JPS63235805A - Method and apparatus for measuring thickness of film - Google Patents

Method and apparatus for measuring thickness of film

Info

Publication number
JPS63235805A
JPS63235805A JP7087087A JP7087087A JPS63235805A JP S63235805 A JPS63235805 A JP S63235805A JP 7087087 A JP7087087 A JP 7087087A JP 7087087 A JP7087087 A JP 7087087A JP S63235805 A JPS63235805 A JP S63235805A
Authority
JP
Japan
Prior art keywords
infrared rays
wavelength
intensity
reflected light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7087087A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamamoto
俊行 山本
Tatsuro Honda
達朗 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7087087A priority Critical patent/JPS63235805A/en
Publication of JPS63235805A publication Critical patent/JPS63235805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform measurement with high accuracy, by irradiating a reference material and an object to be measured with infrared rays having a wavelength generating absorption in the org. substance on the surface of a metal base material and infrared rays having a wavelength generating no absorption and detecting the intensities of the reflected lights from both of them. CONSTITUTION:Infrared rays having a wavelength lambda1 generating absorption in the org. film 1b formed on the surface of a steel plate 1a are allowed to irradiate the steel plate 1a and the thickness of the film 1b is measured from the intensity of the reflected light thereof. Then, the infrared rays having the wavelength lambda2 and infrared rays having wavelengths lambda2, lambda3 (lambda2<lambda1<lambda3) generating no absorption are allowed to irradiate a reference material composed of the same metal as the steel plate 1a and having no film 1b on the surface thereof and an object to be measured to detect the intensities of the respective reflected lights therefrom. The intensities of the reflected lights are detected with respect to infrared rays having a wide wavelength range containing three wavelengths in the same way and, from the detection values, the thickness (t) of the film 1b is calculated using formula t=-1/2alpha.ln[1-1/A{(I02/ I2S+I03/I3S)/2-I0AX/I1S}] (wherein alpha is the absorption coefficient of a wavelength lambda, A is the value of the ratio of the quantities of the respective reflected lights of the infrared rays having a wide wavelength range and I0A-I03 and I1S-I3S are respectively the intensities of the reflected lights having respective frequencies from the object to be measured and the reference material 8).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼材等金属材の被覆のためにその表面に形成
された有機膜の厚みを赤外線を用いて測定する方法及び
その実施に使用する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the thickness of an organic film formed on the surface of a metal material such as steel for coating, using infrared rays, and a method used for carrying out the method. related to a device for

〔従来技術〕[Prior art]

鋼材表面に塗装等により形成される有機膜の厚みは溶接
性低下防止及び耐食性付与のために適切な値にすること
が必要である。このため、従来、鋼材表面に有機膜を形
成する製造過程において、膜厚をオンライン測定し、そ
の測定値に基づいて膜厚を制御することが行われている
The thickness of the organic film formed on the surface of the steel material by painting or the like must be set to an appropriate value in order to prevent deterioration of weldability and impart corrosion resistance. For this reason, conventionally, in the manufacturing process of forming an organic film on the surface of a steel material, the film thickness is measured online and the film thickness is controlled based on the measured value.

このような膜厚測定技術として、特定波長の赤外線の反
射光の強度がその有機膜の厚みに対応して変化するとい
う光学的原理、即ちランバートの法則を利用したものが
あり、これには2波長の赤外線を使用する2波長方式と
3波長の赤外線を使用する3波長方式とがある。
One such film thickness measurement technology uses the optical principle that the intensity of reflected infrared light of a specific wavelength changes depending on the thickness of the organic film, that is, Lambert's law. There are two wavelength methods, which use infrared rays of three wavelengths, and a three-wavelength method, which uses infrared rays of three wavelengths.

2波長方式の膜厚測定技術として、住友重機械技報Vo
1.32 Na94 April 1984  r赤外
線塗膜厚センサ」に開示の技術が公知である。これは、
鋼板の種類が異なる場合には、反射率に数10%もの差
異が生じることがあるため、反射率が膜厚測定上、大き
な誤差要因となることがあることに鑑み、鋼板の反射率
の差異に起因する膜厚測定の誤差を除去することを目的
とするものであり、膜による赤外線吸収が生じる波長の
赤外線及び該吸収が生じない波長の赤外線を塗膜を有す
る鋼板に照射したときの夫々について、反射光の強度の
減衰率を考慮したランバートの法則を表す2式を立て、
この2式の各辺を相互に除することにより鋼板の反射率
を含まない膜厚算出式を導出することを基本原理とする
ものである。
As a two-wavelength film thickness measurement technology, Sumitomo Heavy Industries Technical Report Vo
1.32 Na94 April 1984 r Infrared Paint Film Thickness Sensor" is known. this is,
When different types of steel sheets are used, there may be a difference of several tens of percent in reflectance, so in consideration of the fact that reflectance can be a major error factor in film thickness measurement, we have determined the difference in reflectance of steel sheets. The purpose is to eliminate errors in film thickness measurement caused by We created two equations expressing Lambert's law considering the attenuation rate of the intensity of reflected light,
The basic principle is to derive a film thickness calculation formula that does not include the reflectance of the steel plate by mutually dividing each side of these two formulas.

また、3波長方式の膜厚測定技術として本出願人の提案
(特開昭61−68157号)がある。これは吸収が生
じる波長λ4の赤外線及び吸収が生じない波長λ2.λ
、(但し、2λ4−λ、+λ、)の赤外線を測定対象に
照射したときの夫々について、赤外線吸収以外による各
波長の反射光の強度の減衰率を考慮したランバートの法
則を表す3式を立て、一定の近似により減衰率を含まな
い膜厚算出式を導出することを基本原理とするものであ
る。
Furthermore, there is a proposal by the present applicant (Japanese Unexamined Patent Publication No. 61-68157) as a three-wavelength method for measuring film thickness. This includes infrared rays at wavelength λ4 where absorption occurs and wavelength λ2 where absorption does not occur. λ
, (however, 2λ4-λ, +λ), respectively, when the measurement target is irradiated with infrared rays, three equations representing Lambert's law are created that take into account the attenuation rate of the intensity of reflected light of each wavelength due to factors other than infrared absorption. The basic principle is to derive a film thickness calculation formula that does not include the attenuation rate using a certain approximation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記二つの技術は、共に赤外線吸収以外の原因による反
射光の強度の減衰率の差異に基づく膜厚測定の誤差を可
及的に小ざくする技術を提供するものであるが、膜表面
での反射率の差異が膜厚測定に与える影響を考慮してい
ない。
Both of the above two techniques provide techniques for minimizing errors in film thickness measurement based on differences in the attenuation rate of the intensity of reflected light due to causes other than infrared absorption. The effect of differences in reflectance on film thickness measurements is not taken into consideration.

膜厚測定には赤外線吸収が最も大きく生じる波長を使用
することが精度を高くする上で重要であり、この場合膜
内からの反射光の強度が小さいので、該反射光の強度に
対する膜表面での反射光の強度が相対的に大きくなり、
膜表面での反射光の強度が絶対値としては小さい有機膜
の膜厚測定においても、表面反射率の影響を無視し得な
くなる。
It is important to use the wavelength at which the maximum infrared absorption occurs for film thickness measurement in order to increase accuracy. In this case, the intensity of the reflected light from within the film is small, so the film surface The intensity of the reflected light becomes relatively large,
Even when measuring the thickness of an organic film where the intensity of reflected light on the film surface is small in absolute value, the influence of surface reflectance cannot be ignored.

特に薄膜の厚みを測定する場合には、表面反射率の影響
を考慮することが相対誤差を小さくする上で望ましい。
Particularly when measuring the thickness of a thin film, it is desirable to consider the influence of surface reflectance in order to reduce relative errors.

また、両技術はパスラインの変動等が生じやすいオンラ
イン測定において精度の高い膜厚測定を行うには適さな
い。これは膜厚計と鋼板との距離及び傾き、即ち三次元
的位置関係の差異に基づく膜厚測定の誤差を考慮してい
ないからである。
Furthermore, both techniques are not suitable for highly accurate film thickness measurement in online measurements where variations in pass lines are likely to occur. This is because errors in film thickness measurement based on differences in the distance and inclination between the film thickness meter and the steel plate, that is, the three-dimensional positional relationship, are not taken into account.

