JPH07247132A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPH07247132A
JPH07247132A JP6040226A JP4022694A JPH07247132A JP H07247132 A JPH07247132 A JP H07247132A JP 6040226 A JP6040226 A JP 6040226A JP 4022694 A JP4022694 A JP 4022694A JP H07247132 A JPH07247132 A JP H07247132A
Authority
JP
Japan
Prior art keywords
quartz glass
temperature
refractive index
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6040226A
Other languages
Japanese (ja)
Inventor
Jun Takano
潤 高野
Shoji Yajima
昭司 矢島
Kazuhiro Nakagawa
和博 中川
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6040226A priority Critical patent/JPH07247132A/en
Publication of JPH07247132A publication Critical patent/JPH07247132A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a quartz glass having high ultraviolet transmission and high uni formity of refractive index by swinging the holding temperature plural times within the range from the distortion temperature to the sublimation temperature of the quartz glass and performing the heat-treatment of the quartz glass taking advantage of the generated thermal stress. CONSTITUTION:This process for the production of a quartz glass comprises the heating of a quartz glass preform containing 2>=500ppm of OH group to a holding temperature, the holding of the preform at the temperature for a prescribed period and the slow cooling of the preform to complete the heat-treatment of the preform. In the above process, the holding temperature is reciprocated plural times within the range between the distortion temperature and the sublimation temperature of the quartz glass. The heat-treatment of quartz glass is supposed to be impossible in the devitrification temperature range, i.e., from 1200 deg.C to 1700 deg.C owing to the crystallization (devitrification) phenomenon. In this process, the temperature is reciprocated within the range between the upper limit and the lower limit without using the holding of the quartz glass at a definite upper or lower limit temperature, the holding after the temperature increase and the holding after the temperature decrease. The devitrification can be prevented by this process to enable the heat-treatment even in the devitrification temperature range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石英ガラスの製造方法に
関するものであり、特に屈折率の高均質性が要求される
合成石英ガラス部材を必要とする分野、例えば、光リソ
グラフィー、高精度分光器、レーザー等の精密光学機器
に有用とされる高均質な光学用合成石英ガラスに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz glass, and more particularly to a field requiring a synthetic quartz glass member requiring a high homogeneity of refractive index, for example, photolithography and high precision spectroscope. The present invention relates to a highly homogeneous synthetic quartz glass for optics which is useful for precision optical instruments such as lasers.

【0002】[0002]

【従来の技術】近年のLSIの高集積化にともない、シ
リコンウエハ上に集積回路を露光、転写する光リソグラ
フィー露光装置において、微細パターン化が進められて
いる。そのため、光源の短波長化が進み、紫外光の高透
過性と屈折率の高均質性を満たす紫外線リソグラフィー
用光学素子として、石英ガラスが用いられる。紫外光の
高透過性を実現するためには、石英ガラス中の不純物濃
度を抑えることが必要となる。そこで、この様な石英ガ
ラスを製造する方法として、原料となるSi化合物ガス
とSi化合物ガスを送るキャリアガス(例えば、H2
2ガス等)、および加熱のための燃焼ガスをバーナー
から噴出し、火炎内で石英ガラスを堆積させる火炎加水
分解法が一般的に用いられている。
2. Description of the Related Art With the recent high integration of LSI, fine patterning is being advanced in an optical lithography exposure apparatus for exposing and transferring an integrated circuit on a silicon wafer. Therefore, the wavelength of the light source is becoming shorter, and quartz glass is used as an optical element for ultraviolet lithography that satisfies the high transmittance of ultraviolet light and the high homogeneity of the refractive index. In order to realize a high transmittance of ultraviolet light, it is necessary to suppress the impurity concentration in quartz glass. Therefore, as a method for producing such a quartz glass, a Si compound gas as a raw material and a carrier gas (for example, H 2 ,
A flame hydrolysis method in which a combustion gas for heating (O 2 gas or the like) and a combustion gas for heating is ejected from a burner to deposit quartz glass in the flame is generally used.

