JPS62259434A - Quartz glass jig - Google Patents

Quartz glass jig

Info

Publication number
JPS62259434A
JPS62259434A JP8548886A JP8548886A JPS62259434A JP S62259434 A JPS62259434 A JP S62259434A JP 8548886 A JP8548886 A JP 8548886A JP 8548886 A JP8548886 A JP 8548886A JP S62259434 A JPS62259434 A JP S62259434A
Authority
JP
Japan
Prior art keywords
quartz glass
air bubbles
bubbles
longitudinal direction
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8548886A
Other languages
Japanese (ja)
Other versions
JPH0225248B2 (en
Inventor
Kyoichi Inagi
恭一 稲木
Katsuhiko Kenmochi
克彦 剣持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP8548886A priority Critical patent/JPS62259434A/en
Publication of JPS62259434A publication Critical patent/JPS62259434A/en
Publication of JPH0225248B2 publication Critical patent/JPH0225248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To effectively enhance uniform thermal effect and to obtain a jig having excellent thermal resistance and dimensional stability by forming 1/10 or more of the total number of air bubbles in elliptically spherical shape. CONSTITUTION:In a fine air bubble-containing quartz glass jig, 1/10 or more of the total number of air bubbles are of elliptically spherical shape. A cylindrical thick tube which contains spherical air bubbles produced by arc melting is thermally softened in a molding furnace, and then oriented in the longitudinal direction. Then, quartz glass which contains elliptically spherical air bubbles oriented in the longitudinal direction can be obtained. For example, the elliptically spherical air bubbles oriented in the longitudinal direction of the core tube reflect at random incident light in a circumferential direction to enhance the uniform thermal effect in the circumferential direction, and the elliptically spherical air bubbles oriented in the circumferential direction reversely reflect the light at random in the longitudinal direction to enhance the uniform thermal effect in the longitudinal direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体工業に使用される均熱性、耐熱性、寸
法安定性にすぐれた石英ガラス製治具。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a quartz glass jig that is used in the semiconductor industry and has excellent heat uniformity, heat resistance, and dimensional stability.

例えば炉芯管、フォーク、チャンバー、ペルジャー、ボ
ート等に関するものであり、特には炉芯管の提供を目的
とする。
For example, it relates to furnace core tubes, forks, chambers, pelgers, boats, etc., and is particularly aimed at providing furnace core tubes.

(従来の技術とその問題点) 従来、半導体工業で使用されている石英ガラス製治具例
えば炉芯管については、均熱性、耐熱性。
(Conventional technology and its problems) Conventionally, quartz glass jigs used in the semiconductor industry, such as furnace core tubes, have poor heat uniformity and heat resistance.

寸法安定性が問題となっており、特に半導体ウェーハを
1100℃以上で熱処理する工程での炉芯管のたわみや
変形については問題の解決が切望されている。このため
、肉厚な透明石英ガラスあるいは不透明石英ガラスの使
用が試みられているが、このような石英ガラスで作られ
た治具にあっては、加熱ムラ等の具合の悪い現象がみら
れるほか、特に不透明石英ガラスについては純度が悪く
半導体工業に適さない不利がある。
Dimensional stability has become a problem, and in particular, there is a strong desire to solve the problem of bending and deformation of the furnace core tube during the process of heat treating semiconductor wafers at 1100° C. or higher. For this reason, attempts have been made to use thick transparent quartz glass or opaque quartz glass, but jigs made of such quartz glass suffer from undesirable phenomena such as uneven heating. In particular, opaque quartz glass has a disadvantage of poor purity and is not suitable for the semiconductor industry.

また半導体ウェーハの大直径化が進むにつれ、炉芯管を
始め使用される治具等も大型化し、この結果炉芯′管内
の温度分布にムラが発生しやすくなって、半導体ウェー
ハの均一な熱処理が困難となり、歩留り低下がおこって
いる。
In addition, as the diameter of semiconductor wafers continues to increase, the size of the furnace core tube and other jigs used also increases.As a result, the temperature distribution within the furnace core tube tends to become uneven, making it difficult to uniformly heat the semiconductor wafers. It has become difficult to do so, and yields have decreased.

