JPS62259480A - Manufacture of photoelectric converter - Google Patents

Manufacture of photoelectric converter

Info

Publication number
JPS62259480A
JPS62259480A JP61101829A JP10182986A JPS62259480A JP S62259480 A JPS62259480 A JP S62259480A JP 61101829 A JP61101829 A JP 61101829A JP 10182986 A JP10182986 A JP 10182986A JP S62259480 A JPS62259480 A JP S62259480A
Authority
JP
Japan
Prior art keywords
semiconductor layer
conductive film
zinc oxide
silicon
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61101829A
Other languages
Japanese (ja)
Inventor
Toru Takayama
徹 高山
Shunpei Yamazaki
舜平 山崎
Kunio Suzuki
邦夫 鈴木
Masayoshi Abe
阿部 雅芳
Mikio Kanehana
金花 美樹雄
Takeshi Fukada
武 深田
Katsuhiko Shibata
克彦 柴田
Masato Usuda
真人 薄田
Toshiji Hamaya
敏次 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61101829A priority Critical patent/JPS62259480A/en
Priority to CN87103244A priority patent/CN1008416B/en
Priority to AU72256/87A priority patent/AU587122B2/en
Publication of JPS62259480A publication Critical patent/JPS62259480A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form reactive gas having reducing gas on a light transmission conductive film without whitening by using a zinc oxide or a conductive film which mainly contains zinc oxide. CONSTITUTION:One conductivity type first nonsingle crystal semiconductor layer or a semiconductor layer which mainly contains silicon is formed by film forming gas containing reducing gas by a photochemical vapor phase reaction method on a light transmission conductive film having conductivity such as a conductive film to which zinc oxide or an impurity such as aluminum, germanium or silicon is added into zinc oxide. Then, an intrincic second nonsingle crystal semiconductor layer is formed on the semiconductor layer, and a third nonsingle crystal semiconductor layer of a conductivity type opposite to that of the first conductor is formed on the second semiconductor layer. In this case, the light transmission conductive film exhibits high conductivity in a reducing atmosphere not to be whitened.

Description

【発明の詳細な説明】 (イ)発明の利用分野 本発明は導電性を持つ透光性酸化物表面を有する基板上
に還元性気体を含む反応気体を用いて、光電変換装置を
作製する方法に関4・る。
Detailed Description of the Invention (a) Field of Application of the Invention The present invention relates to a method for manufacturing a photoelectric conversion device using a reactive gas containing a reducing gas on a substrate having a conductive and transparent oxide surface. Regarding 4.

(ロ)従来技術 従来、透光性基板上の導電性を有する透光性酸化物被膜
としてはインジューム・ティン・オキサイド(以下TT
Oという)、酸化スズ(以下S nozという)が知ら
れ光電変換装置の導電膜として、広く使用されている。
(B) Prior art Conventionally, indium tin oxide (hereinafter referred to as TT) has been used as a conductive transparent oxide film on a transparent substrate.
Tin oxide (hereinafter referred to as NOZ) is known and widely used as a conductive film for photoelectric conversion devices.

しかしながらITOの場合はZJ&fi性は非常に高く
、透光性は十分であるがIT○自身が非常に還元されや
すくITO上に半導体被膜を形成するとITOと半導体
被膜との界面付近において、白濁現象が現われるために
透光性が著しく悪化し硝子基板等の透光性基板上に前記
被膜を形成した物を亡霊変換装置として応用が不可能で
あった。また、前記界面付近には金属インジュームが析
出し、この金属が半導体中に拡散してゆき、素子特性を
著しく劣化させてしまった。
However, in the case of ITO, the ZJ&fi properties are very high and the light transmittance is sufficient, but IT○ itself is easily reduced and when a semiconductor film is formed on ITO, a clouding phenomenon occurs near the interface between the ITO and the semiconductor film. Because of this, the light transmittance deteriorates significantly, making it impossible to apply the film formed on a light transmitting substrate such as a glass substrate as a ghost conversion device. Further, metal indium was precipitated near the interface, and this metal diffused into the semiconductor, significantly degrading device characteristics.

一方SnO□膜は、前述したITO膜のような白濁現象
は見られない。しかしSnO□膜は抵抗率が高く光電変
換装置として使用した場合、外部に十分な量の電力を取
り出せない。また、エツチング加工が非常に困難な為に
、細かいパターンを有する電子デバイスには使用不可能
であった。
On the other hand, the SnO□ film does not exhibit the clouding phenomenon that occurs with the ITO film described above. However, the SnO□ film has a high resistivity, and when used as a photoelectric conversion device, a sufficient amount of power cannot be extracted to the outside. Furthermore, because etching is extremely difficult, it has been impossible to use it for electronic devices with fine patterns.