【0003】この方法は、原料および燃焼ガスの不純物
を抑えることが容易なため、高純度な石英ガラスが得ら
れることが知られているが、紫外線リソグラフィー用光
学素子としての石英ガラスは、高均質な屈折率分布を持
つことも不可欠である。石英ガラスの屈折率分布を不均
質にする主な原因は、石英ガラスを合成する際に生じる
さまざまな条件のゆらぎ、例えば、火炎による合成面の
温度分布の変化、火炎加水分解反応あるいは熱分解・熱
酸化反応、ガラスへの不純物の拡散状態の変化等であ
る。これらの条件のゆらぎは、結果的に石英ガラス内に
脈理と呼ばれる成長縞や径方向の屈折率に分布をもたら
すことが知られている。
It is known that this method makes it possible to obtain high-purity quartz glass because impurities in raw materials and combustion gas can be easily suppressed. However, quartz glass as an optical element for ultraviolet lithography is highly homogeneous. It is also essential to have a large refractive index distribution. The main causes of making the refractive index distribution of quartz glass inhomogeneous are fluctuations of various conditions that occur during the synthesis of quartz glass, such as changes in the temperature distribution on the synthesis surface due to flames, flame hydrolysis reactions or thermal decomposition. These include thermal oxidation reaction and changes in the diffusion state of impurities into glass. It is known that fluctuations in these conditions result in distribution of growth fringes called striae and refractive index in the radial direction in the quartz glass.

【0004】[0004]

【発明が解決しようとする課題】一般に石英ガラスの歪
点、1025℃付近より高温の温度域は石英ガラス構造の変
化が起こることが知られている。石英ガラスの構造変化
に伴う物性変化としては、屈折率、歪、透過率、紫外線
耐性(ソラリゼーション、蛍光)等が挙げられる。そこ
で、様々な物性を制御する上で歪点以上の温度域での熱
処理およびそれによる物性変化が注目されている。
It is generally known that the structure of the quartz glass changes in the temperature range higher than the strain point of 1025 ° C., which is the strain point of quartz glass. Examples of changes in the physical properties of quartz glass due to structural changes include refractive index, strain, transmittance, UV resistance (solarization, fluorescence), and the like. Therefore, in controlling various physical properties, heat treatment in a temperature range above the strain point and changes in the physical properties due to the heat treatment are drawing attention.

【0005】これらの物性変化のなかで、透過率、紫外
線耐性の変化は微視的な構造変化に起因するため、除歪
と同様の温度(通常1100〜1200℃)あるいはそれ以下の
温度での熱処理が一般的である。例えば、特開昭63-297
234号「石英ガラスの製造方法」および特開昭63-295452
号「石英ガラスの紫外領域での蛍光現象防止方法」に
は、少なくともゾルーゲル法で合成した石英ガラスに、
除歪温度付近で昇降温の熱衝撃を与えることによって、
254nm照射による蛍光の発生が抑制されることが示され
ている。熱衝撃としては1000℃〜1300℃の間を昇温、保
持、降温、保持を繰り返すことが示されている。
Among these changes in physical properties, changes in transmittance and ultraviolet resistance are caused by microscopic structural changes. Therefore, at the same temperature as de-straining (usually 1100 to 1200 ° C.) or lower temperature. Heat treatment is common. For example, JP-A-63-297
No. 234, "Method for producing quartz glass" and JP-A-63-295452
In the article "Method of preventing fluorescence phenomenon in the ultraviolet region of quartz glass", at least quartz glass synthesized by the sol-gel method,
By applying a thermal shock of raising and lowering the temperature near the de-straining temperature,
It has been shown that fluorescence generation by 254 nm irradiation is suppressed. As for thermal shock, it has been shown to repeat heating, holding, cooling, and holding between 1000 ° C and 1300 ° C.

【0006】しかしながら、この除歪温度域の熱処理で
はバルク内の径方向のなだらかな屈折率分布(屈折率分
布の最大最小値の差を均質性とし、以下屈折率の均質性
△nで示す)の制御、なかでも屈折率分布の局所的なう
ねりの制御は不可能であった。これらの石英ガラス合成
時の条件のゆらぎにより生じた屈折率分布を合成後の熱
処理により取り除くためには、1800℃を越える温度での
熱処理が必要とされていた。
However, in the heat treatment in this destraining temperature range, a gentle refractive index distribution in the radial direction in the bulk (the difference between the maximum and minimum values of the refractive index distribution is regarded as homogeneity, and hereinafter, the homogeneity of the refractive index is indicated by Δn). However, it was impossible to control the local waviness of the refractive index distribution. In order to remove the refractive index distribution caused by the fluctuation of the conditions during the synthesis of the quartz glass by the heat treatment after the synthesis, it was necessary to perform the heat treatment at a temperature higher than 1800 ° C.