(発明の構成および効果) しかして、従来気泡入石英ガラスは気泡を含まない透明
石英ガラスに比べて、均熱性、耐熱性等の性質がある程
度優れていることはすでに知られているが、本発明者ら
が鋭意研究を重ねた結果、(イ)石英ガラスの層構造中
に包含される気泡は入射する光を乱反射するが、この場
合の気泡の大きさ、形状、数等がガラスの均熱性、耐熱
性、寸法安定性に大きな影響を与えること、および(ロ
)気泡の形状を石英ガラスの製造条件の調製等により、
通常の球状から楕円球状に変えれば、意外にも均熱効果
が顕著に向上することが判明した。
(Structure and Effects of the Invention) It is already known that conventional bubble-filled quartz glass has better properties such as heat uniformity and heat resistance than transparent quartz glass that does not contain bubbles. As a result of intensive research by the inventors, (a) bubbles contained in the layered structure of quartz glass reflect incident light diffusely, but the size, shape, number, etc. of the bubbles in this case are determined by the uniformity of the glass. (b) The shape of the bubbles can be changed by adjusting the manufacturing conditions of quartz glass, etc.
Surprisingly, it was found that the uniform heating effect was significantly improved by changing from the normal spherical shape to an elliptical spherical shape.

本発明は上記知見に基づいて完成されたものであり、こ
れは微細気泡入石英ガラス製冶具において、その全気泡
数の1000以上が楕円球状の気泡であることを特徴と
する石英ガラス製治具に関するものである。
The present invention has been completed based on the above findings, and is directed to a quartz glass jig with fine bubbles, characterized in that 1000 or more of the total number of bubbles are ellipsoidal bubbles. It is related to.

気泡の形状が楕円球状となることによりもたらされる。This is caused by the bubble having an ellipsoidal shape.

前記効果の根拠理由については必ずしも明らかではない
が、一応次のように考えられる。
Although the reason for the above-mentioned effect is not necessarily clear, it is thought to be as follows.

すなわち、楕円球状の気泡は、石英ガラス中に入射した
光を、気泡の長径方向に対し90”の角度で乱反射して
、乱反射方向の均熱効果を高めるという推論から炉芯管
の場合を考察すると、炉芯管の長さ方向に配位した楕円
球状の気泡は入射した光を円周方向に乱反射し1円周方
向の均熱効果が高まり、また円周方向に配位した楕円球
状の気泡は逆に長さ方向に光を乱反射し長さ方向の均熱
効果を高めることによるものと思われる。
In other words, the case of a furnace core tube was considered based on the inference that ellipsoidal bubbles diffusely reflect the light incident on the quartz glass at an angle of 90'' to the long axis direction of the bubbles, increasing the heat uniformity effect in the direction of diffuse reflection. Then, the ellipsoidal bubbles arranged in the length direction of the furnace core tube diffusely reflect the incident light in the circumferential direction, increasing the uniform heating effect in one circumferential direction, and the ellipsoidal bubbles arranged in the circumferential direction This seems to be due to the fact that the bubbles diffusely reflect light in the length direction, increasing the heat uniformity effect in the length direction.

この場合、石英ガラス中に存在する楕円球状の気泡の割
合が、全気泡数の1/10以下では前記効果が不十分で
あり、この割合が大きくなるにしたがい効果は増大する
In this case, the effect is insufficient if the proportion of ellipsoidal bubbles present in the quartz glass is less than 1/10 of the total number of bubbles, and the effect increases as this proportion increases.

