JPS6123500B2 - - Google Patents

Info

Publication number
JPS6123500B2
JPS6123500B2 JP10476980A JP10476980A JPS6123500B2 JP S6123500 B2 JPS6123500 B2 JP S6123500B2 JP 10476980 A JP10476980 A JP 10476980A JP 10476980 A JP10476980 A JP 10476980A JP S6123500 B2 JPS6123500 B2 JP S6123500B2
Authority
JP
Japan
Prior art keywords
signal
light
paper
measurement
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10476980A
Other languages
Japanese (ja)
Other versions
JPS5729932A (en
Inventor
Seiichiro Kyobe
Haruo Kuroji
Masaaki Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP10476980A priority Critical patent/JPS5729932A/en
Publication of JPS5729932A publication Critical patent/JPS5729932A/en
Publication of JPS6123500B2 publication Critical patent/JPS6123500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシート状の紙に近赤外線を照射し、そ
の紙と相互作用をもつた近赤外線を検出してシー
ト状の紙に含まれる又は吸着する水分量を関する
信号を得ると共に上記紙の坪量に関する信号を得
て、これらの信号を用いて水分量、水分率等を測
定する方法及び装置に関する。 水分量に関する信号(以下、単に水分量信号)
を得る手段として、透過方式および多重散乱方式
がある。 前者は、照射側光学系の光軸と受光側光学系の
光軸とをほぼ一致させて対向配設してなる照射部
および受光部を有し、これらの間にシート状の紙
を流して、照射部から約1.95μmの赤外線(水分
の吸収波長領域の光。以下、この波長光を測定光
と称する)と約1.80μmの赤外線(水分による吸
収がない波長領域の光。以下、この波長光を基準
光と称する)とを交互に紙に照射し、受光部で測
定光に対応する信号(以下、M信号と称する)お
よび基準光に対応する信号(以下、R信号と称す
る)を検出し、これらM信号およびR信号の商
(以下、M/R信号と称する)を水分量信号とす
る構成となつている。 後者は、前者と以下の点について相違する。 照射側光学系の光軸と受光側光学系の光軸とは
不一致な構成をなし、照射部からの測定光および
基準光は紙と複数回(前者に比べて格段に多い回
数)相互作用をなして受光部に到達するようにな
つている。 ところで、水分量信号は、坪量の関数であるこ
とから、水分計に坪量検出部が併設されている場
合が多い。坪量検出部として、放射線、例えば、
β線を用いたものが実用されている。その測定原
理は、β線が紙を透過するとき減衰量が坪量に関
していることを利用している。 上記した透過方式又は多重散乱方式において、
紙の原料配合が変わつたり、白色度、坪量、プレ
ス圧等、いわゆる紙の光学的諸条件が変わると、
M/R信号、すなわち、水分量信号に影響が現わ
れる。これらの影響を軽減するため、抄紙機のオ
ペレータは、紙の品種(銘柄)によつて水分の演
算式の定数を変更する操作をなしていたが、この
操作が煩雑でるばかりでなく、同一の銘柄であつ
ても、上記光学的諸条件が変る場合もあるので
(しかもオペレータが知られないうちに)、従来の
方式では紙の水分量、水分率等を連続して精度良
く測定することが難しかつた。 このような欠点を解決するため、次のような事
実に着目して後述のような構成の装置も試みられ
ていた(特開昭55−154439号公報参照)。この装
置の創作は、透過方式および多重散乱方式におけ
るR信号およびM信号が、紙の光学的特性を左右
する変数、即ち、層数n、透過率f、反射率rお
よび水分量MWの関数であつて、これらの変数が
各信号に対して次表のような感度を呈することに
着目してなされたのである。表において、Rt、
Mtは透過形水分計におけるR信号、M信号を示
し、Rn、Mnは多重散乱形水分計におけるR信
号、M信号を示す。
The present invention irradiates a sheet of paper with near-infrared rays, detects the near-infrared rays that interact with the paper, and obtains a signal related to the amount of water contained or adsorbed in the sheet of paper. The present invention relates to a method and apparatus for obtaining quantity-related signals and using these signals to measure moisture content, moisture content, etc. Signal related to moisture content (hereinafter simply referred to as moisture content signal)
There are transmission methods and multiple scattering methods as means for obtaining this. The former has an irradiating part and a light receiving part which are arranged facing each other so that the optical axis of the irradiating optical system and the optical axis of the receiving optical system almost coincide, and a sheet of paper is passed between them. , infrared rays of approximately 1.95 μm (light in the wavelength region absorbed by moisture. Hereinafter, this wavelength light is referred to as measurement light) and infrared rays of approximately 1.80 μm (light in the wavelength region not absorbed by moisture. Hereinafter, this wavelength A signal corresponding to the measurement light (hereinafter referred to as the M signal) and a signal corresponding to the reference light (hereinafter referred to as the R signal) are detected by the light receiving section. However, the quotient of these M signal and R signal (hereinafter referred to as M/R signal) is configured to be a water amount signal. The latter differs from the former in the following points. The optical axis of the irradiation-side optical system and the optical axis of the light-receiving side optical system are configured so that they do not match, and the measurement light and reference light from the irradiation section interact with the paper multiple times (much more times than the former). It is designed so that the light reaches the light receiving section. By the way, since the moisture content signal is a function of basis weight, a moisture meter is often provided with a basis weight detection section. As the basis weight detection unit, radiation, for example,
Those using β-rays are in practical use. The measurement principle utilizes the fact that when β rays pass through paper, the amount of attenuation is related to the basis weight. In the transmission method or multiple scattering method described above,
When the raw material composition of paper changes, or when the so-called optical conditions of paper such as whiteness, basis weight, press pressure, etc. change,
An influence appears on the M/R signal, that is, the water content signal. In order to reduce these effects, paper machine operators had to change the constants in the moisture calculation formula depending on the paper type (brand), but this operation was not only complicated, but also Even for different brands, the optical conditions mentioned above may change (without the operator's knowledge), so with conventional methods, it is difficult to continuously and accurately measure paper moisture content, moisture content, etc. It was difficult. In order to solve these drawbacks, an apparatus having a structure as described below has been attempted, focusing on the following facts (see Japanese Patent Laid-Open No. 154439/1983). The creation of this device is based on the fact that the R and M signals in the transmission mode and the multiple scattering mode are functions of the variables that govern the optical properties of the paper, namely the number of layers n, the transmittance f, the reflectance r and the moisture content MW. This was done by focusing on the fact that these variables exhibit sensitivities to each signal as shown in the table below. In the table, Rt,
Mt indicates the R signal and M signal in the transmission type moisture meter, and Rn and Mn indicate the R signal and M signal in the multiple scattering type moisture meter.