本発明は斯かる事情に鑑みてなされたものであり、鋼材
の表面性状の差異のみならず前記二つの技術においては
考慮されなかった膜の表面反射及び膜厚計と鋼材との相
対的位置関係の差異が膜厚測定に及ぼす影響をも考慮し
て、これらの影響を受けることがない高精度の膜厚測定
方法及び装置を提供することを目的とする。
The present invention was made in view of the above circumstances, and it takes into consideration not only the difference in the surface properties of steel materials, but also the surface reflection of the film and the relative positional relationship between the film thickness meter and the steel material, which were not considered in the above two techniques. It is an object of the present invention to provide a highly accurate film thickness measuring method and device that is free from these influences, taking into consideration the influence that differences in film thickness have on film thickness measurement.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る膜厚測定方法は、金属母材の表面に形成さ
れた有機膜に吸収が生じる波長λ1の赤外線を照射し、
その反射光の強度から有機膜の厚みを測定する膜厚測定
方法において、前記波長λ1及び吸収が生じない波長λ
2.λ0 (λ2くλ1くλ3)の赤外線を、測定対象
の母材と同一金属材からなり、表面に有機膜が形成され
ていない基準材及び測定対象に照射したときの夫々の反
射光の強度を検出し、前記3波長を含む広い波長範囲の
赤外線を前記基準材及び測定対象に照射したときの各反
射光の強度を検出し、これらの検出値に基づき、下式に
より有機膜の膜厚tを算出することを特徴とする。
The film thickness measurement method according to the present invention irradiates an infrared ray with a wavelength λ1 that causes absorption in an organic film formed on the surface of a metal base material,
In a film thickness measurement method that measures the thickness of an organic film from the intensity of the reflected light, the wavelength λ1 and the wavelength λ at which no absorption occurs
2. When infrared rays of λ0 (λ2 x λ1 x λ3) are irradiated on the reference material and the measurement target, which are made of the same metal material as the base material of the measurement target and have no organic film formed on the surface, the intensity of each reflected light is calculated. When the reference material and the measurement object are irradiated with infrared rays in a wide wavelength range including the three wavelengths, the intensity of each reflected light is detected, and based on these detected values, the thickness t of the organic film can be determined by the following formula. It is characterized by calculating.

ここに、 α:有機膜の波長λ1に対する吸 収係数 A:測定対象及び基準材に波長λ1゜ λ2.λ、を含む広い波長範 囲の赤外線を照射したときの 各反射光の光量の比の値 1oA+Iot+L* :測定対象に波長λ8.λ2゜
λ、の赤外線を照射したとき の各反射光の強度 Ls+hs+Iss :基準材に波長λ1.λ2.λ。
Here, α: Absorption coefficient of organic film at wavelength λ1 A: Wavelength λ1°λ2. 1oA+Iot+L*: Value of the ratio of the light intensity of each reflected light when infrared rays are irradiated with infrared light in a wide wavelength range including λ. Intensity of each reflected light when irradiating infrared rays of λ2°λ: Ls+hs+Iss: When the reference material is irradiated with infrared rays of wavelength λ1. λ2. λ.

の赤外線を照射したときの各 反射光の強度 また、本発明に係る膜厚測定装置は、金属母材の表面に
形成された有機膜に吸収が生じる波長λ1の赤外線を照
射し、その反射光の強度から有機膜の厚みを測定する膜
厚測定装置において、前記波長λ1及び吸収が生じない
波長λ2.λ3 (λ2、<λ1、<λ、)を含む赤外
線を発する光源と、波長λ1.λ2.λ、の赤外線を各
別に通過させるフィルタを備え、また該赤外線をそのま
ま通過させるチョッパと、該チョッパを通過した赤外線
を測定対象方向へ集光させる第1の光学的手段と、第1
の光学的手段を経た赤外線の光路中に配されており、切
欠部を有する反射板と、該切欠部を通過し、また該反射
板で反射した赤外線を集光させる第2の光学的手段と、
該光学的手段にて集光した赤外線の光強度を検出する光
強度検出器と、該光強度検出器からの信号により、有機
膜の厚みを算出する膜厚演算器とを備え、前記反射板は
、測定対象へ向かう赤外線及び測定対象からの反射光を
その切欠部にて通過させ、また測定対象へ向かう赤外線
を反射して、測定対象と同一の金属材からなり、表面に
有機膜が形成されていない基準材へ向かわせ、また該基
準材からの反射光を反射すべく配してあることを特徴と
する。
The intensity of each reflected light when irradiated with infrared rays of In a film thickness measuring device that measures the thickness of an organic film from the intensity of the wavelength λ1 and the wavelength λ2 where no absorption occurs. A light source that emits infrared rays including wavelengths λ3 (λ2, <λ1, <λ,) and wavelengths λ1. λ2. λ, a chopper that passes the infrared rays separately, and a chopper that allows the infrared rays to pass through as is; a first optical means that focuses the infrared rays that have passed through the chopper in the direction of the measurement target;
a reflecting plate disposed in the optical path of the infrared rays that has passed through the optical means and having a notch; and a second optical means for condensing the infrared rays that have passed through the notch and been reflected by the reflecting plate. ,
The reflector plate includes a light intensity detector that detects the intensity of infrared light focused by the optical means, and a film thickness calculator that calculates the thickness of the organic film based on the signal from the light intensity detector. is made of the same metal material as the measurement object, and an organic film is formed on the surface by allowing infrared rays directed toward the measurement object and reflected light from the measurement object to pass through its cutout, and reflecting infrared rays directed toward the measurement object. It is characterized in that it is arranged so as to direct the light toward a reference material that is not covered, and to reflect the reflected light from the reference material.

〔作用〕[Effect]

光源から発せられた波長λ、、λ2.λ、を含む赤外線
はそのまま、またはチョッパに配設されている3つのフ
ィルタによ゛り波長λ1.λ8又はλ、の赤外線として
各別にチョッパを通過した後、第1の光学的手段にて、
測定対象方向へ集光され、反射板の切欠部を通過し、測
定対象にて反射され、再び該切欠部を通過し、第2の光
学的手段にて集光された後、その光強度が光強度検出器
にて検出され信号として膜厚演算器に与えられる。
The wavelengths λ, , λ2 . emitted from the light source. The infrared rays containing wavelengths λ1, . After passing through the chopper separately as infrared rays of λ8 or λ, by the first optical means,
The light is focused in the direction of the measurement object, passes through the cutout of the reflector, is reflected by the measurement object, passes through the cutout again, is focused by the second optical means, and then the light intensity is It is detected by a light intensity detector and given as a signal to a film thickness calculator.

一方反射板にて反射された赤外線は、基準板、反射板に
て順次反射され、第2の光学的手段にて集光された後、
その強度が光強度検出器にて検出され、信号として膜厚
演算器に与えられる。
On the other hand, the infrared rays reflected by the reflector are sequentially reflected by the reference plate and the reflector, and after being focused by the second optical means,
The intensity is detected by a light intensity detector and given as a signal to a film thickness calculator.

膜厚演算器は、波長λ1.λ8.λ、の赤外線及びこれ
ら3波長を含む広い波長範囲の赤外線が測定対象及び基
準材に照射されたときの各反射光の強度の検出信号より
、予め設定されている膜厚算出式に基づき膜厚を算出す
る。
The film thickness calculator calculates the wavelength λ1. λ8. The film thickness is determined based on a preset film thickness calculation formula from the detected signal of the intensity of each reflected light when the measurement target and reference material are irradiated with infrared rays of λ, and infrared rays in a wide wavelength range including these three wavelengths. Calculate.

〔発明の原理〕[Principle of the invention]

次に、本発明の原理について説明する。第4図は鋼板1
a表面に有機膜1bが形成された有機膜形成鋼板1に向
けて該有機膜1bによる赤外線吸収が生じる特定の波長
λ1の赤外線及び波長λ1の近傍にあり、赤外線吸収が
生じない二つの参照波長λ2λ、(但し、λ2〈ハくλ
、)の赤外線を照射したときの夫々の反射光の強度を検
出している状態を示す模式図である。
Next, the principle of the present invention will be explained. Figure 4 shows steel plate 1
Infrared rays at a specific wavelength λ1 at which infrared absorption by the organic film 1b occurs toward the organic film-formed steel sheet 1 with an organic film 1b formed on the surface thereof, and two reference wavelengths near wavelength λ1 at which infrared absorption does not occur. λ2λ, (However, λ2〈Hakuλ
, ) is a schematic diagram showing a state in which the intensity of each reflected light is detected when infrared rays are irradiated.