本発明でいう楕円球状とは概念的には罪状の形状である
が、この楕円球の寸法は、長径が15〜1000μmで
あることが好ましい、15μm以下のものは製造が回連
であり、一方1000μ論以上としても効果は望めない
し、また製造時に母材から炉芯管に延伸するときの比率
が大きくなり、大口径の炉芯管を製造するには作業上不
都合であり、経済的。
The ellipsoidal shape used in the present invention is conceptually a sinusoidal shape, but the dimensions of this ellipsoidal sphere are preferably such that the major axis is 15 to 1000 μm; Even if it exceeds 1000 μm, no effect can be expected, and the ratio of stretching from the base material to the furnace core tube during manufacturing becomes large, which is inconvenient and economical for manufacturing large diameter furnace core tubes.

効率的に好ましくない。Efficiently undesirable.

短径については特に規定しないが、気泡の形状が真球に
ならない程度であれば良く、また楕円球の形状も真の楕
円球でなくても、これに近似した形状であれば良い。
The short axis is not particularly specified, but it is sufficient that the shape of the bubble is not a true sphere, and the shape of the elliptical sphere does not have to be a true elliptical sphere, but may be a shape that approximates it.

かかる楕円球の気泡を包含する石英ガラスの製造方法は
種々あるが、−例をあげれば、下記の方法により効率的
、経済的に製造することが可能である。
There are various methods for producing quartz glass containing ellipsoidal bubbles, but for example, it can be produced efficiently and economically by the following method.

まずアーク溶融により製造した球状の気泡を包含する円
筒状肉厚管を成形炉において加熱軟化し。
First, a cylindrical thick-walled tube containing spherical bubbles manufactured by arc melting is heated and softened in a forming furnace.

ついで長さ方向に延伸すれば、長さ方向に配位した楕円
球状の気泡を包含する石英ガラス管を得ることができる
。また円周方向に延伸すれば、円周方向に配位した楕円
球状の気泡を包含する石英ガラスが得られる。
If the tube is then stretched in the length direction, a quartz glass tube containing ellipsoidal bubbles arranged in the length direction can be obtained. Furthermore, by stretching in the circumferential direction, quartz glass containing ellipsoidal bubbles arranged in the circumferential direction can be obtained.

楕円球の配位方向は、石英ガラス製炉芯管等治具それぞ
れの使用方法や使用目的にあわせて変化させれば良い。
The orientation direction of the elliptical spheres may be changed depending on the usage method and purpose of each jig such as a quartz glass furnace core tube.

石英ガラスの純度については特に規定しなかったが、高
集積化が進む半導体処理工程では、アルカリ、アルカリ
土類またはウラン等の放射性元素の含有量が少なければ
少ない程ウェーハの歩留りが向上する。また、天然シリ
カ質を原料としなくても、合成石英ガラス原料より製造
しても、またOH基含有量をコントロールしても良い。
Although the purity of the quartz glass was not specifically defined, in semiconductor processing processes where the degree of integration is increasing, the lower the content of radioactive elements such as alkali, alkaline earth, or uranium, the higher the yield of wafers. Moreover, it is not necessary to use natural silica as a raw material, it may be manufactured from a synthetic quartz glass raw material, and the OH group content may be controlled.

以上は半導体処理用炉芯管について主として説明したが
、これは炉芯管のみに限定するものではなく、このほか
ボート、フォーク、ペルジャー、チャンバー等各種治具
を包含することはもちろんである。
Although the above description has mainly been about the furnace core tube for semiconductor processing, this is not limited to the furnace core tube only, and of course includes various other jigs such as boats, forks, pelgers, and chambers.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