(ハ)発明の目的 本発明は前述したように、白濁しない加工性のよい透光
性導電膜上に光電変換装置を作製する方法を提供するも
のであり、透光性基板上の透光性導電膜さらにその上に
半導体被膜を形成した素子を光学的素子として使用可能
にすることを目的とするものである。
(C) Purpose of the Invention As described above, the present invention provides a method for manufacturing a photoelectric conversion device on a transparent conductive film that does not become cloudy and has good workability. The object of the present invention is to enable an element in which a conductive film and a semiconductor film are formed thereon to be used as an optical element.

(ニ)発明の構成 本発明は、透光性基板上に形成された還元性雰囲気下に
おいて、導電性を有する透光性導電膜、例えば酸化亜鉛
または酸化亜鉛中にアルミニューム、ゲルマニューム、
シリコン等の不純物が添加された導電膜の上に光化学気
相反応法により、還元性気体を含む被膜作製用気体を用
いて一厚電型の第1の非単結晶の半導体層または、珪素
を主成分とする半導体層を形成する工程と前記工程の後
、前記半導体層上に真性の第2の非単結晶半導体層を形
成する工程と、前記第2の半導体層上に、前記第1の半
導体とは逆導電型の第3の非単結晶半導体層形成するこ
とを特徴とするものである。本発明において、前述の透
光性導電膜は還元性雰囲気下において高い導電性を示し
白濁しないことを特徴とする。
(D) Structure of the Invention The present invention provides a light-transmitting conductive film having electrical conductivity, such as zinc oxide or zinc oxide containing aluminum, germanium, etc., in a reducing atmosphere formed on a light-transmitting substrate.
A first non-single-crystal semiconductor layer of a thick dielectric type or silicon is formed on a conductive film doped with an impurity such as silicon by a photochemical vapor phase reaction method using a film-forming gas containing a reducing gas. a step of forming a semiconductor layer as a main component; and after the step, a step of forming an intrinsic second non-single crystal semiconductor layer on the semiconductor layer; This method is characterized by forming a third non-single crystal semiconductor layer of a conductivity type opposite to that of the semiconductor. In the present invention, the aforementioned light-transmitting conductive film is characterized in that it exhibits high conductivity in a reducing atmosphere and does not become cloudy.

この白濁の原因として考えられることは、この金属酸化
物導電膜が還元性雰囲気下で還元され金属が析出したこ
と、および導電膜表面が荒らされて凸凹化したことが考
えられる。
Possible causes of this cloudiness are that the metal oxide conductive film was reduced in a reducing atmosphere and metal was deposited, and that the surface of the conductive film was roughened and became uneven.

本発明はこれらの問題に対し、酸化亜鉛または酸化亜鉛
を主成分とする導電膜を用いたことで解決したものであ
る。この酸化亜鉛導電膜は還元性雰囲気下においても良
好な導電性及び透過率を有するものである。特に酸化亜
鉛導電膜形成時に還元性気体である水素ガスを分圧にし
て0.005〜0゜Q5pa4人すると導電性が増すと
いう特徴を有するものである。
The present invention solves these problems by using zinc oxide or a conductive film containing zinc oxide as a main component. This zinc oxide conductive film has good conductivity and transmittance even under a reducing atmosphere. In particular, when forming a zinc oxide conductive film, the conductivity increases if the partial pressure of hydrogen gas, which is a reducing gas, is set to 0.005 to 0°Q5pa.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 硝子基板上にアルミニュームが酸化物の形で2wt%添
加された酸化亜鉛をターゲットとして、高1’Mlσp
フ、パノ々リングン去に、トリIり厚2000人で形成
し。
Example 1 A high 1'Mlσp target was zinc oxide on which 2 wt% of aluminum was added in the form of oxide on a glass substrate.
In the end, a panorama was formed with a total of 2,000 people.

た。その形成条件を以下に示す。Ta. The formation conditions are shown below.

RF比出力    500W スパッタ圧力    I Pa 水素分圧    0.05 Pa このように水素を分圧比にして0.001〜0.01程
度添加すると無添加時に比べて最大で50%程度導電性
が向上した。この時のシート抵抗は19Ω/ ciであ
った。
RF specific output: 500 W Sputtering pressure: I Pa Hydrogen partial pressure: 0.05 Pa When hydrogen was added at a partial pressure ratio of about 0.001 to 0.01, the conductivity improved by up to about 50% compared to when no addition was made. The sheet resistance at this time was 19Ω/ci.