【表】 上記装置は、水分量信号としてMn/Rn信号
(水分量感度が大なる信号でRn/Mn信号でも同
じ)を用い、この信号に含まれる誤差要因を他の
信号で自動的に補償演算をなす構成となつてい
る。この具体例として、新聞紙の水分量、水分率
等の測定装置を挙げることができる。新聞紙は原
料パルプに故紙を含有させて抄造されるが、故紙
の含有率よつて透過率fが大きく変動し誤差要因
となつている。そこで、水分量信号Mn/Rn信号
はRn/Rt信号(透過率感度が大なる信号でRt/
Rn信号でも同じ)で補償演算がなされる構成と
なつている。このような装置において、Mn/Rn
信号およびRn/Rt信号が安定して得れなければ
ならない。ところが、実際の測定装置にあつて
は、時間とともに、散乱面、照射窓、入射窓等に
ダスト(紙粉やカーボン)が付着し、その影響が
Rn,Mn,Rt,Mtの各信号に現れ、測定精度を
低下せしめる要因となつていた。ダストによる影
響について、第3図を参照して説明する。第3図
は、ダストと信号の関係を示したものであり、以
下に説明する検出ヘツド(第1図参照)にゼロサ
ンプルを供して得た実験データによるものであ
る。第3図の縦軸はK値(=Mn/Rn信号値)、
横軸はダスト量dを示し、グラフイはゼロサンプ
ルを上ヘツド内に設置して得たグラフである。な
お、検出ヘツドを据付ける環境にあつては、ダス
トの付着量が、時間とともに比較的に増加するの
で、第3図において、ダストの付着量と校正回数
とを対応して示してある。 グラフイにおいて、A点は、上・下ヘツドの散
乱面、各窓等にダストが付着していない状態にお
けるK値でKzoとなつている。B点は、一定時間
後の校正(これを第1回目の校正という)におけ
る値をプロツトしたもので、ダスト量d=d1、K
値=Kz1となつている。同様に、C点は第2回目
の校正によるもので、ダスト量d=d2、K値=
Kz2であり、D点は第3回目の校正によるもの
で、ダスト量d=d3、K値=Kz3である。 一方、グラフロは、実際に、被測定体であるシ
ート状の紙を流す位置に、上記グラフイを得たと
同じ物性を有するシート状のサンプルを配して得
たデータに基いて描いたものである。グラフロに
おけるA点、B点、C点及びD点は、グラフイに
おけるA点,B点,C点及びD点に対応させてみ
ればよい。このように、サンプルを配設する位置
によつてK値が異なるのは(グラフイとロが得ら
れる)、実際に紙を流す位置にサンプルを配設し
た場合、多重散乱の度合が、上ヘツド内にサンプ
ルを配設した場合に比べて極めて大きいためであ
ると思われる。 いま、K値について説明したが、実際の測定装
置におけるRn/Rt信号(これをM値という)や
Mt/Rt信号(これをL値という)についても同
様に、散乱面や各窓面に付着するダスト量による
影響を受ける。 本発明は、かかる点に鑑みてなされたもので、
その目的は、上・下ヘツドの対向面である散乱
面、各窓面等に付着するダストによる影響を、ダ
ストによる汚れ検出感度の大きい信号をいて自動
的に補正し、水分量、水分率に対応する信号を、
より精度よく得る方法及び装置を提供するにあ
る。 以下、図面を参照し本発明について詳しく説明
する。 第1図は、本発明を説明するための、水分量、
水分率等の測定装置の検出ヘツドの構成説明図で
ある。第1図において、検出ヘツドは、照射窓1
1及び12を有する上ヘツド10と入射窓21を
有する下ヘツド20とを、シート状の紙30を挾
んで対向配設する構成となつている。上・下ヘツ
ドの対向面は、反射被膜13及び22からなる散
乱面を構成している。また、上ヘツド10は円板
状の板41に貫通穴42及び43を設け、これら
貫通穴個々に基準光用光学フイルタ42及び測定
光用光学フイルタ43を埋設支承してなり連続し
た回転をする回転セクタ40と、円板状の板61
に複数の貫通穴を設け、その一部に標準サンプル
を埋設支承してなり、制御信号によつて定期的、
又は、必要に応じて、間欠的に定められた回転角
で回転をするホイール60とを有し、回転セクタ
40によつてランプ50及びレンズ51で作成さ
れ照射窓11を通路とする光路と、ランプ50、
ミラー53及びレンズ52で作成され照射窓12
を通路とする光とを間欠的に遮るようになつてい
る。 一方、下ヘツド20はレンズ23及びセンサ2
5を有し、入射窓21を通過する光を検出し、次
段の演算部(図示せず)へ検出信号を送出する構
成となつている。 ところで、各ヘツドの窓と回転セクタ40との
関係及び各ヘツドの窓とホイール60との関係
は、第2図の構成となつている。第2図のイ,
ロ,ハ及びニの各図は、第1図におけるイ−イ、
ロ−ロ、ハ−ハ及びニ−ニの断面図である(寸法
は必ずしも一致していない)。上ヘツド10にあ
る照射窓11と12は、第2図のロ図のように、
紙の流れ方向(矢印で示す)に距離をもつて設け
られ、この照射窓12と第2図のハ図で示した下
ヘツド20の入射窓21とが対向する状態で設置
されている。 一方、回転セクタ40の貫通穴42及び43
(光学フイルタ42及び43と同一)と照射窓1
1及び12との位置関係は、第2図イ図のよう
に、照射窓11又は12に係る光路に光学フイル
タ42又は43があるとき、他方の光路を板41
の板面で遮断する構成、即ち、紙30へ照射光を
照射窓11及び12から同時に送出することがな
い構成となつている。また、ホイール60は、第
2図のニ図のように、板61の周縁部に貫通穴6
2,65,67,63及び64を等間隔に設け、
貫通穴65,66,67及び64夫々に、多重散
乱用のゼロサンプル65、スパンサンプル66、
チエツクサンプル67及び透過用のゼロサンプル
64を埋設支承させてなる。そして、通常の測定
時にあつては、貫通穴62を照射窓11に、貫通
穴63を照射窓12に夫々対応させて停止状にあ
る。校正時にあつては、第1の制御信号によつ
て、ホイール60にあらかじめ定めた角度の回転
を与え、照射窓11に多重散乱用のゼロサンプル
65を、照射窓12に透過用のゼロサンプル64
を夫々配設し、第2の制御信号によつて、多重散
乱用のスパンサンプル66を、第3の制御信号に
よつて多重散乱用のチエツクサンプル67を順次
照射窓11に配設する。なお、第2及び第3の制
御信号発生時には、照射窓12を遮光する構成と
なつている(遮光手段は図示せず)。 このような検出ヘツドで検出される時系列的な
Rn,Mn,Rt,Mtの各信号を演算部に与え、
Mn/Rn信号及びRn/Rt信号を作成し、所望の
演算をして、透過率f影響を補正した水分量や水
分率を求めることができる。なお、測定装置は、
上記測定動作に入るにあたり、定期的、又は、必
要に応じて、サンプル64〜67等の標準サンプ
ルを用いて校正を自動的にやり、装置の精度を維
持している。 ところで、先に、第3図を参照して説明したよ
うに、K値、即ち、Mn/Rn信号がダストの影響
をうけ、上記検出ヘツドにおいて、第3図のグラ