第5図は鋼板1aと同一材質からなる基準材としての鋼
板8に波長λ8.λ2.λ、の赤外線を含む広い波長範
囲の赤外線を照射したときの夫々の反射光の強度を検出
している状態を示す模式図である。検出される波長λ1
.λ2.λ、の赤外線の光強度は下式により表される。
FIG. 5 shows a steel plate 8 as a reference material made of the same material as the steel plate 1a with a wavelength λ8. λ2. FIG. 3 is a schematic diagram showing a state in which the intensity of each reflected light is detected when infrared rays of a wide wavelength range including infrared rays of λ are irradiated. Detected wavelength λ1
.. λ2. The infrared light intensity of λ is expressed by the following formula.

1、I=IIl、+R0・・・(1) rot−rg+R怠   ・−(2) 1113”13+R3・・・(3) 11=AI+s     I・・(4)1 g  = 
A−I is       ・・・(5)I3  =A
 −13s       ・・・(6)ここに、 ■。1.!。!+163  ”夫々有機膜形成鋼板1に
波長λ1゜λ2.λ3の赤外線を照射した ときの反射光の強度 但し、■。、は赤外線吸収が生 じないとしたときの仮想値、■、2゜ ■。、は実測値である。
1, I=IIl, +R0...(1) rot-rg+R omission ・-(2) 1113"13+R3...(3) 11=AI+s I...(4) 1 g =
A-I is ... (5) I3 = A
-13s...(6) Here, ■. 1. ! . ! +163 "Intensity of reflected light when infrared rays with wavelengths λ1, λ2, and λ3 are irradiated to the organic film-formed steel sheet 1, respectively. However, ■., are virtual values assuming that no infrared absorption occurs, ■, 2°■. , are actually measured values.

L、It、Is  :夫々有機膜形成鋼板1に波長λ1
゜λ2.λ、の赤外線を照射した ときの鋼板1aにて反射し、有機 111bから出射する各赤外線の強 度 但し、I、は赤外線吸収が生じ ないとしたときの仮想値である。
L, It, Is: wavelength λ1 on the organic film-formed steel sheet 1, respectively
゜λ2. The intensity of each infrared ray reflected by the steel plate 1a and emitted from the organic layer 111b when irradiated with infrared rays of λ, where I is a virtual value assuming that no infrared absorption occurs.

R+、Rt、Rs  :夫々有機膜形成鋼板1に波長λ
1゜λ2.λ、の赤外線を照射した ときの反射光のうち、膜表面か らの反射光の強度 A:有機膜形成鋼板1及び鋼板8の 夫々に波長λ1.λオ、λ、を 含む広い波長範囲の赤外線を照 射したときの各反射光の光量の 比の値 I+s+Izs+I+s :夫々鋼板8に波長λ3.λ
3゜λ、の赤外線を照射したときの 反射光の強度 第6図は、鋼板8に波長ハ、λ2.λ3の赤外線を照射
したときの各波長における反射光の強度を表す説明図で
ある。
R+, Rt, Rs: wavelength λ on the organic film-formed steel sheet 1, respectively
1°λ2. Intensity A of reflected light from the film surface when irradiating with infrared rays of wavelength λ1. I+s+Izs+I+s: Value of the ratio of the light intensity of each reflected light when irradiating infrared rays in a wide wavelength range including λ3, λ, and λ3. λ
FIG. 6 shows the intensity of reflected light when the steel plate 8 is irradiated with infrared rays of wavelength C and λ2. FIG. 3 is an explanatory diagram showing the intensity of reflected light at each wavelength when infrared rays of λ3 are irradiated.

図は横軸に波長を、また縦軸に反射光の強度をとったも
のであり、図において、e、d、cの各縦座標は、夫々
基準材に波長λ1.λ2.λコの赤外線を照射したとき
の各反射光の強度(Ls rlzs*13りであり、ま
た、f、a、bは夫々e、d。
The figure shows the wavelength on the horizontal axis and the intensity of reflected light on the vertical axis.In the figure, the vertical coordinates e, d, and c indicate the wavelength λ1. λ2. The intensity of each reflected light when irradiated with infrared light of λ is (Ls rlzs*13), and f, a, and b are e and d, respectively.

Cから横軸に下した垂線の足である。This is the foot of the perpendicular line drawn from C to the horizontal axis.

四′辺形abcdの面積は、波長λ3〜λ、の波長範囲
の赤外線が照射されたときの反射光の強度の積分値であ
る。
The area of the quadrilateral abcd is the integral value of the intensity of reflected light when irradiated with infrared rays in the wavelength range of λ3 to λ.

また、第7図は有機膜形成鋼板1に波長λ1゜λ2.λ
3の赤外線を照射したときの各波長における反射光の強
度を表す説明図である。
In addition, FIG. 7 shows that the organic film-formed steel sheet 1 is coated with wavelengths λ1°, λ2. λ
FIG. 3 is an explanatory diagram showing the intensity of reflected light at each wavelength when infrared rays of No. 3 are irradiated.

図は横軸に波長を、また縦軸に反射光の強度をとったも
のであり、図においてfl、al、blの縦座標は、夫
々有機膜形成鋼板1に波長λ1.λ意。
The figure shows the wavelength on the horizontal axis and the intensity of reflected light on the vertical axis. In the figure, the ordinates of fl, al, and bl are the wavelengths λ1, . λ meaning.

λ3の赤外線を照射したときの各反射光の強度のうちの
膜表面からの反射光の強度(Rz、 R3)であり、a
/、 cIの縦座標は測定対象に波長λ3.λコの赤外
線を照射したときの各反射光のの強度(■。2.■。、
)であり、e′の縦座標は測定対象に波長ハの赤外線を
照射したときの反射光の強度10Mであり、a“ 1.
 aは夫々a1.CIから横軸に下した垂線の足である
It is the intensity of the reflected light from the film surface (Rz, R3) among the intensities of each reflected light when irradiated with infrared rays of λ3, and a
/, the ordinate of cI is the wavelength λ3. Intensity of each reflected light when irradiated with infrared light of λ (■.2.■.,
), the ordinate of e' is the intensity of reflected light of 10M when the object to be measured is irradiated with infrared rays of wavelength C, and a" 1.
a is a1. This is the foot of the perpendicular line drawn from CI to the horizontal axis.

四辺形a#b#C′d′の面積は波長λ8〜λ3の波長
範囲の赤外線が照射されたときの赤外線吸収が生じない
と仮定した場合の反射光の強度の積分値であり、四辺形
a#b#b′a′の面積は波長λ。
The area of quadrilateral a#b#C'd' is the integral value of the intensity of reflected light when irradiated with infrared rays in the wavelength range of λ8 to λ3, assuming that no infrared absorption occurs, and the area of quadrilateral The area of a#b#b'a' is the wavelength λ.

〜λ、の波長範囲の赤外線が照射されたときの有arI
!4表面での反射光の強度の積分値であり、四辺形a′
b′c′d′の面積は赤外線吸収が生じないと仮定した
場合の反射光の強度の積分値から有機膜表面での反射光
の強度の積分値を減じた値である。
arI when irradiated with infrared rays in the wavelength range of ~λ
! It is the integral value of the intensity of the reflected light on the four surfaces of the quadrilateral a'
The area b'c'd' is the value obtained by subtracting the integral value of the intensity of reflected light on the surface of the organic film from the integral value of the intensity of reflected light assuming that no infrared absorption occurs.

さて強度1.波長λ1の赤外線を有機膜形成鋼板1に向
けて照射し、該赤外線が有機膜表面で反射されず全て膜
内に入射するとすると、有機膜による赤外線吸収をうけ
て膜外へ出てくる赤外線の強度11Aはランバートの法
則を表す下記(7)式により表される。
Now, strength 1. If infrared rays with a wavelength λ1 are irradiated toward the organic film-formed steel plate 1, and all of the infrared rays are not reflected by the organic film surface and enter the film, then the infrared rays that are absorbed by the organic film and come out of the film are The intensity 11A is expressed by the following equation (7) representing Lambert's law.