【0007】特公平3-17775号「石英ガラスの均質化方
法」には、高純度石英ガラスを2気圧以上、好ましくは5
〜25気圧のArガス雰囲気中において、1800℃以上、好ま
しくは2200〜2400℃に加熱する方法が提案されている。
特に、工業的に実施可能で生産効率の高い均質化条件を
最適化した結果は、2200〜2400℃の間の温度で、5〜25
気圧2時間〜5分の組み合わせであり、これにより全ての
粒状構造や脈理が消滅する効果が認められている。そし
て、実施例には脈理の除去に長時間を要する2100℃以下
では、昇華・蒸発を抑えるために高圧(10kg/cm2以上)
にしなければならないことが記されている。
According to Japanese Examined Patent Publication No. 3-17775, "Method for homogenizing quartz glass", high-purity quartz glass should be at least 2 atm, preferably 5 atm.
A method of heating to 1800 ° C or higher, preferably 2200 to 2400 ° C in an Ar gas atmosphere of -25 atm has been proposed.
In particular, the result of optimizing the homogenization conditions that are industrially feasible and have high production efficiency is that the temperature between 2200 and 2400 ° C
It is a combination of atmospheric pressure for 2 hours to 5 minutes, and it has been confirmed that this has the effect of eliminating all granular structures and striae. And, in the example, it takes a long time to remove striae at a pressure of 2100 ° C. or less, and a high pressure (10 kg / cm 2 or more) to suppress sublimation / evaporation
It says that you must do it.

【0008】しかしながら、高温・高圧での熱処理は石
英ガラス内への不純物の拡散を促進させるため、紫外域
に吸収が発生する。このため、例えばArFエキシマレー
ザーに用いられる石英ガラスのように特に200nm近くの
吸収が問題となる光学系においては、高温・高圧での熱
処理を行った石英ガラスでは、紫外光の高透過率と屈折
率の高均質性の要求を同時に満たすことができなかっ
た。
However, heat treatment at high temperature and high pressure promotes diffusion of impurities into the quartz glass, so that absorption occurs in the ultraviolet region. Therefore, for example, in an optical system where absorption near 200 nm is a problem, such as silica glass used for ArF excimer laser, silica glass that has been heat-treated at high temperature and high pressure has a high transmittance and refraction of ultraviolet light. The requirements of high homogeneity of the rates could not be met at the same time.

【0009】これらの問題に対しては、熱処理温度を下
げることが最も効果的であるが、熱処理後の石英ガラス
の屈折率の均質性をΔn=1×10-6程度以下に抑えよう
とする場合においては、屈折率の均質性が熱処理の温度
条件に依存するだけでなく、熱処理前の石英ガラス母材
の屈折率の均質性の影響を受ける。したがって、従来の
製造方法において熱処理後の均質性に再現性を求めるた
めには、石英ガラス母材の合成時に受けた熱的条件や化
学反応、不純物の拡散等をある範囲内に抑え、屈折率分
布の均質性が同程度で、局所的に不均質な屈折率分布の
ない石英ガラスを用いる必要があった。
For these problems, it is most effective to lower the heat treatment temperature, but it is attempted to suppress the homogeneity of the refractive index of quartz glass after heat treatment to about Δn = 1 × 10 -6 or less. In some cases, the homogeneity of the refractive index depends not only on the temperature condition of the heat treatment but also on the homogeneity of the refractive index of the quartz glass preform before the heat treatment. Therefore, in order to obtain reproducibility in the homogeneity after heat treatment in the conventional manufacturing method, the thermal conditions and chemical reactions received during the synthesis of the quartz glass base material, the diffusion of impurities, etc. should be suppressed within a certain range and the refractive index It was necessary to use quartz glass having a homogeneity of distribution and having a locally non-homogeneous refractive index distribution.

【0010】そこで、本発明においては、これらの問題
を解決し、紫外光の高透過率と屈折率の高均質性を備え
た石英ガラスを製造する方法を提供することを目的とす
る。
Therefore, it is an object of the present invention to solve these problems and to provide a method for producing a quartz glass having a high transmittance of ultraviolet light and a high homogeneity of a refractive index.

【0011】[0011]

【課題を解決するための手段】本発明者らは、紫外域に
吸収が発生しないようなできるだけ低い温度域で、石英
ガラスの合成時に受けた熱的条件や化学反応、不純物の
拡散等による屈折率の不均質分布を消失させる条件につ
いて、鋭意研究を重ねた。そして、具体的には、熱処理
の際の温度保持過程において、保持温度を複数回上下さ
せることにより石英ガラス内に温度分布を強制的に作り
出し、その温度分布により生じる熱応力を利用すること
で石英ガラスの屈折率分布を均質化させることを見い出
し、本発明を成すに到った。
Means for Solving the Problems The inventors of the present invention have conducted refraction due to thermal conditions, chemical reactions, diffusion of impurities, etc., received during the synthesis of quartz glass in a temperature range as low as possible so that absorption does not occur in the ultraviolet range. We have conducted extensive studies on the conditions for eliminating the inhomogeneous distribution of the rates. Then, specifically, in the temperature holding process during the heat treatment, the holding temperature is raised and lowered a plurality of times to forcibly create a temperature distribution in the quartz glass, and the thermal stress generated by the temperature distribution is utilized to produce the quartz. The inventors have found that the refractive index distribution of glass is homogenized, and have completed the present invention.