フイやロの特性を示すことが分つている。 そこで、本発明者らは、Kの補正演算式を、(1)
式で表わすこととし、散乱面、各窓面等のダスト
付着による汚れを検出し、その検出信号を用いて
自動的に補正をすることを考えると共に、実験に
基いて、検出信号としてRn/Rt信号が最適であ
るという結論を得た。 K=Kon−a・D (1) 但し、Kon…測定状態(オンライン)におけ
るK値(Mn/Rn信号) a…実験に基いて求められる定数 D…ダスト付着量を示する信号 (1)式において、a・Dが補正量となる。 以下、上記結論を得た根拠について説明する。 本発明者らは、実験を重ねた結果、検出信号の
種類によつて、ダストの付着量(汚れ)に対する
感度が異なることを知見した。その実例を、第4
図及び第5図に示す。第4図及び第5図は、吸着
性のダストを、上・下ヘツドの散乱面、各窓面等
に付着させて得たものであり、第4図の縦軸はK
値の補正量、横軸はΔK、第5図の縦軸はK値の
補正量、横軸はΔMである。ここで、ΔK及びΔ
Mは、(2)式及び(3)式で定義される。 ΔK=Mnd/Rnd−Mno/Rno (2) ΔM=Rnd/Rtd−Rno/Rto (3) 但し、Mno,Rno及びRto…散乱面等にダ
ストが付着していないとき、ゼロサ
ンプル66又は64を用いて得た信
号Mn,Rn及びRtの値 Mnd,Rnd及びRtd…散乱面等にダ
イトが付着しているとき、ゼロサン
プル66又は64を用いて得た信号
Mn,Rn及びRtの値 第4図と第5図の各特性を比較するに、一方が
正特性、他方が負特性となつているのは、以下の
理由による。上・下ヘツドの散乱面等に吸着性の
ダストが付着した場合、信号MtやRtはほとんど
変わらないが、信号MnやRnが大きく変わり(信
号Rnがより大きく変わる)、その特性は、ダスト
の付着量増に対して信号値が減少する負特性とな
つている。したがつて、ダストの付着量が増える
と、Mnd/Rndが増加傾向となつてΔKは正値を
示し、Rnd/Rtdが減少傾向となつてΔMは負値
を示す。 いま、上記検出ヘツドにおいて、ダストの付着
量の変化に対して必要とされるKの補正量を0.05
として、第4図及び第5図を参照してΔK及びΔ
Mを求めてみると、ΔK=0.0042,ΔM=0.32と
なる。したがつて、二つのグラフにおけるダスト
付着量検出信号の感度比は、約0.0042/0.32≒
1/80となる。即ち、ダスト付着量検出信号の感
度は、Rn/Rt信号がMn/Rn信号に比して約80
倍良いことになり、K値の補正演算にRn/Rt信
号を用いた方が有利であることが分る。 本発明による装置は、上記検出ヘツドからの検
出信号を電子計算機に与え、以下に説明する動作
なして、水分量や水分率を求める構成となつてい
る。 測定に先だつて、検出ヘツドの散乱面等にダス
トが付着していない状態にて、ゼロサンプルを用
いて、信号Rn及びRtのダスト零信号値Rno及び
Rtoを求めて記憶する。 測定状態において、定期的、又は、必要に応じ
て、ゼロサンプルによる校正動作をかけ、その都
度、信号Rn及びRtの信号値Rnd及びRtdを検出
し、(3)式に基く演算をしてΔMを求め、このΔM
をダスト付着量に対応する信号として(1)式に基く
補正演算をする。補正演算は、信号ΔMを次回の
校正動作をかけるまで一定とみなしてする方法や
時間とともに変化する、即ち、時間の函数とみな
してする方法があるが、いずれにしても、補正量
とΔMの関係は、実験によつて求められる。 このように、補正されたMn/Rn信号は、他の
誤差要因、例えば、紙の透過率fによる影響を補
正して(これも、Rn/Rt信号を用いて自動演算
される)、水分量や水分率に対応する信号として
出力される。 なお、上記実施例において、校正動作をゼロサ
ンプルを用いてなすように説明したが、本発明は
これに限定するものではなく、他のサンプル、即
ち、スパンサンプルやチエツクサンプルを用いて
もよい。また、検出ヘツドの散乱面がヒートアツ
プされていて結露し難いため、ダスト付着量検出
信号として、上記Rn/Rt信号に代えてとして、
Mn/Mt信号を用い、上記補正演算をなしてもよ
い。 以上説明したように、本発明の方法又は装置に
よれば、検出ヘツドの散乱面等に付着するダスト
量を感度良く検出し得るRn/Rt信号、即ち、
S/N比の良いダスト付着量検出信号を用いて補
正演算をするようになつているため、補正演算は
精度良い結果を得ことができる。したがつて、紙
の水分量や水分率を精度良く測定することができ
る。
[Table] The above device uses the Mn/Rn signal (a signal with high moisture content sensitivity and is the same as the Rn/Mn signal) as the moisture content signal, and automatically compensates for error factors included in this signal with other signals. It is configured to perform calculations. A specific example of this is a device for measuring moisture content, moisture content, etc. of newspaper. Newspaper is manufactured by incorporating waste paper into the raw material pulp, but the transmittance f varies greatly depending on the content of waste paper, which is a cause of error. Therefore, the water content signal Mn/Rn signal is the Rn/Rt signal (a signal with high transmittance sensitivity;
The same applies to the Rn signal). In such equipment, Mn/Rn
The signal and Rn/Rt signal must be stably obtained. However, in actual measurement equipment, dust (paper powder and carbon) adheres to the scattering surface, irradiation window, entrance window, etc. over time, and the effects of this are reduced.