この導電膜上に光化学気相反応法により、P型炭化珪素
半導体膜を約10人炸裂した。
About 10 P-type silicon carbide semiconductor films were exploded on this conductive film by a photochemical vapor phase reaction method.

その時の作製条件を以下に示す。The manufacturing conditions at that time are shown below.

使用ガス流量 S it Hb        505CCf’IHt
ベ一ス5%BJb  10 SCC門5iHz (CI
++) z      5 SCCM反応圧力    
400Pa 基板加熱温度  250℃ この際、基板加熱後約10分間は水素ガスのみを流した
状態で、基板表面のクリーニングを行い酸化亜鉛膜とP
型炭化珪素被膜界面特性を向上させ、かつ炭化珪素被膜
の密着性を向上させた。その後水素ガスを止め、反応性
ガスを導入して第1のP型炭化珪素半導体層を形成した
。このようにして得られた硝子基板上に形成された酸化
亜鉛電膜上の第1のP型炭化珪素被膜の透過率を、第1
図曲線(1)に示す。図より明らかなように可視光の波
長範囲内において約85%程度の透過率が得られ良好な
特性が得られた。
Usage gas flow rate S it Hb 505CCf'IHt
Base 5% BJb 10 SCC gate 5iHz (CI
++) z 5 SCCM reaction pressure
400Pa Substrate heating temperature 250℃ At this time, the substrate surface is cleaned with only hydrogen gas flowing for about 10 minutes after heating the substrate, and the zinc oxide film and P
Improved the interfacial properties of the silicon carbide film and the adhesion of the silicon carbide film. Thereafter, the hydrogen gas was stopped, and a reactive gas was introduced to form a first P-type silicon carbide semiconductor layer. The transmittance of the first P-type silicon carbide film on the zinc oxide film formed on the glass substrate thus obtained is
This is shown in curve (1). As is clear from the figure, a transmittance of about 85% was obtained within the wavelength range of visible light, and good characteristics were obtained.

一方比較の為、硝子基板上のITO膜上に本実施と同じ
工程を用いて炭化珪素被膜を作製したところ、白濁状態
となり光が散乱されてしまい、第1図曲線(2)に示す
ように前記基板を垂直に入射し透過する光は、本発明の
場合と比べて約70%程度になっていた。この被膜をX
MA (X線マイクロアナライザー)にて分析したとこ
ろ、ITOと窒化珪素膜界面に金属インジューム(In
 )の析出が観察された。
On the other hand, for comparison, when a silicon carbide film was fabricated on an ITO film on a glass substrate using the same process as in this example, it became cloudy and light was scattered, as shown in curve (2) in Figure 1. The amount of light perpendicularly incident and transmitted through the substrate was about 70% compared to the case of the present invention. This film is
Analysis using an X-ray microanalyzer (MA) revealed that metal indium (In
) precipitation was observed.

一方、本発明の場合は、金属亜鉛の析出は観察されなか
った。
On the other hand, in the case of the present invention, no precipitation of metallic zinc was observed.

さらに、第1の半導体層上に、■型の非単結晶半導体層
を公知のプラズマCVD法により7000人の膜厚に形
成した。
Further, on the first semiconductor layer, a ■-type non-single crystal semiconductor layer was formed to a thickness of 7000 nm by a known plasma CVD method.

以下にその条件を示す。The conditions are shown below.

使用ガス流量   5iH450SCCM反応圧力  
        13  Pa基板加熱温度     
  250°C高周波出力         100W
さらに、この第2の半導体層上に同様にN型の微結晶半
導体層を約500人形成した。
Gas flow rate used: 5iH450SCCM reaction pressure
13 Pa substrate heating temperature
250°C high frequency output 100W
Furthermore, approximately 500 N-type microcrystalline semiconductor layers were similarly formed on this second semiconductor layer.

以下にその条件を示す。The conditions are shown below.

使用ガス流量 S iHa         505CCFIS iH
< ベース5%PH32SCCMHz        
  100 SCCMその他は、第2半導体層作製条件
と同じであった。
Usage gas flow rate S iHa 505CCFIS iH
< Base 5% PH32SCC MHz
100 SCCM and other conditions were the same as the second semiconductor layer manufacturing conditions.