【0012】そこで、本発明で、「光学的に不均質な石
英ガラス母材を、保持温度まで昇温して一定時間保持
し、その後徐々に降温する熱処理を行う石英ガラスの製
造方法において、前記保持温度を石英ガラスの歪点以
上、昇華点以下の範囲で複数回上下させることを特徴と
する石英ガラスの製造方法」を提供する。
Therefore, in the present invention, in the method for producing a quartz glass, the "heat-treated quartz glass preform which is optically inhomogeneous is heated to a holding temperature, held for a certain period of time, and then gradually cooled. The method for producing quartz glass is characterized in that the holding temperature is raised and lowered a plurality of times within a range from the strain point of the quartz glass to the sublimation point thereof.

【0013】[0013]

【作用】保持温度と均質化時間の間には相関関係がある
と考えられているが、本発明で問題としている精密なレ
ベルでの屈折率分布の制御においては詳細はいまだ解明
されていない。また、一般にあらゆる温度であっても時
間を無限にとれば安定状態である屈折率の均質な石英ガ
ラスになることは知られているが、工業的な生産性を加
味するとそれは事実上不可能である。
It is believed that there is a correlation between the holding temperature and the homogenization time, but details have not yet been elucidated in controlling the refractive index profile at a precise level, which is a problem in the present invention. In addition, it is generally known that if the time is infinite at any temperature, it will be a stable quartz glass with a uniform refractive index, but it is practically impossible if industrial productivity is taken into consideration. is there.

【0014】以下に本発明を詳しく説明する。本発明者
らはOH基を多量に含む石英ガラスにおいて、石英ガラ
スのネットワーク構造内に多量のOH基により終端され
た部分が存在することに着目し、鋭意研究を行った。そ
の結果、OH基を含まない石英ガラス母材に比べOH基
を多量に含む石英ガラス母材を用いた熱処理では中距離
的な構造緩和が十分に行われること、さらにOH基を50
0ppm以上含有する石英ガラス母材でその現象が顕著であ
り、緩和が起こりやすく、局所的な屈折率分布の良化が
起こることを見い出した。
The present invention will be described in detail below. In the quartz glass containing a large amount of OH groups, the present inventors have paid attention to the fact that there is a portion terminated by a large amount of OH groups in the network structure of quartz glass, and conducted diligent research. As a result, the heat treatment using the quartz glass base material containing a large amount of OH groups as compared with the quartz glass base material containing no OH groups, sufficiently relaxes the structure in the medium distance,
It was found that the phenomenon is remarkable in the quartz glass base material containing 0 ppm or more, relaxation is likely to occur, and the local improvement of the refractive index distribution occurs.

【0015】一方、後述するように、熱処理時の各保持
温度域において一定時間当たりに除去できる不均質分布
の程度は熱処理を施す母材に存在する屈折率の不均質分
布により異なる。このことから、保持温度と均質化時間
等の熱処理条件は石英ガラス母材の屈折率の不均質分布
等にあわせて設定すべきことがわかるが、石英ガラス母
材に含まれるOH基の効果はこれに限られない。
On the other hand, as will be described later, the degree of the inhomogeneous distribution that can be removed in a given time in each holding temperature range during the heat treatment depends on the inhomogeneous distribution of the refractive index existing in the base material to be heat treated. From this, it is understood that the heat treatment conditions such as the holding temperature and the homogenization time should be set according to the inhomogeneous distribution of the refractive index of the quartz glass base material, but the effect of the OH group contained in the quartz glass base material is It is not limited to this.

【0016】屈折率の不均質分布はガラスの中距離的ネ
ットワーク構造のばらつきと微量不純物の分布とにより
形成されている。ここで不純物について定義する。合成
時の石英ガラス母材に含まれる不純物(合成条件に起因
する)を1次不純物とし、熱処理等の2次処理により混
入する不純物を2次不純物とする。本発明において問題
となるのは2次不純物である。
The inhomogeneous distribution of the refractive index is formed by the dispersion of the medium-range network structure of glass and the distribution of trace impurities. The impurities will be defined here. Impurities (due to synthesis conditions) contained in the quartz glass base material during synthesis are primary impurities, and impurities mixed in by secondary treatment such as heat treatment are secondary impurities. Secondary impurities are a problem in the present invention.