This appears in the Rn, Mn, Rt, and Mt signals, and is a factor that reduces measurement accuracy. The influence of dust will be explained with reference to FIG. FIG. 3 shows the relationship between dust and signal, based on experimental data obtained by applying zero samples to the detection head (see FIG. 1) described below. The vertical axis in Figure 3 is the K value (=Mn/Rn signal value),
The horizontal axis shows the dust amount d, and the graph is a graph obtained by installing a zero sample in the upper head. Note that in the environment in which the detection head is installed, the amount of dust adhesion increases relatively with time, so in FIG. 3, the amount of dust adhesion and the number of calibrations are shown in correspondence. In the graph, point A is Kzo, which is the K value when no dust is attached to the scattering surfaces of the upper and lower heads, each window, etc. Point B is a plot of the value in the calibration after a certain period of time (this is called the first calibration), and the dust amount d = d 1 , K
The value = Kz 1 . Similarly, point C is due to the second calibration, dust amount d = d 2 , K value =
Kz 2 , and point D is due to the third calibration, dust amount d=d 3 and K value=Kz 3 . On the other hand, grapho was drawn based on data obtained by actually placing a sheet sample with the same physical properties as those used in the graph above at the position where the sheet of paper, which is the object to be measured, is flowed. . Point A, point B, point C, and point D in the grapho may be made to correspond to point A, point B, point C, and point D in the graph. The reason why the K value differs depending on the position where the sample is placed (graphs 1 and 2) is that when the sample is placed at the position where the paper is actually flowed, the degree of multiple scattering is higher than the upper head. This seems to be because it is extremely large compared to when the sample is placed inside. We have just explained the K value, but the Rn/Rt signal (this is called the M value) and
The Mt/Rt signal (this is called the L value) is similarly affected by the amount of dust adhering to the scattering surface and each window surface. The present invention has been made in view of these points,
The purpose of this is to automatically compensate for the effects of dust adhering to the scattering surfaces, which are the opposing surfaces of the upper and lower heads, each window surface, etc., using a signal with high dust contamination detection sensitivity, and to adjust the moisture content and moisture percentage. the corresponding signal,
An object of the present invention is to provide a method and apparatus for obtaining higher accuracy. Hereinafter, the present invention will be explained in detail with reference to the drawings. Figure 1 shows the water content,
FIG. 2 is an explanatory diagram of the configuration of a detection head of a device for measuring moisture content, etc. In FIG. 1, the detection head is located at the irradiation window 1.