(実施例1) 包含する全気泡が大きさ15〜500μmの範囲にあり
、その全気泡数の約115が楕円球であって、その楕円
球の長径と短径との比が115〜1/30の範囲にあり
、その配位方向が長さ方向である外径240mm、内径
225m、長さ1700n*の石英ガラス製炉芯管を作
った。これを均熱長700m++の半導体ウェーハ熱処
理用横型炉に装着し、半導体ウェーハ自動搬送装置に炉
内温度測定用の熱電対を取りつけ、カンタル発熱体で炉
を1050℃に加熱し、2時間保持した。つぎに白金−
白金ロジウム13%の熱電対を挿入し、均熱帯の長さ方
向を7等分、円周方向を8等分し各点の温度を測定した
(Example 1) The total number of bubbles included is in the range of 15 to 500 μm in size, approximately 115 of the total number of bubbles are elliptical spheres, and the ratio of the major axis to the minor axis of the elliptical sphere is 115 to 1/1/2. A quartz glass furnace core tube having an outer diameter of 240 mm, an inner diameter of 225 m, and a length of 1700 n* was made, with the orientation direction being the length direction. This was installed in a horizontal furnace for semiconductor wafer heat treatment with a soaking length of 700 m++, a thermocouple for measuring the temperature inside the furnace was attached to the automatic semiconductor wafer transfer device, and the furnace was heated to 1050°C with a Kanthal heating element and maintained for 2 hours. . Next, platinum-
A thermocouple made of 13% platinum-rhodium was inserted, and the lengthwise direction of the soaking zone was divided into seven equal parts, and the circumferential direction was divided into eight equal parts, and the temperature at each point was measured.

(実施例2) 実施例1と比較して、より大口径の母材を用いて延伸率
を高くし、しかもより低温で実施例1と同一寸法の石英
ガラス製炉芯管を作った。包含する全気泡が大きさ10
0〜1000μmの範囲にあり、その全気泡数の約1/
2が楕円球であって、その楕円球の長径と短径との比が
1150〜1/100の範囲で、楕円球の配位方向は長
さ方向であった。
(Example 2) Compared to Example 1, a quartz glass furnace core tube having the same dimensions as Example 1 was produced using a larger diameter base material, increasing the drawing ratio, and at a lower temperature. Total bubbles included are size 10
It is in the range of 0 to 1000 μm, and about 1/1 of the total number of bubbles is
No. 2 was an elliptical sphere, the ratio of the major axis to the minor axis of the elliptical sphere was in the range of 1150 to 1/100, and the orientation direction of the elliptical sphere was the length direction.

これを実施例1と同様な方法で温度分布を測定した。The temperature distribution of this was measured in the same manner as in Example 1.

(実施例3) 実施例1と比較してより小口径の母材の内側を窒素で加
圧して円周方向に延伸し、実施例1と同一寸法の石英ガ
ラス製炉芯管を作った。包含する全気泡が大きさ15〜
200μmの範囲にあり、その全気泡数の約1710が
楕円球であって、その楕円球の長径と短径との比が1/
2〜1/20の範囲にあり9w1円球の配位方向は円周
方向であった。これを実施例1と同様な方法で温度分布
を測定した。
(Example 3) A quartz glass furnace core tube having the same dimensions as in Example 1 was produced by pressurizing the inside of a base material with a smaller diameter than in Example 1 and stretching it in the circumferential direction. The total bubble size included is 15~
Approximately 1710 of the total number of bubbles are in the range of 200 μm, and the ratio of the major axis to the minor axis of the elliptical sphere is 1/1.
It was in the range of 2 to 1/20, and the orientation direction of the 9w1 sphere was in the circumferential direction. The temperature distribution of this was measured in the same manner as in Example 1.

(比較例) 包含する全気泡の約1/20が楕円球であり、残りがほ
ぼ球状である石英ガラス製炉芯管の場合について、実施
例1と同様な方法で温度分布を測定した。
(Comparative Example) Temperature distribution was measured in the same manner as in Example 1 in the case of a quartz glass furnace core tube in which about 1/20 of the total bubbles contained were elliptical spheres and the rest were approximately spherical.