【0017】従来の熱処理は、屈折率の均質化を物理的
・化学的平衡により行なっている。この場合、石英ガラ
スを高温に保持することになるが、これは石英ガラス内
での1次不純物の拡散を促すだけでなく、熱処理時に新
たな2次不純物の混入および拡散、さらに、石英ガラス
内に対流を引き起こす可能性がある。つまり、主に物理
的・化学的平衡に依存する従来の均質化方法には、様々
な弊害が存在した。
In the conventional heat treatment, the homogenization of the refractive index is carried out by physical / chemical equilibrium. In this case, the quartz glass is kept at a high temperature, which not only promotes the diffusion of primary impurities in the quartz glass but also mixes and diffuses new secondary impurities during the heat treatment, and further Can cause convection to. That is, the conventional homogenization method which mainly depends on physical / chemical equilibrium has various adverse effects.

【0018】本発明者らは、屈折率の不均質分布を解消
する熱処理方法として、特に石英ガラスを高均質化する
方法について検討した。その結果、物理的・化学的平衡
を利用するだけではなく、石英ガラス内に一時的な応力
を発生させ、その力を利用することによって、屈折率の
高均質な光学用合成石英ガラスが得られることがわかっ
た。
The inventors of the present invention have examined a heat treatment method for eliminating the inhomogeneous distribution of the refractive index, in particular, a method for highly homogenizing quartz glass. As a result, not only physical / chemical equilibrium is used, but temporary stress is generated in the quartz glass, and by utilizing the force, synthetic quartz glass for optics with high refractive index is obtained. I understood it.

【0019】本発明において、熱処理時の石英ガラス内
に発生させる一時的な応力は保持温度を複数回上下させ
ることにより得る。この保持温度を複数回上下させるこ
とにより、保持温度を従来よりも低温に設定することが
可能となり、低温の熱処理で高均質な石英ガラスを得ら
れた。その保持温度の範囲は、歪点以上、昇華点(昇華
が問題にならない温度)以下である。
In the present invention, the temporary stress generated in the quartz glass during the heat treatment is obtained by raising and lowering the holding temperature a plurality of times. By raising and lowering this holding temperature a plurality of times, it became possible to set the holding temperature to a lower temperature than before, and a highly homogeneous quartz glass was obtained by heat treatment at a low temperature. The range of the holding temperature is from the strain point to the sublimation point (a temperature at which sublimation does not matter) or less.

【0020】歪がなくなるとされる歪点近くでは粘性流
動が起こり、諸物性が緩和される。このことから歪点近
くで熱処理することにより屈折率の不均質分布を除去す
ることが考えられるが、従来の熱処理方法では合成時の
熱履歴、特にΔn=1×10-6オーダーの屈折率の不均質
は歪点近くの設定温度では除去できなかった。そのた
め、本発明者らは、屈折率の不均質分布が、主に、歪に
ともなう不均質とそれ以外の不均質で構成されていると
考えた。そして、従来の熱処理でこの歪が関与していな
い局所的な不均質分布を除去し、高均質な石英ガラスが
得られるのは、高温・高圧の処理条件のみであった。
Viscous flow occurs near the strain point where the strain is said to disappear, and the physical properties are relaxed. From this fact, it is possible to remove the inhomogeneous distribution of the refractive index by heat treatment near the strain point, but in the conventional heat treatment method, the thermal history at the time of synthesis, especially the refractive index of Δn = 1 × 10 -6 order The inhomogeneity could not be removed at the set temperature near the strain point. Therefore, the present inventors considered that the inhomogeneous distribution of the refractive index is mainly composed of inhomogeneity due to strain and other inhomogeneities. Then, the conventional heat treatment removes the local non-homogeneous distribution in which the strain is not involved, and the highly homogeneous quartz glass can be obtained only under the high temperature and high pressure treatment conditions.