An upper head 10 having windows 1 and 12 and a lower head 20 having an entrance window 21 are arranged facing each other with a sheet of paper 30 sandwiched therebetween. The opposing surfaces of the upper and lower heads constitute a scattering surface consisting of reflective coatings 13 and 22. Further, the upper head 10 has through holes 42 and 43 formed in a disc-shaped plate 41, and each of these through holes supports an optical filter 42 for reference light and an optical filter 43 for measurement light, and rotates continuously. Rotating sector 40 and disk-shaped plate 61
A standard sample is buried in several through-holes, and a standard sample is buried in some of the through-holes.
Or, if necessary, it has a wheel 60 that rotates intermittently at a predetermined rotation angle, and an optical path created by the lamp 50 and lens 51 by the rotating sector 40 and having the irradiation window 11 as a path; lamp 50,
The irradiation window 12 is created by a mirror 53 and a lens 52.
It is designed to intermittently block the light passing through the passageway. On the other hand, the lower head 20 includes a lens 23 and a sensor 2.
5, and is configured to detect light passing through the entrance window 21 and send a detection signal to the next stage calculation section (not shown). Incidentally, the relationship between the window of each head and the rotating sector 40 and the relationship between the window of each head and the wheel 60 are as shown in FIG. Figure 2 A,
Figures B, C, and D represent A, B, and B in Figure 1.
It is a sectional view of Ro-Ro, Ha-Ha, and Ni-Ni (dimensions do not necessarily match). The irradiation windows 11 and 12 in the upper head 10 are as shown in FIG.
The irradiation window 12 is provided at a distance in the paper flow direction (indicated by the arrow), and the irradiation window 12 and the entrance window 21 of the lower head 20 shown in FIG. On the other hand, the through holes 42 and 43 of the rotating sector 40
(same as optical filters 42 and 43) and irradiation window 1
1 and 12, as shown in FIG.
In other words, the irradiation light is not emitted to the paper 30 from the irradiation windows 11 and 12 at the same time. The wheel 60 also has a through hole 6 in the peripheral edge of the plate 61, as shown in FIG.
2, 65, 67, 63 and 64 are provided at equal intervals,
A zero sample 65 for multiple scattering, a span sample 66,
A check sample 67 and a zero sample 64 for transmission are buried and supported. During normal measurement, the through holes 62 and 63 correspond to the irradiation window 11 and the irradiation window 12, respectively, and are in a stopped state. During calibration, the wheel 60 is rotated by a predetermined angle using the first control signal, and a zero sample 65 for multiple scattering is placed in the irradiation window 11, and a zero sample 64 for transmission is placed in the irradiation window 12.
A span sample 66 for multiple scattering is sequentially arranged in the irradiation window 11 according to the second control signal, and a check sample 67 for multiple scattering is sequentially arranged in the irradiation window 11 according to the third control signal. Note that when the second and third control signals are generated, the irradiation window 12 is configured to be shielded from light (the light shielding means is not shown). The time series detected by such a detection head
Give each signal Rn, Mn, Rt, Mt to the calculation section,
By creating the Mn/Rn signal and the Rn/Rt signal and performing desired calculations, it is possible to obtain the moisture content and moisture content with the influence of transmittance f corrected. In addition, the measuring device is
Before starting the measurement operation, calibration is automatically performed periodically or as needed using standard samples such as samples 64 to 67 to maintain the accuracy of the apparatus. By the way, as explained earlier with reference to FIG. 3, the K value, that is, the Mn/Rn signal is affected by dust, and the detection head exhibits the characteristics shown in graphs 1 and 2 in FIG. I understand. Therefore, the present inventors calculated the correction calculation formula for K as (1)
In addition to detecting dirt due to dust adhesion on the scattering surface, each window surface, etc., and automatically correcting it using the detection signal, based on experiments, we calculated Rn/Rt as the detection signal. It was concluded that the signal was optimal. K=Kon-a・D (1) However, Kon...K value (Mn/Rn signal) in the measurement state (online) a...Constant determined based on experiment D...Signal indicating the amount of dust attached Equation (1) , a and D are the correction amounts. The basis for reaching the above conclusion will be explained below. As a result of repeated experiments, the present inventors found that the sensitivity to the amount of dust adhesion (stain) differs depending on the type of detection signal. An example of this is shown in the 4th section.
As shown in FIG. Figures 4 and 5 are obtained by adhering adsorbent dust to the scattering surfaces of the upper and lower heads, each window surface, etc., and the vertical axis in Figure 4 is K.