1、A−I  exp (−2αt ) ・(7)ここ
に、α:有機膜の波長λ1の赤外線に対する吸収係数 t:有機膜の厚み ところが、膜内へ入射する赤外線の強度■は、赤外線吸
収が生じないとした場合、膜外への出射光の強度11と
等しいことから、前記(7)式は下記(7′)式のよう
に改めることができる。
1, A-I exp (-2αt) ・(7) Here, α: Absorption coefficient of the organic film for infrared rays at wavelength λ1 t: Thickness of the organic film However, the intensity ■ of the infrared rays incident on the film is the infrared absorption If it does not occur, the intensity of the light emitted to the outside of the film is equal to 11, so the above equation (7) can be modified as the following equation (7').

I+a=I+ exp(−2αt)=・(7’)従って
、光強度11及びIIAが実測できれば膜厚tが求めら
れる。
I+a=I+exp(-2αt)=·(7') Therefore, if the light intensity 11 and IIA can be actually measured, the film thickness t can be determined.

ところが、実際の膜厚測定においては、膜で表面反射が
あるため、検知される反射光の強度には、該表面反射光
の強度R3が含まれている。
However, in actual film thickness measurement, since surface reflection occurs in the film, the intensity of the reflected light that is detected includes the intensity R3 of the surface reflected light.

しかるに、従来の2つの技術は、光強度R3を考慮して
いない。このことは結果的に 11A+R1#IIA II +R1=l。
However, the two conventional techniques do not consider the light intensity R3. This results in 11A+R1#IIA II +R1=l.

として、前記(7′)式を適用していることになる。Therefore, the above equation (7') is applied.

即ち、下式により膜厚測定を行っていることになる。That is, the film thickness is measured using the formula below.

11A+RI −(1+  +Rt )exp(−2c
rt)より明らかなように、光強度R1が小さくても、
赤外線吸収が最も顕著な波長を使用することが精度を向
上する上で必要となる膜厚測定においては、光強度11
Aも小さいため、測定における光強度R1の影響を無視
したのでは、良好な測定は望み得ない。
11A+RI -(1+ +Rt)exp(-2c
rt) As is clearer, even if the light intensity R1 is small,
For film thickness measurements, where it is necessary to use the wavelength with the most significant infrared absorption to improve accuracy, a light intensity of 11
Since A is also small, good measurements cannot be expected if the influence of the light intensity R1 on measurements is ignored.

そこで本発明では、光強度R,の差異の影響を等しく受
ける光強度rotとIIIAの差の形に前記(7′)式
を変形する。
Therefore, in the present invention, the above equation (7') is transformed into the form of the difference between the light intensities rot and IIIA, which are equally affected by the difference in the light intensities R,.

(1++R+−(1+a+R+)) =l+ (1−e
xp(−2αt) ) ・”(8)ここに1.+R,・
■。1.またLa +R1=f。^であるから、・・・
(9) が成立する。
(1++R+-(1+a+R+)) =l+ (1-e
xp(-2αt) ) ・”(8)Here 1.+R,・
■. 1. Also, La +R1=f. Because it is ^,...
(9) holds true.

しかし、光強度I。Iは実測できないから、吸収が生じ
ない波長λ2.λ、の赤外線の強度I 02゜IO2を
用いて次のように近似する。
However, the light intensity I. Since I cannot be measured, the wavelength λ2. Using the infrared intensity I02°IO2 of λ, it is approximated as follows.

このように近似できるのは波長λア、λ、をλ1に近い
値にとるため、波長と反射光強度との関係が直線とみな
せるからである。
This approximation is possible because the wavelength λa, λ is set to a value close to λ1, so that the relationship between the wavelength and the reflected light intensity can be regarded as a straight line.

R3についても、次のように近似する。R3 is also approximated as follows.

このように近似できるのは波長λ2.λ3をλ。The wavelength λ2 can be approximated in this way. λ3 to λ.

に近い値にとるため、波長と反射光強度との関係が直線
とみなせるからである。
This is because the relationship between the wavelength and the reflected light intensity can be regarded as a straight line.

上記近似式01式、 att式を(9)式の第三辺に代
入して 但し、 ここで、波長λ2.λ、を波長λ、に十分近くと みなせるのでに=10と近似できる。
Substituting the above approximate equation 01 and att equation into the third side of equation (9), where wavelength λ2. Since λ can be considered to be sufficiently close to the wavelength λ, it can be approximated as =10.

よって、(2)式中のに=0として膜厚tを与える下記
α船弐により膜厚tを算出する。
Therefore, the film thickness t is calculated by the following α Fun2, which gives the film thickness t by setting 0 in equation (2).

・・・(2) 本発明は前記(8)式に示されるように、有機膜形成鋼
板lに特定波長λ1を照射した場合の赤外線吸収が生じ
ないとしたときの反射光の強度の仮想値と実測値との差
をとることにより、これら両値に等置台まれる有機膜1
b表面からの反射光の強度R,を消去しているため、0
0式による膜厚の算出において光強度R,の差異に起因
する膜厚測定の誤差が生じないのである。
...(2) As shown in the above equation (8), the present invention is based on the virtual value of the intensity of reflected light when no infrared absorption occurs when the organic film-formed steel sheet l is irradiated with a specific wavelength λ1. By taking the difference between and the actual measured value, the organic film 1 that is equidistant to these two values is obtained.
Since the intensity R of the reflected light from the surface b is erased, 0
In calculating the film thickness using Equation 0, errors in film thickness measurement due to differences in light intensity R do not occur.

次に04)式中OAの意義について説明する。Next, the significance of OA in formula 04) will be explained.

Aは、膜厚計と鋼材との相対的位置関係の差異に基づ(
補正係数である。
A is based on the difference in the relative positional relationship between the film thickness gauge and the steel material (
This is a correction coefficient.

有機膜による赤外線吸収が生じないと仮定した場合、膜
厚測定装置2と鋼板1aとの相対的位置関係及び鋼板1
aの反射率が同一の条件で膜厚測定が行われるならば、
第6図中の四辺形abedの面積と第7図中の四辺形a
′b′C′d′の面積は等しい筈である。
Assuming that no infrared absorption occurs by the organic film, the relative positional relationship between the film thickness measuring device 2 and the steel plate 1a and the steel plate 1
If the film thickness is measured under the same reflectance conditions as a,
Area of quadrilateral abed in Figure 6 and quadrilateral a in Figure 7
The areas of 'b'C'd' should be equal.

しかし実際の膜厚測定、特にオンライン測定においては
、前記膜厚測定条件に差異が生じるため、前記両四辺形
の面積は等しくならない。
However, in actual film thickness measurement, especially on-line measurement, the areas of both quadrilaterals are not equal because there are differences in the film thickness measurement conditions.

これら測定条件の差異は、全て検出される反射光の光量
の差異として現れる。
These differences in measurement conditions all appear as differences in the amount of reflected light detected.

そこで、四辺形a/ b I c/ a Iと四辺形a
bcdの面積の比の値を補正係数として採用することが
先ず考えられるが、四辺形a′b′c′d′の面積は実
測できない。
Therefore, quadrilateral a/ b I c/ a I and quadrilateral a
First, it is conceivable to use the value of the area ratio of bcd as a correction coefficient, but the area of quadrilateral a'b'c'd' cannot be actually measured.

このため、a′b′c′e′d′の図形からなる面積を
代用することが考えられる。ところが赤外線吸収による
減衰のため、また有機M1b表面からの反射光と鋼板1
aからの反射光との光干渉に起因して検出される光強度
が変動するため、a′b′C′e′d′の図形の面積は
四辺形a/bI CI dlの面積とは大きく相異する
ことから代用に無理がある。
Therefore, it is conceivable to use the area of the figure a'b'c'e'd' as a substitute. However, due to attenuation due to infrared absorption, the reflected light from the organic M1b surface and the steel plate 1
Since the detected light intensity fluctuates due to optical interference with the reflected light from a, the area of the figure a'b'C'e'd' is larger than the area of the quadrilateral a/bI CI dl. Since they are different, it is impossible to substitute them.

そこで補正係数Aを波長λ1.λ2.λ、を含み、吸収
による減衰及び干渉の影響を無視し得る程度に十分広い
波長範囲の赤外線を有機膜形成鋼板1及び鋼板8に照射
したときの各反射光の光量の比の値と定める。
Therefore, the correction coefficient A is set to wavelength λ1. λ2. λ, and is defined as the value of the ratio of the light amounts of each reflected light when organic film-formed steel plate 1 and steel plate 8 are irradiated with infrared rays in a sufficiently wide wavelength range to the extent that the effects of attenuation due to absorption and interference can be ignored.