【0021】本発明の熱処理温度について言及する。石
英ガラスの歪点の圧力依存性については今のところ解明
されていないが、通常1025℃付近である。これに対し、
石英ガラスの昇華点は、圧力による変化が大きく、例え
ば、真空中あるいは大気圧であれば、1900℃〜2100℃で
ある。圧力を25気圧にすると昇華点は2500℃付近とな
る。このような高温・高圧条件下でも本発明の実施は可
能であるが、高温・高圧での熱処理は、2次不純物の混
入のみならず装置コスト面でのデメリットも大きいの
で、好ましくは、真空中あるいは大気圧である。
Reference will be made to the heat treatment temperature of the present invention. Although the pressure dependence of the strain point of quartz glass has not been clarified so far, it is usually around 1025 ° C. In contrast,
The sublimation point of quartz glass is largely changed by pressure, and is, for example, 1900 ° C. to 2100 ° C. in vacuum or at atmospheric pressure. When the pressure is 25 atm, the sublimation point is around 2500 ° C. The present invention can be carried out under such high temperature and high pressure conditions, but the heat treatment at high temperature and high pressure has a large demerit in terms of not only the mixing of secondary impurities but also the cost of the apparatus. Or atmospheric pressure.

【0022】したがって、これらを考慮して上限温度は
1750℃以下、下限温度は1100℃以上が望ましい。本発明
においては、保持温度を上下させるときの下限温度を歪
に伴う不均質が解消され得る温度に設定し、上限温度を
それ以外の不均質が解消され得る温度に設定する。これ
により、より効率的に均質化を行う。
Therefore, considering these, the upper limit temperature is
It is desirable that the temperature is 1750 ° C or lower and the lower limit temperature is 1100 ° C or higher. In the present invention, the lower limit temperature when raising and lowering the holding temperature is set to a temperature at which the inhomogeneity due to strain can be eliminated, and the upper limit temperature is set at a temperature at which other inhomogeneities can be eliminated. Thereby, homogenization is performed more efficiently.

【0023】石英ガラスの熱処理は、通常、結晶化(失
透)のため、1200〜1700℃の失透温度域では行うことが
できないとされている。しかしながら、本発明において
は、上限温度あるいは下限温度において一定温度での保
持、昇温後の保持および降温後の保持を行なわずに保持
温度に上限および下限を設定し、この温度を繰り返す。
これにより失透を防ぐことが可能となり、失透温度域で
も熱処理を行うことができる。
It is said that heat treatment of quartz glass cannot be carried out in the devitrification temperature range of 1200 to 1700 ° C. because of crystallization (devitrification). However, in the present invention, the holding temperature is set to the upper limit and the lower limit without holding at a constant temperature at the upper limit temperature or the lower limit temperature, holding after raising the temperature, and holding after lowering the temperature, and this temperature is repeated.
This makes it possible to prevent devitrification, and heat treatment can be performed even in the devitrification temperature range.

【0024】本発明の石英ガラスの製造方法では、屈折
率の均質性がΔn=1×10-4程度である屈折率の不均質
は取り除くことができない。屈折率の均質性がΔn=1
×10- 4程度である屈折率の不均質は長い均質化時間を要
するのに対し、本発明の温度域においては均質化時間が
長くなると急激に結晶化が進むので、石英ガラス母材と
してΔn=1×10-5程度の石英ガラスを用いることが好
ましい。これにより、屈折率のばらつきΔn=1×10-6
程度以下の光学的に均質な石英ガラスを得ることが可能
となる。
According to the method for producing quartz glass of the present invention, the inhomogeneity of the refractive index whose homogeneity of the refractive index is about Δn = 1 × 10 −4 cannot be removed. Refractive index homogeneity is Δn = 1
× 10 - whereas heterogeneous refractive index is about 4 takes a long homogenisation time, since a longer homogenization time in a temperature range abruptly crystallization of the present invention proceeds, [Delta] n as quartz glass preform It is preferable to use quartz glass of about 1 × 10 −5 . As a result, the refractive index variation Δn = 1 × 10 -6
It is possible to obtain silica glass that is optically homogeneous to a degree or less.

【0025】保持温度を上下させる回数(ここで、1回
は下限温度→上限温度→下限温度の1サイクルとする)
は、特に限定されるものではないが、必要以上の上下回
数は均質化時間を長引かせるものであり、不純物の混
入、吸収の発生を招くので好ましくない。さて、石英ガ
ラスを光リソグラフィー、高精度分光器、レーザー等の
精密光学機器の光学系に使用する場合の理想的な屈折率
分布は屈折率差が全く無いことである。しかしながら、
屈折率分布を持たない石英ガラスを製造することは、上
記熱処理を施しても非常に困難である。しかしながら、
屈折率分布の形によっては、レンズ形状や光学系組み立
て時の光軸の補正により屈折差を小さくすることが可能
である。この補正可能な屈折率分布は、石英ガラスを光
学素子として用いたときの入射光の光軸に対して極値が
ひとつで中央対称な屈折率分布のみである。
Number of times the holding temperature is raised and lowered (here, one cycle is the lower limit temperature → the upper limit temperature → the lower limit temperature)
Is not particularly limited, but unnecessarily increasing and decreasing the number of times prolongs the homogenization time, and it is not preferable because impurities are mixed and absorption occurs. By the way, when silica glass is used in an optical system of precision optical equipment such as photolithography, high-precision spectroscope, and laser, the ideal refractive index distribution is that there is no difference in refractive index. However,
It is very difficult to produce quartz glass having no refractive index distribution even if the above heat treatment is performed. However,
Depending on the shape of the refractive index distribution, it is possible to reduce the refractive difference by correcting the lens shape and the optical axis when assembling the optical system. This correctable refractive index distribution is only a centrally symmetric refractive index distribution having one extreme value with respect to the optical axis of incident light when quartz glass is used as an optical element.