The amount of correction of the value, the horizontal axis is ΔK, the vertical axis in FIG. 5 is the amount of correction of the K value, and the horizontal axis is ΔM. Here, ΔK and Δ
M is defined by equations (2) and (3). ΔK=Mnd/Rnd-Mno/Rno (2) ΔM=Rnd/Rtd-Rno/Rto (3) However, Mno, Rno, and Rto... When no dust is attached to the scattering surface, etc., zero sample 66 or 64 is Values of signals Mn, Rn, and Rt obtained using Mnd, Rnd, and Rtd... Signals obtained using zero sample 66 or 64 when daite is attached to the scattering surface etc.
Values of Mn, Rn, and Rt Comparing the characteristics in FIG. 4 and FIG. 5, one has a positive characteristic and the other has a negative characteristic for the following reasons. When adsorbent dust adheres to the scattering surfaces of the upper and lower heads, the signals Mt and Rt hardly change, but the signals Mn and Rn change significantly (signal Rn changes more greatly), and the characteristics of the dust It has a negative characteristic in that the signal value decreases as the amount of adhesion increases. Therefore, as the amount of attached dust increases, Mnd/Rnd tends to increase and ΔK shows a positive value, and Rnd/Rtd tends to decrease and ΔM shows a negative value. Now, in the above detection head, the amount of correction of K required for changes in the amount of attached dust is set to 0.05.
ΔK and ΔK with reference to FIGS. 4 and 5.
When M is determined, ΔK=0.0042 and ΔM=0.32. Therefore, the sensitivity ratio of the dust adhesion detection signals in the two graphs is approximately 0.0042/0.32≒
It becomes 1/80. In other words, the sensitivity of the dust adhesion detection signal is that the Rn/Rt signal is approximately 80 times more sensitive than the Mn/Rn signal.
This is twice as good, and it can be seen that it is more advantageous to use the Rn/Rt signal for the K value correction calculation. The apparatus according to the present invention is configured to apply a detection signal from the detection head to an electronic computer to determine the moisture content and moisture content without performing the operations described below. Prior to measurement, the dust zero signal values Rno and Rn of the signals Rn and Rt are determined using a zero sample with no dust attached to the scattering surface of the detection head, etc.
Find and memorize Rto. In the measurement state, perform a calibration operation using zero samples periodically or as necessary, detect the signal values Rnd and Rtd of the signals Rn and Rt each time, and calculate ΔM by calculating based on equation (3). Find this ΔM
A correction calculation is performed based on equation (1) using as a signal corresponding to the amount of dust adhesion. There are two ways to perform the correction calculation: one is to assume that the signal ΔM is constant until the next calibration operation is applied, and the other is to assume that the signal ΔM changes over time, that is, as a function of time. The relationship is determined by experiment. In this way, the corrected Mn/Rn signal corrects the influence of other error factors, such as paper transmittance f (this is also automatically calculated using the Rn/Rt signal), and calculates the moisture content. It is output as a signal corresponding to water content and moisture content. In the above embodiments, the calibration operation is performed using zero samples, but the present invention is not limited to this, and other samples, such as span samples and check samples, may be used. In addition, since the scattering surface of the detection head is heated up and is difficult to form condensation, the dust adhesion amount detection signal can be replaced with the above Rn/Rt signal.
The above correction calculation may be performed using the Mn/Mt signal. As explained above, according to the method or apparatus of the present invention, the Rn/Rt signal that can detect the amount of dust attached to the scattering surface of the detection head with high sensitivity, that is,
Since the correction calculation is performed using the dust adhesion amount detection signal with a good S/N ratio, the correction calculation can obtain highly accurate results. Therefore, the moisture content and moisture content of paper can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による装置の検出
ヘツドの構成説明図、第2図イ,ロ,ハ及びニ
は、第1図におけるイ−イ、ロ−ロ、ハ−ハ及び
ニ−ニの各断面図、第3図は、K値−ダスト特性
図、第4図は、Kの補正量−ΔK特性図、第5図
はKの補正量−ΔM特性図である。 10……上ヘツド、11及び12……照射窓、
13及び22……反射被膜(散乱面)、20……
下ヘツド、21……入射窓、25……光感応素
子、30……被測定体(紙)、40……回転セク
タ、60……ホイール、50……ランプ、51,
52及び23……レンズ、53……ミラー。
FIG. 1 is an explanatory diagram of the configuration of a detection head of an apparatus according to an embodiment of the present invention, and FIG. 3 is a K value-dust characteristic diagram, FIG. 4 is a K correction amount-ΔK characteristic diagram, and FIG. 5 is a K correction amount-ΔM characteristic diagram. 10... upper head, 11 and 12... irradiation window,
13 and 22... Reflective coating (scattering surface), 20...
Lower head, 21... Entrance window, 25... Photosensitive element, 30... Measured object (paper), 40... Rotating sector, 60... Wheel, 50... Lamp, 51,
52 and 23...lens, 53...mirror.