このように定め得るのは膜厚測定装置2と測定対象との
相対的位置関係に差異が生じれば、その差異は、反射光
の光量の相異として現れることによる。
This can be determined because if there is a difference in the relative positional relationship between the film thickness measuring device 2 and the object to be measured, that difference will appear as a difference in the amount of reflected light.

なお、有機膜形成鋼板1からの反射光の光量には有機膜
1b表面での反射光も含まれるが、入射角が10度前後
である場合、有機膜1bの表面反射率が約2〜3%程度
であるため、補正係数Aに与える影響は無視し得るもの
である。
Note that the amount of light reflected from the organic film-formed steel plate 1 includes the light reflected on the surface of the organic film 1b, but when the incident angle is around 10 degrees, the surface reflectance of the organic film 1b is about 2 to 3. %, the influence on the correction coefficient A can be ignored.

例えばアクリル系有機塗膜の場合、入射角と表面反射率
との関係を表す第8図に示されるように入射角が10度
前後のときは、表面反射率は約3%であるから、鋼板8
に照射したときの反射光の光量を1とし、赤外線吸収率
を0.2とすれば本来の補正係数Aの値が0.8となる
のに対し、表面反射を無視した場合の補正係数Aの値は (0,03+0.97xO,8)/1=0.806とな
り、僅か0.006の相異しか生じない。
For example, in the case of an acrylic organic coating, the surface reflectance is about 3% when the incident angle is around 10 degrees, as shown in Figure 8, which shows the relationship between the incident angle and the surface reflectance. 8
If the amount of reflected light is 1 and the infrared absorption rate is 0.2, the original correction coefficient A will be 0.8, whereas the correction coefficient A when surface reflection is ignored. The value of is (0,03+0.97xO,8)/1=0.806, resulting in only a difference of 0.006.

このように有機膜の場合、膜表面での表面反射率が補正
係数Aに与える影響は無視し得るため、補正係数Aを膜
表面での反射光の光量を含んでいる各反射光の光量の比
の値と定めることができるのである。
In the case of an organic film, the influence of the surface reflectance on the film surface on the correction coefficient A can be ignored, so the correction coefficient A is calculated as the amount of each reflected light including the amount of reflected light on the film surface. It can be determined as the value of the ratio.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明に係る膜厚測定装置を表す模式図である
。図において鋼板18表面に有機膜1bが形成された測
定対象たる有機膜形成鋼板1の上方に本発明に係る膜厚
測定装置1!2が配しである。
FIG. 1 is a schematic diagram showing a film thickness measuring device according to the present invention. In the figure, film thickness measuring devices 1 and 2 according to the present invention are arranged above an organic film-formed steel plate 1 to be measured, which has an organic film 1b formed on the surface of a steel plate 18.

膜厚測定装置2は、ケーシング12に収納された光源3
、チッッパ4、凹面鏡6、回転反射板7、凹面鏡9、光
強度検出器10及び膜厚演算器11等からなる。
The film thickness measuring device 2 includes a light source 3 housed in a casing 12.
, a chipper 4, a concave mirror 6, a rotating reflector 7, a concave mirror 9, a light intensity detector 10, a film thickness calculator 11, and the like.

前記光源3は、膜厚測定装置2のケーシング12内の下
側の一隅にケーシング壁と遮光壁とで形成される光源室
3aに内設されており、有機膜1bによる吸収が生じる
波長λ、及び吸収が生じない波長λ□、λ、を含む広い
波長範囲の赤外線を発する。
The light source 3 is installed in a light source chamber 3a formed by a casing wall and a light-shielding wall at one corner of the lower side of the casing 12 of the film thickness measuring device 2, and has wavelengths λ, which are absorbed by the organic film 1b, It emits infrared rays in a wide range of wavelengths, including wavelengths λ□, λ, where absorption does not occur.

前記遮光壁の土壁には窓孔があけられており、光源の投
光部は該窓孔を赤外線が通過するように斜め上方に向け
られている。
A window hole is bored in the earthen wall of the light-shielding wall, and the light projection part of the light source is directed diagonally upward so that infrared rays pass through the window hole.

窓孔を通過した赤外線の光路中には、遮光材からなるチ
ョッパ4が配されている。チョッパ4は、第2図に、そ
の平面図を示すように円板状をなし、4等配の位置に円
孔41,42,43.44を有し、円孔41゜42.4
3には夫々波長ハ、λ2.λ、の赤外線を選択的に通過
させるフィルタが装着されており、円孔44は空孔とさ
れている。
A chopper 4 made of a light shielding material is disposed in the optical path of the infrared rays that have passed through the window hole. As shown in the plan view of FIG. 2, the chopper 4 has a disk shape, and has circular holes 41, 42, 43.44 at four equally spaced positions.
3 have wavelengths C and λ2, respectively. A filter is installed to selectively pass infrared rays of λ, and the circular hole 44 is a hole.

また、チョッパ4は付設せるモータ5の駆動により回転
する。その回転軸心は、各円孔の中心が前記赤外線の光
路中に位置するように配されている。有機膜形成鋼板1
が連続移動する場合は、モータ5の回転速度を測定対象
の膜厚のパスライン方向の変動及びライン速度等に応じ
て適宜調節する。
Further, the chopper 4 is rotated by the drive of an attached motor 5. The axis of rotation is arranged such that the center of each circular hole is located in the optical path of the infrared rays. Organic film-formed steel sheet 1
When moving continuously, the rotational speed of the motor 5 is adjusted as appropriate depending on the variation in the film thickness of the object to be measured in the pass line direction, the line speed, etc.

而して、チョッパ4は赤外線を断続的に遮光すると共に
、円孔44により赤外線をそのまま、または減光して通
過させ、また、円孔41,42.43に装着せる各フィ
ルタにより波長λ1.λ2.λコの赤外線を各別に通過
させる。チョッパ4及びモータ5には、回転角検出器1
4が連動連結されており、その出力を膜厚演算器11へ
入力させている。
Thus, the chopper 4 intermittently blocks infrared rays, allows the infrared rays to pass through the circular holes 44 either as they are, or after being reduced in intensity, and filters at wavelengths λ1... λ2. λ infrared rays are passed through each separately. The chopper 4 and the motor 5 are equipped with a rotation angle detector 1.
4 are interlocked and connected, and their outputs are input to the film thickness calculator 11.

チョッパ4を通過した赤外線の光路中には、その反射光
がケーシング12の底面の略中夫に円形にあけられた窓
孔16に向かう反射面を下方に向けた凹面鏡6が配され
ている。
In the optical path of the infrared rays that have passed through the chopper 4, there is disposed a concave mirror 6 whose reflecting surface faces downward so that the reflected light goes toward a window hole 16 formed in a circular shape approximately in the middle of the bottom surface of the casing 12.

窓孔16の上方には、水平に、また窓孔16と同心的に
回転可能な反射板7が配されている0回転反射板7は第
3図にその平面図を示すように、円板から中心角90″
の2つの扇形を中心対称に切除し、切欠部7a、 7a
を形成した残余の2つの羽根部7b。
Above the window hole 16, a reflection plate 7 that can be rotated horizontally and concentrically with the window hole 16 is arranged. Center angle 90″ from
The two sector shapes are cut out symmetrically with respect to the center, and the notches 7a, 7a are cut out.
The remaining two blade portions 7b formed with.

7bの片面に高反射率のメッキ、例えば金メッキを施し
反射面としたものであり、反射面を上面にして配され、
付設せるモータ13の駆動により例えば断続的に回転さ
れる。
One side of 7b is plated with high reflectance, for example gold plating, to make it a reflective surface, and is arranged with the reflective surface facing upward.
For example, it is rotated intermittently by driving an attached motor 13.

凹面鏡6からの赤外線の光路は、回転反射板7の切欠部
7aの回転域に配され、光路上にその切欠部7aが位置
するときには赤外線は通過し、その通過光の有機膜形成
鋼板1からの反射光も対向するもう一方の切欠部7aを
通過する。
The optical path of the infrared rays from the concave mirror 6 is arranged in the rotation range of the notch 7a of the rotary reflector 7, and when the notch 7a is located on the optical path, the infrared rays pass, and the transmitted light is removed from the organic film-formed steel plate 1. The reflected light also passes through the other opposing notch 7a.

