gap between the upper and lower heads is repeatedly scattered between the irradiation window 5 and the entrance window 6 and enters the window, each window surface is
and 33, the ideal scattering surface is when no dust is attached. For this reason,
When dust adheres to the window surfaces of the irradiation windows 4 and 5 and the entrance window 6, scattered light decreases even if the dust is white. For the above reason, when dust adheres to the opposing surfaces of the upper and lower heads, the Rn signal tends to decrease. As shown in Figures 8 and 9, the Rn signal tends to decrease regardless of the color of the dust adhering to the scattering surface, etc., so that the compensation amounts ΔKpp and ΔMpp change depending on the color of the dust, as shown in Figures 8 and 9. The characteristic has a compensation coefficient that is not affected by . FIGS. 8 and 9 show the compensation amount Δ of the K value in the device according to the present invention.
It shows the relationship between the compensation amount ΔMpp of Kpp and M value and the dust adhesion amount signal ΔMz, and the data
The mark indicates white dust, the mark ○ indicates gray-white dust, the mark △ indicates gray dust, and the mark □ indicates black dust. Although the above embodiments have been described with respect to a moisture meter for papermaking, the present invention is not limited thereto, and includes devices for measuring physical quantities of sheet-like objects, such as a device for measuring film thickness. Furthermore, in the above embodiment, the Mn/Rn signal and the Rn/
Although predetermined calculations are performed using the Rt signal, the present invention is not limited to this, and may be an apparatus that performs calculations using other signals. Furthermore, the opening of each window is
The same effects as in the above-mentioned embodiment can be obtained even if the structure is made up of members constituting the above-mentioned embodiment. As explained in detail above, the measuring device according to the present invention obtains a detection signal having a certain characteristic for the color of dust adhering to a scattering surface, etc., and calculates the amount of adhering dust by a predetermined calculation. Since the compensation is performed, highly accurate measurement signals can be obtained regardless of the amount and properties of dust adhering to the scattering surface, etc.
第1図は、従来の多重散乱・透過方式水分計の
構成説明図、第2図は、K値―ダスト付着量特性
図、第3図及び第4図は、補償量とダスト付着量
信号の関係図、第5図は、Rn信号とRt信号の関
係図、第6図は、本発明の一実施例による水分計
の構成説明図、第7図は、本発明による水分計に
おけるRn信号―Rt信号関係図、第8図及び第9
図は、本発明による水分計における補償量とダス
ト付着量信号の関係図である。
1…上ヘツド、2…下ヘツド、3…紙、4及び
5…照射窓、6…入射窓、7…ランプ、8,10
及び11…レンズ、13…回転セクタ、16…サ
ンプルホルダ、21及び22…散乱面、31,3
2及び33…散乱材(開口部)。
Figure 1 is an explanatory diagram of the configuration of a conventional multiple scattering/transmission moisture analyzer, Figure 2 is a K value-dust adhesion characteristic diagram, and Figures 3 and 4 are diagrams showing the compensation amount and dust adhesion amount signal. 5 is a diagram showing the relationship between the Rn signal and the Rt signal, FIG. 6 is an explanatory diagram of the configuration of a moisture meter according to an embodiment of the present invention, and FIG. 7 is a diagram showing the Rn signal in the moisture meter according to the present invention. Rt signal relationship diagram, Figures 8 and 9
The figure is a diagram showing the relationship between the compensation amount and the dust adhesion amount signal in the moisture meter according to the present invention. 1... Upper head, 2... Lower head, 3... Paper, 4 and 5... Irradiation window, 6... Entrance window, 7... Lamp, 8, 10
and 11...lens, 13...rotating sector, 16...sample holder, 21 and 22...scattering surface, 31,3
2 and 33...Scattering material (opening).