【0026】そこで、本発明の熱処理時に石英ガラス母
材を100rpm以下で回転させる。これにより、回転
中心より等距離にある点は同一の熱履歴を受け、中央対
称な屈折率分布を得ることができる。回転数は任意に設
定可能であるが装置の構造およびそれにより得られる効
果を加味した場合、100rpm以下が現実的である。
Therefore, during the heat treatment of the present invention, the quartz glass base material is rotated at 100 rpm or less. Thereby, points equidistant from the center of rotation receive the same thermal history, and a centrally symmetric refractive index distribution can be obtained. The number of rotations can be set arbitrarily, but considering the structure of the device and the effects obtained thereby, 100 rpm or less is realistic.

【0027】さらに、上述した様に物理・化学的平衡を
利用するだけではなく、石英ガラス内に一時的な応力を
発生させ、その力を利用することにより、石英ガラス母
材が「入射光軸を含む断面に極値が3つ以上の屈折率分
布を持つ石英ガラス母材」であっても、本発明の熱処理
により「入射光軸を含む断面に極値がひとつで中央対称
な屈折率分布を持つ石英ガラス」に改質することができ
る。
Furthermore, as described above, not only the physical / chemical equilibrium is utilized, but a temporary stress is generated in the quartz glass, and the force is utilized to cause the quartz glass base material to "incident optical axis". Even in the case of a silica glass base material having a refractive index distribution with three or more extreme values in a cross section including “,” the heat treatment of the present invention “provides a single central extremal refractive index distribution with one extreme value in the cross section including the incident optical axis. Quartz glass with "can be modified.

【0028】また、本発明者らは特開5-116969号、石英
ガラスの製造方法において、「屈折率のばらつきΔn=
1×10-5 程度の光学的に不均質な石英ガラス」を、SiO2
の粉末または塊で作った母型の中で0〜10kg/cm2の加圧
下で熱処理することを特徴とする「Δn=1×10-6程度
以下の光学的に均質な石英ガラス」の製造方法を提案し
ている。この中で、熱処理後は、石英ガラス全体が均一
に降温していくことが望ましいが、降温速度が充分に遅
い場合でも石英ガラスの外側と内側で降温速度が違うた
め、降温後に温度分布ができ、それが屈折率分布として
現れることを開示した。特に厚み方向(光学素子として
用いるときの光軸方向)からみたときの石英ガラス周辺
部には等温線の本数は多くなり、この部分に屈折率のば
らつきの大きい変質層が形成されることを確認した。
Further, the inventors of the present invention described in JP-A-5-116969, "Manufacturing Method of Quartz Glass," Dispersion of Refractive Index Δn =
Optically inhomogeneous quartz glass of about 1 × 10 -5 ", SiO 2
Of “optically homogeneous quartz glass with Δn = 1 × 10 −6 or less”, characterized by heat treatment under a pressure of 0 to 10 kg / cm 2 in a matrix made of powder or lumps of Proposing a method. Among them, it is desirable that the temperature of the entire quartz glass be decreased uniformly after the heat treatment.However, even if the temperature decrease rate is sufficiently slow, the temperature decrease rate is different between the outside and the inside of the quartz glass, so the temperature distribution can be made after the temperature decrease. , That it appears as a refractive index profile. Especially when viewed from the thickness direction (optical axis direction when used as an optical element), it was confirmed that the number of isotherms increases in the peripheral part of the silica glass, and an altered layer with large variations in refractive index is formed in this part. did.