回転反射板7の上方には有機膜形成鋼板lと同一の金属
材からなる鋼板8を載置するための台17が配されてい
る。台17は凹面鏡6からの赤外線の有機膜形成鋼板1
上の集光点の回転反射板7についての対称点が鋼板8の
下面上にくるように、また水平に配されている。凹面鏡
6はその反射光の回転反射板7への入射角が約10″に
なるように傾きが調整されている。なお、鋼板8は、測
定対象である有機膜形成鋼板1の金属材が変われば、そ
れに応じて同一金属材のものと取替えられる。
A table 17 is arranged above the rotating reflector plate 7 on which a steel plate 8 made of the same metal material as the organic film-formed steel plate 1 is placed. The stand 17 is a steel plate 1 on which an organic film is formed by infrared rays from a concave mirror 6.
It is arranged horizontally so that the point of symmetry with respect to the rotating reflector 7, which is the upper light condensing point, is on the lower surface of the steel plate 8. The inclination of the concave mirror 6 is adjusted so that the angle of incidence of the reflected light on the rotating reflection plate 7 is about 10''. If so, they can be replaced with ones of the same metal material accordingly.

而して、光路上に回転反射板7の羽根部7bが位置する
ときには、凹面鏡6からの赤外線は反射し、その反射光
の鋼板8からの反射光も対向するもう一方の羽根部7b
にて反射する。
When the blade portion 7b of the rotary reflector 7 is located on the optical path, the infrared rays from the concave mirror 6 are reflected, and the reflected light from the steel plate 8 is also reflected from the opposite blade portion 7b.
Reflect.

なお、この場合、回転反射板7で反射され鋼板8へ入射
される赤外線の入射角は、前記有機膜形成鋼板1への入
射角と等しく、約10″となる。
In this case, the angle of incidence of the infrared rays reflected by the rotating reflector 7 and incident on the steel plate 8 is equal to the angle of incidence on the organic film-formed steel plate 1, which is about 10''.

回転反射板7及びモータ13には、回転角検出器例えば
フォトカブラ等が連動連結されており、その出力を膜厚
演算器11へ入力させている。回転反射板7からの赤外
線の光路中には、反射面を下方に向けて該赤外線が光強
度検出器10に向けて集光するよう回転反射板7の斜上
方の位置に凹面鏡9が配されている。
A rotation angle detector, such as a photocoupler, is connected to the rotating reflector 7 and the motor 13, and its output is input to the film thickness calculator 11. In the optical path of the infrared rays from the rotating reflector 7, a concave mirror 9 is disposed diagonally above the rotating reflector 7 so that the infrared rays are focused toward the light intensity detector 10 with its reflecting surface facing downward. ing.

ケーシング12内の下側において、光源3とは反対の一
隅には、その受光部を前記凹面鏡9へ向けて光強度検出
器10が配されており、また、該光強度検出器10の近
傍には膜厚演算器llが配されており、回転角検出器1
4からの入力信号をもとに、チョッパ4を通過する赤外
線が波長λ1.λ2.λ。
On the lower side of the casing 12, in one corner opposite to the light source 3, a light intensity detector 10 is arranged with its light receiving part facing the concave mirror 9. is equipped with a film thickness calculator ll, and a rotation angle detector 1
Based on the input signal from the chopper 4, the infrared rays passing through the chopper 4 have wavelengths λ1. λ2. λ.

を含む広い波長範囲の赤外線か波長λ、、λ2又はλ、
の赤外線かを弁別すると共に、回転角検出器15からの
入力信号をもとに有機膜形成鋼板1からの赤外線か、鋼
板8からの赤外線かを弁別し、各反射光の強度の検出値
に基づき、予め設定されている前記膜厚算出式〇荀式よ
り膜厚を算出するように構成されている。
A wide range of wavelengths including infrared or wavelength λ, λ2 or λ,
In addition, based on the input signal from the rotation angle detector 15, it is determined whether the infrared rays are coming from the organic film-formed steel plate 1 or the infrared rays from the steel plate 8, and the detected value of the intensity of each reflected light is determined. Based on this, the film thickness is calculated from the film thickness calculation formula 〇荀formula set in advance.

以上のような膜厚測定装置2において、光源3から発せ
らた波長λ1.λ2.λ、を含む広い波長範囲の赤外線
は、そのまま、またはチョッパ4に配設されている3つ
のフィルタにより波長λ、。
In the film thickness measuring device 2 as described above, the wavelength λ1 . λ2. The infrared rays in a wide wavelength range including λ can be filtered as is or by three filters installed in the chopper 4 to reduce the wavelength to λ.

λ2.λ3の赤外線として各別にチョッパ4を通遇する
。その後該赤外線は凹面鏡6にて有機膜形成鋼板1の方
向へ集光され、回転反射板7の切欠部7aがその光路中
に位置するときには赤外線は通過し、光路上に羽根部7
bが位置するときには反射する。
λ2. Each chopper 4 is used as infrared light of λ3. Thereafter, the infrared rays are focused in the direction of the organic film-formed steel plate 1 by the concave mirror 6, and when the notch 7a of the rotary reflecting plate 7 is located in the optical path, the infrared rays pass through, and the blade portion 7 is placed on the optical path.
When b is located, it is reflected.

切欠部7aを通過して有機膜1bに照射された赤外線は
回転反射板7を通過するとき切欠部7aと対向するもう
一方の切欠部7aが赤外線の光路上に位置するためにこ
の切欠部7aを通過して第二の凹面鏡9に投射され、こ
れにて集光された赤外線は光強度検出器lOにてその光
強度が検出され、この検出値は信号として膜厚演算器1
1に与えられる。
When the infrared rays that have passed through the notch 7a and are irradiated onto the organic film 1b pass through the rotary reflecting plate 7, the other notch 7a facing the notch 7a is located on the optical path of the infrared rays, so that the infrared rays irradiated onto the organic film 1b pass through the notch 7a. The light intensity of the infrared light that is focused by the second concave mirror 9 is detected by the light intensity detector 10, and this detected value is sent as a signal to the film thickness calculator 1.
1 is given.

一方回転反射板7の羽根部7bにて反射された赤外線は
鋼板8へ照射され、その反射光は回転反射板7にて反射
されたときの羽根部7bと対向するもう一方の羽根部7
bが反射光の光路上に位置するために、この羽根部7b
にて再び反射される。
On the other hand, the infrared rays reflected by the blade part 7b of the rotating reflector 7 are irradiated onto the steel plate 8, and the reflected light is reflected by the other blade part 7 facing the blade part 7b when reflected by the rotary reflector 7.
b is located on the optical path of the reflected light, this blade portion 7b
It is reflected again at .

この反射された赤外線は第2の凹面鏡9に投射され、こ
れにて集光された赤外線は、光強度検出器lOにて、そ
の強度が検出され、この検出値が信号として膜厚演算器
11へ与えられる。
The reflected infrared rays are projected onto the second concave mirror 9, and the intensity of the infrared rays condensed by this is detected by the light intensity detector 10, and this detected value is used as a signal by the film thickness calculator 11. given to.

膜厚演算器11には、前記膜厚算出式α旬式が予め設定
されており、波長λ−A、、A、の赤外線が有機膜形成
鋼板1へ照射されたときの夫々の入力信号■。An  
I。t+Iosと、該赤外線鋼板8へ照射されたときの
夫々の入力(i号11!+  I tsr  I ss
と、波長λ1.λ2.λ、を含む広い波長範囲の赤外線
が有機膜形成鋼板1へ照射されたときの入力信号と該赤
外線が鋼板8へ照射されたときの入力信号とから算出・
したこれらの比の値Aと、予め設定されている有機膜1
bの波長λ、の赤外線に対する吸収係数αとに基づき、
膜厚が算出される。
The film thickness calculator 11 has the film thickness calculation formula α set in advance, and the respective input signals ■ . An
I. t+Ios and each input when the infrared steel plate 8 is irradiated (i No. 11!+ I tsr I ss
and the wavelength λ1. λ2. Calculated from the input signal when the organic film-formed steel plate 1 is irradiated with infrared rays in a wide wavelength range including λ, and the input signal when the steel plate 8 is irradiated with the infrared rays.
The value A of these ratios and the preset organic film 1
Based on the wavelength λ of b and the absorption coefficient α for infrared rays,
The film thickness is calculated.