前記実施例1、実施例2.実施例3および比較例で測定
した温度分布を第1図、第2図に示す。
The above Example 1, Example 2. The temperature distributions measured in Example 3 and Comparative Example are shown in FIGS. 1 and 2.

炉芯管上の各測定点位置は第3図(a)、(b)に示す
とおりである。
The positions of each measurement point on the furnace core tube are as shown in FIGS. 3(a) and 3(b).

これらの結果から、楕円球状の気泡を長さ方向に配位し
た場合(実施例1,2)は、炉芯管の円周方向に均熱効
果が高く、しかも実施例2のように長径に対する短径の
比が小さい程その効果も高い0円周方向に配位した場合
(実施例3)は長さ方向に均熱効果が高く、楕円球状の
気泡が全気泡の1/20であり残りが球状である場合(
比較例)はいずれの方向にも均熱効果が劣ることが明白
である。
From these results, when the ellipsoidal bubbles are arranged in the length direction (Examples 1 and 2), the heat uniformity effect is high in the circumferential direction of the furnace core tube. The smaller the ratio of the short axis, the higher the effect.0 When arranged in the circumferential direction (Example 3), the heat uniformity effect is high in the length direction, and the ellipsoidal bubbles account for 1/20 of the total bubbles, leaving the rest. If is spherical (
It is clear that the comparative example) has poor heat uniformity effect in all directions.

(発明の効果) 以上詳細に説明したように、本発明によれば楕円球状の
気泡を包含する石英ガラスを半導体処理冶具に用いるこ
とにより、効率的に均熱効果を高めることができ、その
結果さらに耐熱性1寸法安定性にも優れた冶具を実現す
ることができた。
(Effects of the Invention) As explained in detail above, according to the present invention, by using quartz glass containing ellipsoidal bubbles in a semiconductor processing jig, it is possible to efficiently improve the uniform heating effect, and as a result, Furthermore, we were able to realize a jig with excellent heat resistance and 1-dimensional stability.

本発明は現状の半導体処理治具用にきわめて好適な石英
ガラスを開発した点において、産業上重要な意味を有す
るものである。
The present invention has industrial significance in that it has developed a quartz glass that is extremely suitable for use in current semiconductor processing jigs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1.実施例2.実施例3および比較例に
おける炉芯管の長さ方向の温度分布を、第2図は円周方
向の温度分布を、第3図(a)は炉芯管の長さ方向の、
(b)は円周方向の測定点の位置を示す。 ■ −,1 長さ方向の測定点位置 1’  2’  3’  4’  5’  5’  7
’  8’円周方向の副定点位置
FIG. 1 shows Example 1. Example 2. FIG. 2 shows the temperature distribution in the circumferential direction, and FIG. 3(a) shows the temperature distribution in the longitudinal direction of the furnace core tube in Example 3 and Comparative Example.
(b) shows the positions of measurement points in the circumferential direction. ■ -, 1 Measurement point position in length direction 1'2'3'4'5'5' 7
'8' Sub-fixed point position in circumferential direction

Claims (1)

【特許請求の範囲】 1)微細気泡入石英ガラス製治具において、その全気泡
数の1/10以上が楕円球状の気泡であることを特徴と
する石英ガラス製治具。 2)該楕円球状の気泡の長径が15〜1000μmであ
ることを特徴とする特許請求の範囲第1項記載の石英ガ
ラス製治具。 3)半導体ウェーハの熱処理工程に使用される特許請求
の範囲第1項または第2項記載の石英ガラス製治具。
[Scope of Claims] 1) A quartz glass jig with fine bubbles, characterized in that 1/10 or more of the total number of bubbles are ellipsoidal bubbles. 2) The quartz glass jig according to claim 1, wherein the ellipsoidal bubble has a major axis of 15 to 1000 μm. 3) A quartz glass jig according to claim 1 or 2, which is used in a heat treatment process for semiconductor wafers.
JP8548886A 1986-04-14 1986-04-14 Quartz glass jig Granted JPS62259434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8548886A JPS62259434A (en) 1986-04-14 1986-04-14 Quartz glass jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8548886A JPS62259434A (en) 1986-04-14 1986-04-14 Quartz glass jig