Claims (1)

【特許請求の範囲】 1 上ヘツドと下ヘツドを対向配置して多重散乱
形の光学系及び透過形の光学系を構成すると共
に、該上・下ヘツドで形成される間隙にシート状
の紙を流し、該紙に水分によつて吸収される波長
領域の光である測定光と水分によつて吸収されな
い波長領域の光である基準光とを照射し、前記紙
と相互作用をもつた前記測定光および基準光を光
感応素子に導いて検出し、該測定光および基準光
に夫々対応して光感応素子から出力される測定信
号および基準信号を用いる演算によつて前記紙に
含まれている水分量もしくは水分率を測定する方
法において、 前記上・下ヘツドの対向面に形成された散乱
面、照射窓、および入射窓のいずれにもダストが
付着していないときに前記間隙からシート状の紙
を除去し前記上ヘツド若しくは下ヘツドに設置さ
れた標準サンプルを用いて求めた前記多重散乱形
光学系に関する測定信号Mn及び基準信号Rnの各
検出信号値Mno及びRnoと透過形光学系に関する
測定信号値Mt及び基準信号Rtの各検出信号値
Mto及びRtoとの中から前記基準光関連の検出信
号Rno,Rto又は前記測定光関連の検出信号値
Mno,Mtoをあらかじめ記憶しておき、前記間隙
からシート状の紙を除去し前記標準サンプルを用
いて定期的もしくは必要に応じて校正動作をかけ
て得られる前記多重散乱形光学系に関する測定信
号Mn及び基準信号Rnの各検出信号値Mnd及び
Rnd並びに前記透過形光学系に関する測定信号
Mt及び基準信号Rtの各検出信号値Mtd及びRtdの
中から選択された前記基準光関連の検出信号
Rnd,Rtd又は前記測定光関連の検出信号値
Mnd,Mtdと前記基準光関連の検出信号値Rno,
Rto又は前記測定光関連の検出信号値Rno,Rto又
は前記測定光関連の検出信号値Mno,Mtoとを用
いて(Rnd/Rtd−Rno/Rto)又は(Mnd/Mtd
−Mno/Mto)の関数である信号を作成し、該信
号を用いてダスト付着による誤差の補正を行なう
ことを特徴とする紙の水分量もしくは水分率を測
定する方法。 2 上ヘツドと下ヘツドを対向配置して多重散乱
形の光学系及び透過形の光学系を構成すると共
に、該上・下ヘツドで形成される間隙にシート状
の紙を流し、該紙に水分によつて吸収される波長
領域の光である測定光と水分によつて吸収されな
い波長領域の光である基準光とを照射し、前記紙
と相互作用をもつた前記測定光および基準光を光
感応素子に導いて検出し、該測定光および基準光
に夫々対応して光感応素子から出力される測定信
号および基準信号を用いる演算によつて前記紙に
含まれている水分量もしくは水分率を測定する装
置において、 前記上ヘツド内又は下ヘツド内に設けられ外部
からの校正動作信号によつて前記多重散乱形光学
系もしくは透過形光学系の光路に挿入される標準
サンプルと、前記上・下ヘツドの対向面に形成さ
れた散乱面、照射窓、および入射窓のいずれにも
ダストが付着していないときに前記間隙からシー
ト状の紙を除去し前記標準サンプルを用いて求め
た前記多重散乱形光学系に関する測定信号Mn及
び基準信号Rnの各検出信号値Mno及びRnoと透過
形光学系に関する測定信号Mt及び基準信号Rtの
各検出信号値Mto及びRtoとの中から前記基準光
関連の検出信号Rno,Rto又は前記測定光関連の
検出信号値Mno,Mtoをあらかじめ記憶する手段
と、前記間隙からシート状の紙を除去し前記標準
サンプルを用いて定期的もしくは必要に応じて校
正動作をかけて得られる前記多重散乱形光学系に
関する測定信号Mn及び基準信号Rnの各検出信号
値Mnd及びRndと前記透過形光学系に関する測定
信号Mt及び基準信号Rtの各信号値Mtd及びRtdと
の中から選択された前記基準光関連の検出信号
Rnd,Rtd又は前記測定光関連の検出信号値
Mnd,Mtdと前記記憶された信号値Rno,Rto又
はMno,Mtoとを用いて(Rnd/Rtd−Rno/
Rto)又は(Mnd/Mtd−Mno/Mto)の関数で
ある信号を作成すると共に該信号を用いてダスト
付着による誤差の補正演算を行なう手段と、を具
備することを特徴とする紙の水分量もしくは水分
率を測定する装置。
[Claims] 1. An upper head and a lower head are disposed facing each other to constitute a multiple scattering type optical system and a transmission type optical system, and a sheet of paper is placed in the gap formed by the upper and lower heads. The paper is irradiated with measurement light that is light in a wavelength range that is absorbed by moisture and reference light that is light in a wavelength range that is not absorbed by moisture, and the measurement that interacts with the paper is performed. The light and the reference light are guided to and detected by a photosensitive element, and the information contained in the paper is calculated by using a measurement signal and a reference signal output from the photosensitive element in response to the measurement light and the reference light, respectively. In the method of measuring moisture content or moisture percentage, when no dust is attached to any of the scattering surfaces, the irradiation window, and the incident window formed on the opposing surfaces of the upper and lower heads, a sheet-shaped sheet is removed from the gap. Detection signal values Mno and Rno of the measurement signal Mn and reference signal Rn for the multiple scattering optical system obtained by removing the paper and using a standard sample placed in the upper head or lower head, and measurement for the transmission optical system. Each detected signal value of signal value Mt and reference signal Rt
The detection signal Rno, Rto related to the reference light or the detection signal value related to the measurement light from Mto and Rto.