第9図、第10図は共に膜厚測定装置2に対する有機膜
形成鋼板1の傾きを種々変更したときの傾きと光強度検
出器10の検出値より算出される吸光度との関係を示す
グラフであ、第9図は補正係数Aによる補正をしなかつ
た場合を、第10図は該補正をした場合を示す。
9 and 10 are graphs showing the relationship between the inclination of the organic film-formed steel sheet 1 with respect to the film thickness measuring device 2 and the absorbance calculated from the detected value of the light intensity detector 10 when variously changed. Ah, FIG. 9 shows the case without correction using the correction coefficient A, and FIG. 10 shows the case with the correction.

両図より明らかなように、本発明に係る補正係数Aによ
る補正をして膜厚tを算出する方が膜厚測定の誤差を小
さくすることができる。
As is clear from both figures, the error in film thickness measurement can be reduced by calculating the film thickness t by correcting it using the correction coefficient A according to the present invention.

第11図、第12図は夫々本発明に係る膜厚測定方法を
使用した場合及び従来の技術を使用した場合の膜厚と吸
光度との関係を示すグラフであり、本発明によれば約±
0.15μmの膜厚誤差しか生じていないにも拘わらず
、従来の技術によれば約±0.35μ麟の誤差が生じる
ことが解る。
11 and 12 are graphs showing the relationship between film thickness and absorbance when using the film thickness measuring method according to the present invention and when using the conventional technique, respectively. According to the present invention, approximately ±
Although the film thickness error is only 0.15 .mu.m, it can be seen that the conventional technique causes an error of approximately .+-.0.35 .mu.m.

なお、この比較実験は特定波長として3.4μ−を、参
照波長として3.2μts 、 3.6μ−の赤外線を
使用し、また光強度検出器10としてPb5eを使用し
たため、補正係数Aを定めるにあたり、該光強度検出器
10の全受感波長である1、5μ11〜4.3μ−の波
長範囲の光量を使用した。
Note that this comparative experiment used 3.4 μ- as the specific wavelength, 3.2 μts and 3.6 μ- infrared rays as the reference wavelength, and used Pb5e as the light intensity detector 10, so in determining the correction coefficient A. , a light amount in the wavelength range of 1.5μ11 to 4.3μ−, which is the total sensitive wavelength of the light intensity detector 10, was used.

また、有機膜1bに対する出入射角として10°を使用
した。これは、前記したように、この角度における有機
膜1b表面での反射率が数%と小さいこと及び膜厚測定
装置2と有機膜形成鋼板1との相対的位置関係の差異に
よる光軸のずれが入射角が小さい程小さいからである。
Furthermore, 10° was used as the incident and exit angle with respect to the organic film 1b. As mentioned above, this is due to the fact that the reflectance on the surface of the organic film 1b at this angle is as small as a few percent, and the deviation of the optical axis due to the difference in the relative positional relationship between the film thickness measuring device 2 and the organic film-formed steel plate 1. This is because the smaller the angle of incidence, the smaller is the angle of incidence.

以上、本実施例では母材として鋼板la上の有機膜1b
の膜厚測定について述べたが、本発明はこれに限定され
るものではなく、金属母材一般の表面上に形成された有
機膜の膜厚測定にも利用できることは勿論である。
As described above, in this example, the organic film 1b on the steel plate la is used as the base material.
Although the present invention is not limited to this, it goes without saying that it can also be used to measure the thickness of an organic film formed on the surface of a metal base material in general.

また、本実施例では、補正係数Aを定めるにあたり波長
λ1.λ8.λ、を含む波長範囲の赤外線の光量を使用
したが、これら3波長を含まない波長範囲の赤外線の光
量を使用することも可能である。
In addition, in this embodiment, when determining the correction coefficient A, the wavelength λ1. λ8. Although the amount of infrared light in a wavelength range that includes λ is used, it is also possible to use the amount of infrared light in a wavelength range that does not include these three wavelengths.

〔効果〕〔effect〕

以上述べたように本発明は、有機膜1b表面での反射率
の差異による膜厚測定の誤差を特定波長λ1の反射光に
赤外線吸収が生じないとしたときの光強度の仮想値と実
測値との差をとることにより、また、金属材の表面性状
の差異及び金属材と膜厚計との相対的位置関係の差異に
よる膜厚測定の誤差を補正係数Aにより消去しているの
で、本発明によれば精度の高い膜厚測定が可能となる。
As described above, the present invention provides a virtual value and an actual value of the light intensity when it is assumed that the error in film thickness measurement due to the difference in reflectance on the surface of the organic film 1b is not caused by infrared absorption in the reflected light of the specific wavelength λ1. By taking the difference between According to the invention, highly accurate film thickness measurement is possible.

また、銅帯に対する有機膜塗着ラインにおけるオンライ
ン測定に本発明を適用した場合は、測定値を信号として
膜厚制御回路に与えることにより、膜厚を所要の値に高
精度に制御することができ、歩留りの向上が図れ、溶接
不良、圧延不良等を生じることのない高品質の有機膜形
成金属材を製造することができる等本発明は仕れた効果
を奏する。
Furthermore, when the present invention is applied to online measurement in an organic film coating line for copper strips, the film thickness can be controlled with high precision to a desired value by feeding the measured value as a signal to the film thickness control circuit. The present invention has significant effects, such as being able to produce high-quality organic film-forming metal materials without causing welding defects, rolling defects, etc., and improving yields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る膜厚測定装置を示す模式図、第2
図は第1図中のチョッパの拡大図、第3図は第1図中の
回転反射板7の平面拡大図、第4図乃至第8図は本発明
の詳細な説明図、第9図。 第10図は補正係数Aによる補正の効果を示すグラフ、
第11図は本発明に係る測定方法を使用した場合の膜厚
と吸光度の関係を示すグラフ、第12図は従来の方法を
使用した場合の膜厚と吸光度の関係を示すグラフである
。 1a・・・網板 1b・・・有機膜 2・・・膜厚測定
装置4・・・チョッパ 7・・・回転反射板10・・・
光強度検出器 11・・・膜厚演算蓋枠 許 出願人 
 住友金属工業株式会社代理人 弁理士  河  野 
 登  夫答 1 図 業 Z 園 ろ    7 ろ 卑3図 算 4 図 N5図 炭東 ’4q  図 隻 8 図 ”2 −1 0 1 2      (准)@1≧L−
11鯉さ 算 q 図 港 10  図 膜 厚(μ−) 茸目図 曖 喀 (71創 算 12 図
FIG. 1 is a schematic diagram showing a film thickness measuring device according to the present invention, and FIG.
The figure is an enlarged view of the chopper in FIG. 1, FIG. 3 is an enlarged plan view of the rotary reflecting plate 7 in FIG. 1, FIGS. 4 to 8 are detailed explanatory views of the present invention, and FIG. 9. FIG. 10 is a graph showing the effect of correction by correction coefficient A.
FIG. 11 is a graph showing the relationship between film thickness and absorbance when using the measuring method according to the present invention, and FIG. 12 is a graph showing the relationship between film thickness and absorbance when using the conventional method. 1a...Mesh plate 1b...Organic film 2...Film thickness measuring device 4...Chopper 7...Rotating reflection plate 10...
Light intensity detector 11...Film thickness calculation lid frame Applicant
Sumitomo Metal Industries Co., Ltd. Representative Patent Attorney Kono
Noboru Answer 1 Illustration Z Enro 7 Lobe 3 Calculation 4 Figure N5 Figure Tanto'4q Zusen 8 Figure"2 -1 0 1 2 (Associate) @1≧L-
11 Koisasan q Zuko 10 Diagram Thickness (μ-) Mushroom Diagram Ambiguous (71 Sosan 12 Diagram

Claims (1)