Publications (2)

Publication Number Publication Date
JPS62259434A true JPS62259434A (en) 1987-11-11
JPH0225248B2 JPH0225248B2 (en) 1990-06-01

Family

ID=13860308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8548886A Granted JPS62259434A (en) 1986-04-14 1986-04-14 Quartz glass jig

Country Status (1)

Country Link
JP (1) JPS62259434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358822A (en) * 1986-08-29 1988-03-14 Shinetsu Sekiei Kk Wafer conveying and retaining jig made of silica glass
JPH01162234U (en) * 1988-04-26 1989-11-10
JPH08162423A (en) * 1994-11-30 1996-06-21 Shinetsu Quartz Prod Co Ltd Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
JP2005162516A (en) * 2003-12-01 2005-06-23 Tokuyama Toshiba Ceramics Co Ltd Porous silica glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623741A (en) * 1979-08-06 1981-03-06 Toshiba Ceramics Co Ltd Quartz glass furnace core tube for manufacturing semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623741A (en) * 1979-08-06 1981-03-06 Toshiba Ceramics Co Ltd Quartz glass furnace core tube for manufacturing semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358822A (en) * 1986-08-29 1988-03-14 Shinetsu Sekiei Kk Wafer conveying and retaining jig made of silica glass
JPH0824109B2 (en) * 1986-08-29 1996-03-06 信越石英株式会社 Quartz glass wafer boat transfer jig
JPH01162234U (en) * 1988-04-26 1989-11-10
JPH08162423A (en) * 1994-11-30 1996-06-21 Shinetsu Quartz Prod Co Ltd Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
JP2005162516A (en) * 2003-12-01 2005-06-23 Tokuyama Toshiba Ceramics Co Ltd Porous silica glass

Also Published As

Publication number Publication date
JPH0225248B2 (en) 1990-06-01

Similar Documents

Publication Publication Date Title
US6209354B1 (en) Method of preparing silica glass article
JP4834635B2 (en) Synthetic quartz glass preform
US5182236A (en) Gradient index glasses and sol-gel method for their preparation
CN102627398B (en) For the preparation of the method for fibre-optical preform
JPS60161347A (en) Preparation of parent material for optical fiber glass
US2377928A (en) Stretching cast elongate bodies
JPS62259434A (en) Quartz glass jig
JPS58145634A (en) Manufacture of doped glassy silica
JP2007077009A (en) Manufacturing method of semi-finished product for highly homogeneous optical element, blank suitable for performing the manufacturing method, the blank, and use of the blank or the semi-finished product
KR20130117784A (en) Strengthened glass enclosures and method
CA2283569C (en) High-purity silica glass fabricating method using sol-gel process
GB1318225A (en) Method for producing biaxially molecularly-oriented poly-epsilon- caproamide resin film
JPS5623741A (en) Quartz glass furnace core tube for manufacturing semiconductor
JP4568219B2 (en) Method for producing homogeneous silica-titania glass
JPS5820894B2 (en) Red-tailed ray crow
JPH0243720B2 (en) HANDOTAISHORYOSEKIEIGARASUSEIROSHINKAN
JPS62246834A (en) Production of base material for optical fiber
JP3207855B2 (en) Preform manufacturing method
EP1321439B1 (en) Method and furnace for producing an optical quartz glass
JPH0633240B2 (en) Quartz glass furnace core tube for semiconductor processing
JPH06500306A (en) Preform manufacturing method
JPS58148427A (en) Quartz glass core tube for manufacture of semiconductor
JPH07247132A (en) Production of quartz glass
JPH05186234A (en) Production of quartz glass member for excimer laser
JPS6274622A (en) Manufacture of polyester bottle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term