さらに、真空蒸着法により裏面反射電極として、アルミ
ニュームを形成し、光電変換装置とした。
Furthermore, aluminum was formed as a back reflective electrode using a vacuum evaporation method to form a photoelectric conversion device.

これにより、透光性導電膜と、半導体層間で白濁により
光を散乱させず、効率の高い光電変換装置を得ることが
できた。
As a result, it was possible to obtain a highly efficient photoelectric conversion device without scattering light due to cloudiness between the transparent conductive film and the semiconductor layer.

その特性を以下に示す。Its characteristics are shown below.

開放電圧      0.85 V 短縮電流     18.5  mA 曲線因子      0.70 効率       11.0% 面積        1.05cfllただし  A 
M T (100mW/cnり本実施例では、単層膜の
酸化亜鉛導電膜上に還元性ガスを有する反応性ガスを用
いて半導体被膜を形成したが、特に本構成のみに限定さ
れるわけではなくITO上に酸化亜鉛被膜を形成し、還
元性ガス及び還元性の活性種がITO等下地下地被膜れ
ないようにしてあればよい。
Open circuit voltage 0.85 V Shortening current 18.5 mA Fill factor 0.70 Efficiency 11.0% Area 1.05cfll However, A
M T (100 mW/cn) In this example, a semiconductor film was formed on a single-layer zinc oxide conductive film using a reactive gas containing a reducing gas, but it is not limited to this structure in particular. Instead, it is sufficient to form a zinc oxide film on the ITO to prevent reducing gases and reducing active species from entering the underlying film such as ITO.

また、光電変換装置の構成は本実施例のみに限定される
わけではない。
Further, the configuration of the photoelectric conversion device is not limited to this embodiment.

(ホ)効果 本発明の構成をとることにより、透光性導電膜上に還元
性ガスを有する反応性気体を用いて、被膜を白濁させず
に形成することが可能となり、この基板を光電変換装置
として応用することが可能となった。また、この酸化亜
鉛被膜はエツチング特性がよく微細なパターンを形成す
ることができた。
(e) Effect By adopting the configuration of the present invention, it is possible to form a film on a transparent conductive film using a reactive gas having a reducing gas without making it cloudy, and this substrate can be used for photoelectric conversion. It became possible to apply it as a device. Furthermore, this zinc oxide film had good etching properties and could form a fine pattern.

また、透光性導電膜と半導体層界面に金属が依存しない
ため、金属が半導体層中に混入せず良好な特性が得られ
かつ、長期の信頼性も向上させるこ第1図は本発明及び
比較例より得られた基板の透過率を示す。
Furthermore, since the metal does not depend on the interface between the transparent conductive film and the semiconductor layer, good characteristics can be obtained without metal being mixed into the semiconductor layer, and long-term reliability can also be improved. The transmittance of a substrate obtained from a comparative example is shown.

1・・・・・・本発明 2・・・・・・比較例1...The present invention 2... Comparative example

Claims (1)