Claims (1)
受光部を構成すると共に、該上・下ヘツドで形成
する間隙にシート状の物体を配設し、前記照射部
からの光を照射窓から前記物体に照射し、該物体
と複数回相互作用をもつた光を、入射窓を介して
検出する多重散乱光学系と、前記物体を挾んで前
記入射窓にほぼ真向いに対向する照射窓から前記
物体に光を照射し、前記入射窓を介して、該物体
を透過した光を検出する透過光学系とを設け、各
光学系毎に測定光信号および基準光信号を検出
し、これら信号を用いて前記物体の特性に対応す
る信号を得ると共に、前記上・下ヘツドの間に前
記物体が存在しないとき前記−のヘツドの内部に
設けられた標準サンプルに前記照射部からの光を
照射し校正動作を行う装置において、前記2つの
照射窓および前記入射窓を散乱材で構成し、前記
上・下ヘツドの対向面にダストが付着していない
状態での校正動作により求めた校正信号、および
定期的又は必要に応じてかけた校正動作により求
めた校正信号を使用してダスト付着による誤差を
補償するようにしたことを特徴とするシート状物
体の特性測定装置。1. An upper head and a lower head are disposed facing each other to constitute an irradiation section and a light receiving section, and a sheet-like object is disposed in the gap formed by the upper and lower heads, and the light from the irradiation section is directed through the irradiation window. a multiple scattering optical system that irradiates the object from the object and detects the light that interacts with the object multiple times through an entrance window; and an irradiation window that sandwiches the object and faces almost directly to the entrance window. A transmission optical system is provided to irradiate the object with light and detect the light transmitted through the object through the entrance window, and each optical system detects a measurement light signal and a reference light signal, and these signals are detected by each optical system. to obtain a signal corresponding to the characteristics of the object, and when the object is not present between the upper and lower heads, the light from the irradiation section is irradiated to a standard sample provided inside the - head. In an apparatus that performs a calibration operation, the two irradiation windows and the entrance window are made of a scattering material, and a calibration signal obtained by a calibration operation with no dust attached to the opposing surfaces of the upper and lower heads; 1. A characteristic measuring device for a sheet-like object, characterized in that errors due to dust adhesion are compensated for using a calibration signal obtained through a calibration operation performed periodically or as needed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7157181A JPS57186156A (en) | 1981-05-13 | 1981-05-13 | Characteristic measuring device for sheet of body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7157181A JPS57186156A (en) | 1981-05-13 | 1981-05-13 | Characteristic measuring device for sheet of body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57186156A JPS57186156A (en) | 1982-11-16 |
JPS6225984B2 true JPS6225984B2 (en) | 1987-06-05 |
Family
ID=13464519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7157181A Granted JPS57186156A (en) | 1981-05-13 | 1981-05-13 | Characteristic measuring device for sheet of body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57186156A (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3793524A (en) * | 1972-09-05 | 1974-02-19 | Measurex Corp | Apparatus for measuring a characteristic of sheet materials |
JPS60620B2 (en) * | 1979-05-21 | 1985-01-09 | 横河電機株式会社 | Method and device for measuring moisture content of paper |
-
1981
- 1981-05-13 JP JP7157181A patent/JPS57186156A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57186156A (en) | 1982-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1275170C (en) | Method for on-line thickness monitoring of a transparent film | |
US4182259A (en) | Apparatus for measuring coating thickness on an applicator roll | |
US3551678A (en) | Paper parameter measurement using infrared radiation | |
FI59170C (en) | JAEMFOERELSEFOERFARANDE OCH ANORDNING FOER MAETNING AV MAENGDEN AV EN SUBSTANS SOM TRANSPORTERAS AV EN LOEPANDE MATERIALBANA | |
EP0611329B1 (en) | Multiple coat measurement and control | |
EP0380412A2 (en) | Coating weight measuring and control apparatus and method | |
JPH11230819A (en) | Method and device for measuring/controlling coating weight | |
EP0150945A3 (en) | Method and apparatus for measuring properties of thin materials | |
CA2818274A1 (en) | Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer | |
US8394449B2 (en) | Differential coat weight measurement by means of nuclear or X-ray gauges | |
JPS6217167B2 (en) | ||
JP2002530664A (en) | Silicon coating thickness measurement and control device | |
US4965452A (en) | Infrared analysis of paper printability | |
JPS6225984B2 (en) | ||
US5506407A (en) | High resolution high speed film measuring apparatus and method | |
JPS6161625B2 (en) | ||
EP0332018A2 (en) | Clay sensor | |
JPS6214770B2 (en) | ||
JPS6161624B2 (en) | ||
JPS5850303Y2 (en) | Moisture meter standard sample | |
JPS6123499B2 (en) | ||
JPS6123500B2 (en) | ||
JPS6212283Y2 (en) | ||
JP3205084B2 (en) | Method and apparatus for measuring film thickness of coating material | |
JPS63235805A (en) | Film thickness measurement method and device |