【特許請求の範囲】 1、金属母材の表面に形成された有機膜に吸収が生じる
波長λ_1の赤外線を照射し、その反射光の強度から有
機膜の厚みを測定する膜厚測定方法において、 前記波長λ_1及び吸収が生じない波長λ_2、λ_3
(λ_2、<λ_1、<λ_3)の赤外線を、測定対象
の母材と同一金属材からなり、表面に有機膜が形成され
ていない基準材及び測定対象に照射したときの夫々の反
射光の強度を検出し、 前記3波長を含む広い波長範囲の赤外線を 前記基準材及び測定対象に照射したときの各反射光の強
度を検出し、これらの検出値に基づき、下式により有機
膜の膜厚tを算出することを特徴とする膜厚測定方法。 t=−(1/2α)ln{1−1/A(I_0_2/I
_2_3+I_0_3/I_3_5/2−I_0_A/
I_1_5)}ここに、 α:有機膜の波長λ_1に対する吸 収係数 A:測定対象及び基準材に波長λ_1、 λ_2、λ_3を含む広い波長範 囲の赤外線を照射したときの 各反射光の光量の比の値 I_0_A、I_0_2、I_0_3:測定対象に波長
λ_1、λ_2、λ_3の赤外線を照射したとき の各反射光の強度 I_1_3、I_2_3、I_3_5:基準材に波長λ
_1、λ_2、λ_3の赤外線を照射したときの各 反射光の強度 2、金属母材の表面に形成された有機膜に吸収が生じる
波長λ_1の赤外線を照射し、その反射光の強度から有
機膜の厚みを測定する膜厚測定装置において、 前記波長λ_1及び吸収が生じない波長λ_2、λ_3
(λ_2<λ_1<λ_3)を含む赤外線を発する光源
と、 波長λ_1、λ_2、λ_3の赤外線を各別に通過させ
るフィルタを備え、また該赤外線をそのまま通過させる
チョッパと、 該チョッパを通過した赤外線を測定対象方 向へ集光させる第1の光学的手段と、 第1の光学的手段を経た赤外線の光路中に 配されており、切欠部を有する反射板と、 該切欠部を通過し、また該反射板で反射し た赤外線を集光させる第2の光学的手段と、該光学的手
段にて集光した赤外線の光強度 を検出する光強度検出器と、 該光強度検出器からの信号により、有機膜 の厚みを算出する膜厚演算器とを備え、 前記反射板は、測定対象へ向かう赤外線及 び測定対象からの反射光をその切欠部にて通過させ、ま
た測定対象へ向かう赤外線を反射して、測定対象と同一
の金属材からなり、表面に有機膜が形成されていない基
準材へ向かわせ、また該基準材からの反射光を反射すべ
く配してあることを特徴とする膜厚測定装置。
[Claims] 1. A film thickness measuring method in which an organic film formed on the surface of a metal base material is irradiated with infrared rays having a wavelength λ_1 at which absorption occurs, and the thickness of the organic film is measured from the intensity of the reflected light, The wavelength λ_1 and the wavelengths λ_2 and λ_3 at which no absorption occurs
Intensity of reflected light when infrared rays of (λ_2, <λ_1, <λ_3) are irradiated on the reference material and the measurement target, which are made of the same metal material as the base material of the measurement target and have no organic film formed on the surface. Detect the intensity of each reflected light when the reference material and the measurement target are irradiated with infrared rays in a wide wavelength range including the three wavelengths, and based on these detected values, calculate the film thickness of the organic film using the following formula. A film thickness measuring method characterized by calculating t. t=-(1/2α)ln{1-1/A(I_0_2/I
_2_3+I_0_3/I_3_5/2-I_0_A/
I_1_5)} Here, α: Absorption coefficient of the organic film for wavelength λ_1 A: Ratio of the amount of each reflected light when the measurement object and reference material are irradiated with infrared rays in a wide wavelength range including wavelengths λ_1, λ_2, and λ_3. Values I_0_A, I_0_2, I_0_3: Intensities of each reflected light when the measuring object is irradiated with infrared rays of wavelengths λ_1, λ_2, λ_3 I_1_3, I_2_3, I_3_5: Reference material has wavelength λ
Intensity 2 of each reflected light when irradiating with infrared rays of _1, λ_2, and λ_3, irradiating infrared rays with a wavelength λ_1 that causes absorption in the organic film formed on the surface of the metal base material, and determining the organic film from the intensity of the reflected light. In a film thickness measuring device that measures the thickness of
It is equipped with a light source that emits infrared rays including (λ_2<λ_1<λ_3), a filter that passes infrared rays of wavelengths λ_1, λ_2, and λ_3 separately, and a chopper that passes the infrared rays as they are, and measures the infrared rays that have passed through the chopper. a first optical means for condensing light in the target direction; a reflection plate disposed in the optical path of the infrared rays passing through the first optical means and having a notch; a second optical means for condensing the infrared rays reflected by the plate; a light intensity detector for detecting the light intensity of the infrared rays condensed by the optical means; and a signal from the light intensity detector to detect the organic and a film thickness calculator for calculating the thickness of the film, and the reflecting plate allows infrared rays directed toward the measurement object and reflected light from the measurement object to pass through its notch, and also reflects infrared rays directed toward the measurement object. A film thickness measurement characterized in that the light is directed toward a reference material made of the same metal material as the measurement target and on which no organic film is formed, and is arranged to reflect the reflected light from the reference material. Device.
JP7087087A 1987-03-24 1987-03-24 Method and apparatus for measuring thickness of film Pending JPS63235805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7087087A JPS63235805A (en) 1987-03-24 1987-03-24 Method and apparatus for measuring thickness of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087087A JPS63235805A (en) 1987-03-24 1987-03-24 Method and apparatus for measuring thickness of film

Publications (1)

Publication Number Publication Date
JPS63235805A true JPS63235805A (en) 1988-09-30

Family

ID=13444022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087087A Pending JPS63235805A (en) 1987-03-24 1987-03-24 Method and apparatus for measuring thickness of film

Country Status (1)

Country Link
JP (1) JPS63235805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297008A (en) * 1989-05-12 1990-12-07 Kurabo Ind Ltd Optical measuring method for thickness of opaque thin film
JP2007010464A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk Method and apparatus for measuring thickness of oxide film on surface of sheet steel
KR100673880B1 (en) * 2000-07-20 2007-01-25 주식회사 하이닉스반도체 Apparatus for measuring thickness of metal layer by using optical method and Method for measuring thickness of metal layer using the same
JP2009294059A (en) * 2008-06-05 2009-12-17 Sumitomo Metal Ind Ltd Coating adhesion amount measuring method and device of galvannealed steel sheet with coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297008A (en) * 1989-05-12 1990-12-07 Kurabo Ind Ltd Optical measuring method for thickness of opaque thin film
KR100673880B1 (en) * 2000-07-20 2007-01-25 주식회사 하이닉스반도체 Apparatus for measuring thickness of metal layer by using optical method and Method for measuring thickness of metal layer using the same
JP2007010464A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk Method and apparatus for measuring thickness of oxide film on surface of sheet steel
JP2009294059A (en) * 2008-06-05 2009-12-17 Sumitomo Metal Ind Ltd Coating adhesion amount measuring method and device of galvannealed steel sheet with coating

Similar Documents

Publication Publication Date Title
US3693025A (en) Apparatus and method for eliminating interference errors in dual-beam infrared reflection measurements on a diffusely reflecting surface by geometrical elimination of interference-producing specularly-reflected radiation components
CA1275170C (en) Method for on-line thickness monitoring of a transparent film
US3994586A (en) Simultaneous determination of film uniformity and thickness
JPS6217167B2 (en)
US9612213B2 (en) Automatic z-correction for basis weight sensors
JPH095038A (en) Chromate treatment steel plate and chromate film thickness measuring method and apparatus
JPS63235805A (en) Method and apparatus for measuring thickness of film
JPH01132935A (en) Method and apparatus for analyzing film
US5506407A (en) High resolution high speed film measuring apparatus and method
JPS6217166B2 (en)
JPS636428A (en) Measuring method for surface temperature of body
JP2943215B2 (en) Method and apparatus for measuring the amount of deposited rust-preventive oil
JPH01132936A (en) Method and apparatus for analyzing film
JPS5960203A (en) Device for measuring change in film thickness
JP4268508B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPS62223610A (en) Film thickness measuring method
JP3205084B2 (en) Method and apparatus for measuring film thickness of coating material
JPH11241912A (en) Film thickness measuring method
JPH06281418A (en) Optical thickness measuring method of plate-shaped transparent body having ruggedness
JP2952284B2 (en) X-ray optical system evaluation method
JPH028163Y2 (en)
JPS62115315A (en) Laser displacement gauge
JPH03170041A (en) Method of noncontact on-line determination of thickness and composition of phosphate layer of phosphate film surface
JPS60249007A (en) Instrument for measuring film thickness
JPH02249931A (en) Temperature measuring method