【特許請求の範囲】 1、透光性絶縁基板上の、酸化亜鉛導電膜上に一導電型
の第1の非単結晶珪素半導体層または珪素を主成分とす
る半導体層を、還元性を有する気体を含んだ反応性用気
体に紫外光を照射し、光化学気相反応法により、形成す
る工程と前記工程の後、前記半導体層に真性の第2の非
単結晶半導体層を形成する工程と、前記第2の半導体層
上に、前記第1の半導体とは逆導電型の第3の非単結晶
半導体層を形成する工程を有することを特徴とする光電
変換装置作製方法。 2、特許請求の範囲第1項において、前記還元性を有す
る気体として、水素またはシラン類(Si_nH_2_
n_+_2n=1、2、3、・・・)等の水素化物を用
いたことを特徴とする光電変換装置作製方法。 3、特許請求の範囲第1項において、前記酸化亜鉛導電
膜中には、不純物としてアルミニュウム、ゲルマニュー
ム、シリコン等が添加されていることを特徴とする光電
変換装置作製方法。 4、特許請求の範囲第1項において前記珪素を主成分と
する第1の半導体層としては、炭化珪素半導体(Si_
xC_1_−_x0<x<1)を用いたことを特徴とす
る光電変換装置作製方法。
[Claims] 1. A first non-single crystal silicon semiconductor layer of one conductivity type or a semiconductor layer mainly composed of silicon is formed on a zinc oxide conductive film on a light-transmitting insulating substrate and has a reducing property. A step of irradiating a reactive gas containing a gas with ultraviolet light and forming it by a photochemical vapor phase reaction method; and a step of forming an intrinsic second non-single crystal semiconductor layer on the semiconductor layer after the step. . A method for manufacturing a photoelectric conversion device, comprising the steps of: forming a third non-single crystal semiconductor layer of a conductivity type opposite to that of the first semiconductor on the second semiconductor layer. 2. In claim 1, the reducing gas is hydrogen or silanes (Si_nH_2_
A method for manufacturing a photoelectric conversion device, characterized in that a hydride such as n_+_2n=1, 2, 3, . . . ) is used. 3. The method for manufacturing a photoelectric conversion device according to claim 1, wherein aluminum, germanium, silicon, or the like is added as an impurity to the zinc oxide conductive film. 4. In claim 1, the first semiconductor layer containing silicon as a main component is a silicon carbide semiconductor (Si_
A method for manufacturing a photoelectric conversion device, characterized in that xC_1_−_x0<x<1).
JP61101829A 1986-05-01 1986-05-01 Manufacture of photoelectric converter Pending JPS62259480A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61101829A JPS62259480A (en) 1986-05-01 1986-05-01 Manufacture of photoelectric converter
CN87103244A CN1008416B (en) 1986-05-01 1987-04-29 Electro-optical device and method for manufacturing the same
AU72256/87A AU587122B2 (en) 1986-05-01 1987-04-30 Electro-optical devices and methods for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101829A JPS62259480A (en) 1986-05-01 1986-05-01 Manufacture of photoelectric converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62135543A Division JPS62295466A (en) 1987-05-29 1987-05-29 Photoelectric conversion semiconductor device

Publications (1)

Publication Number Publication Date
JPS62259480A true JPS62259480A (en) 1987-11-11

Family

ID=14310986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101829A Pending JPS62259480A (en) 1986-05-01 1986-05-01 Manufacture of photoelectric converter

Country Status (3)

Country Link
JP (1) JPS62259480A (en)
CN (1) CN1008416B (en)
AU (1) AU587122B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156569U (en) * 1988-04-20 1989-10-27
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280523B (en) * 2011-07-01 2013-04-10 中国科学院理化技术研究所 Optical method for modulating continuous photoconductive effect of zinc oxide nanowire
CN103038387B (en) * 2011-08-02 2015-05-27 新柯隆株式会社 Method for forming silicon carbide thin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190321A (en) * 1977-02-18 1980-02-26 Minnesota Mining And Manufacturing Company Microstructured transmission and reflectance modifying coating
IL67926A (en) * 1982-03-18 1986-04-29 Energy Conversion Devices Inc Photo-voltaic device with radiation reflector means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156569U (en) * 1988-04-20 1989-10-27
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film

Also Published As

Publication number Publication date
AU587122B2 (en) 1989-08-03
CN87103244A (en) 1987-11-11
AU7225687A (en) 1987-11-05
CN1008416B (en) 1990-06-13

Similar Documents

Publication Publication Date Title
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
CA1116280A (en) Cermet layer for amorphous silicon solar cells
US4623601A (en) Photoconductive device containing zinc oxide transparent conductive layer
KR950001956B1 (en) Multi-junctional semiconductor device
US4162505A (en) Inverted amorphous silicon solar cell utilizing cermet layers
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
EP0179547B1 (en) Thin film solar cell with free tin on transparent conductor
EP0475666B1 (en) Method of Manufacturing an Amorphous Silicon Solar Cell
CN100514679C (en) Photovoltaic device and element with transparent electro-conductive film
JP2000058885A (en) Solar battery and manufacture thereof
JP3679771B2 (en) Photovoltaic device and method for manufacturing photovoltaic device
JP2001189114A (en) Manufacturing method of transparent electrode
JPS62259480A (en) Manufacture of photoelectric converter
US4798808A (en) Photoconductive device coontaining electroless metal deposited conductive layer
US5064477A (en) Radiant energy sensitive device and method
JP3025392B2 (en) Thin film solar cell and manufacturing method
CN116314439A (en) NiO in solar cell x Hole transport layer and preparation method and application thereof
JPH0424878B2 (en)
JPS62295466A (en) Photoelectric conversion semiconductor device
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JP2000277766A (en) Photovoltaic element and manufacture thereof
JP2004311784A (en) Photodetector and its mounting method
Morita et al. Efficiency improvement of solar cell utilizing plasma-deposited silicon nitride
JPH0542834B2 (en)
Nayar Properties of conducting zinc oxide films prepared by RF Sputtering