Mno and Mto are memorized in advance, a sheet of paper is removed from the gap, and a measurement signal Mn regarding the multiple scattering optical system is obtained by performing a calibration operation periodically or as necessary using the standard sample. and each detection signal value Mnd and reference signal Rn.
Rnd and measurement signals related to the transmission type optical system
Detection signal related to the reference light selected from detection signal values Mtd and Rtd of Mt and reference signal Rt
Rnd, Rtd or detection signal value related to the measurement light
Mnd, Mtd and the detection signal value Rno related to the reference light,
(Rnd/Rtd−Rno/Rto) or (Mnd/Mtd
- Mno/Mto) A method for measuring the moisture content or moisture percentage of paper, characterized in that a signal is created as a function of Mno/Mto), and the signal is used to correct an error due to dust adhesion. 2. An upper head and a lower head are arranged facing each other to configure a multiple scattering type optical system and a transmission type optical system, and a sheet of paper is poured into the gap formed by the upper and lower heads, and moisture is applied to the paper. The measuring light, which is light in a wavelength range that is absorbed by water, and the reference light, which is light in a wavelength range that is not absorbed by water, are irradiated, and the measuring light and reference light that interact with the paper are illuminated. The moisture content or moisture content of the paper is determined by a calculation using a measurement signal and a reference signal output from the photosensitive element corresponding to the measurement light and the reference light, respectively. In the measuring device, a standard sample is provided in the upper head or the lower head and inserted into the optical path of the multiple scattering optical system or the transmission optical system by a calibration operation signal from the outside, and the upper and lower The multiple scattering was determined using the standard sample by removing the sheet of paper from the gap when no dust was attached to any of the scattering surfaces formed on the opposing surfaces of the head, the irradiation window, and the entrance window. Detection related to the reference light from among the detection signal values Mno and Rno of the measurement signal Mn and reference signal Rn related to the transmissive optical system and the detection signal values Mto and Rto of the measurement signal Mt and reference signal Rt related to the transmissive optical system. Means for storing the signals Rno, Rto or the detected signal values Mno, Mto related to the measurement light in advance, and removing the sheet of paper from the gap and performing a calibration operation periodically or as necessary using the standard sample. from the detection signal values Mnd and Rnd of the measurement signal Mn and reference signal Rn regarding the multiple scattering optical system obtained by Detection signal related to the selected reference light
Rnd, Rtd or detection signal value related to the measurement light
Using Mnd, Mtd and the stored signal values Rno, Rto or Mno, Mto, (Rnd/Rtd−Rno/
means for creating a signal that is a function of Rto) or (Mnd/Mtd-Mno/Mto) and using the signal to perform a correction calculation for an error caused by dust adhesion. Or a device that measures moisture content.
JP10476980A 1980-07-30 1980-07-30 Method and device for measuring moisture quantity and moisture percentage or the like of paper Granted JPS5729932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10476980A JPS5729932A (en) 1980-07-30 1980-07-30 Method and device for measuring moisture quantity and moisture percentage or the like of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10476980A JPS5729932A (en) 1980-07-30 1980-07-30 Method and device for measuring moisture quantity and moisture percentage or the like of paper

Publications (2)

Publication Number Publication Date
JPS5729932A JPS5729932A (en) 1982-02-18
JPS6123500B2 true JPS6123500B2 (en) 1986-06-06

Family

ID=14389674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10476980A Granted JPS5729932A (en) 1980-07-30 1980-07-30 Method and device for measuring moisture quantity and moisture percentage or the like of paper

Country Status (1)

Country Link
JP (1) JPS5729932A (en)

Also Published As

Publication number Publication date
JPS5729932A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
US3614450A (en) Apparatus for measuring the amount of a substance that is associated with a base material
FI59170B (en) JAEMFOERELSEFOERFARANDE OCH ANORDNING FOER MAETNING AV MAENGDEN AV EN SUBSTANS SOM TRANSPORTERAS AV EN LOEPANDE MATERIALBANA
US3551678A (en) Paper parameter measurement using infrared radiation
JPS6217167B2 (en)
US3675019A (en) Apparatus for measuring the amount of a substance that is associated with a base material
JPH02247528A (en) Coating weight measuring and controlling device and method thereof
US4085326A (en) Radiation reflection method and apparatus particularly for gauging materials exhibiting broadband absorption or scattering, or similar effects
US9612213B2 (en) Automatic z-correction for basis weight sensors
CA2987076C (en) Holmium oxide glasses as calibration standards for near infrared moisture sensors
CN112229488B (en) Online grade selection for weight measurement of composite sheets
US8723944B1 (en) System for detecting conductive coatings on non-conductive medium surfaces
JPS6123500B2 (en)
GB1604747A (en) Method of and an apparatus for measuring a physical property of a thin body
JPS6123499B2 (en)
GB2062219A (en) Contactless measurement for substance concentration
JP3205084B2 (en) Method and apparatus for measuring film thickness of coating material
JPS6123498B2 (en)
JPH0149894B2 (en)
JPS6214770B2 (en)
JP2560927B2 (en) Method for measuring thickness distribution of layers constituting laminated body
JPS6161625B2 (en)
JPH07318488A (en) Near infrared spectral analyzer
JPS5850303Y2 (en) Moisture meter standard sample
JPS6123496B2 (en)
JPH08233735A (en) Near infrared component analyzer