【0029】したがって、本発明では、この変質層の形
成すなわち屈折率の不均質分布をなくすために、下限温
度および上限温度において、石英ガラス内の温度分布が
均一になるまで温度を固定し(直径200mm、厚さ70mm程
度の石英ガラスであれば10min.程度)、降温速度も100
℃/H以下に設定することが好ましい。また、同特開5-1
16969号で提案したような、高純度のSiO2粉末、またはS
iO2粉末を溶融した塊で作った母型を用いて本発明の熱
処理を行うことにより、さらに屈折率の均質化が図れ
る。これは、母型を用いることにより、熱処理の降温時
の石英ガラス内の温度分布が少なくなり、温度分布に起
因する屈折率の不均質分布が解消されるからである。さ
らに、外型や雰囲気と直接触れさせずに熱処理を行うこ
とになるので、均質化とともに、石英ガラス内部からの
ガス放出、雰囲気からの石英ガラス内部へのガス拡散、
外型からの不純物の石英ガラス内への拡散防止が図れ
る。
Therefore, in the present invention, in order to eliminate the formation of this altered layer, that is, the inhomogeneous distribution of the refractive index, the temperature is fixed at the lower limit temperature and the upper limit temperature until the temperature distribution in the quartz glass becomes uniform (diameter). 200mm, about 70mm thick quartz glass, about 10min.), The cooling rate is 100
It is preferable to set the temperature to not more than ° C / H. In addition, Japanese Patent Laid-Open No. 5-1
High-purity SiO 2 powder or S, as proposed in 16969
By performing the heat treatment of the present invention using a master block made of a lump of iO 2 powder melted, the refractive index can be further homogenized. This is because the use of the matrix reduces the temperature distribution in the quartz glass when the temperature of the heat treatment is decreased, and eliminates the inhomogeneous distribution of the refractive index due to the temperature distribution. Furthermore, since heat treatment is performed without direct contact with the outer mold or atmosphere, homogenization, gas release from the interior of the quartz glass, gas diffusion from the atmosphere to the interior of the silica glass,
It is possible to prevent diffusion of impurities from the outer mold into the quartz glass.

【0030】熱処理時の雰囲気は、高温時に炉内で使用
されているカーボン部材に対して不活性であるHe、N2
Arもしくはその混合ガスなどを使用する必要があるが、
特に、石英ガラス中の水素濃度を高める必要がある場合
は、H2もしくはH2とHe、N2、Arとの混合ガスを使用す
る。加えて、母型を用いた熱処理においても母型が完全
に密閉されないことから、上記雰囲気が効果的である。
The atmosphere during the heat treatment is He, N 2 , which is inert to the carbon member used in the furnace at a high temperature,
It is necessary to use Ar or its mixed gas,
Especially, when it is necessary to increase the hydrogen concentration in the quartz glass, H 2 or a mixed gas of H 2 and He, N 2 , Ar is used. In addition, the above atmosphere is effective because the mother die is not completely sealed even in the heat treatment using the mother die.

【0031】また、本発明の二次的効果として、日本光
学硝子工業会規格(JOGIS-11-1975)2級(B級)程度
の脈理も消去することができる。
As a secondary effect of the present invention, striae of the grade 2 (class B) of Japan Optical Glass Industry Standard (JOGIS-11-1975) can be eliminated.

【0032】[0032]

【実施例】図2は、本実施例において用いられる石英ガ
ラスの製造装置の概略断面図である。石英ガラス母材1
はSiO2粉末またはSiO2粉末を溶融した塊の母型2の中に
置かれ、さらにカーボングラファイト製の外型3にセッ
トされた状態で5rpmで回転させながら加熱される。な
お、熱処理後に外型から母型が取り出せなくなることを
防ぐために、外型の内面にはカーボンファイバーフェル
ト6を設置した。処理炉は上下部と側部にヒータ4を有
し、加熱炉5全体は断熱層でおおわれている。
EXAMPLE FIG. 2 is a schematic sectional view of an apparatus for producing quartz glass used in this example. Quartz glass base material 1
Is placed in a master block 2 of SiO 2 powder or a melted mass of SiO 2 powder, and heated while rotating at 5 rpm while being set in an outer mold 3 made of carbon graphite. A carbon fiber felt 6 was provided on the inner surface of the outer die in order to prevent the mother die from being taken out of the outer die after the heat treatment. The processing furnace has heaters 4 in the upper and lower parts and side parts, and the entire heating furnace 5 is covered with a heat insulating layer.

【0033】試料形状は、全てφ150×t50の円筒
形を用いた。図1は本各実施例および比較例の熱処理時
の温度条件を模式的に示した図である。表1には、本各
実施例および比較例に使用した試料の熱処理前の品質
(矢印の左側)およびそれらの試料を表2に示した温度
条件により熱処理することにより得られた品質(矢印の
右側)を示した。表2のA〜Lの温度条件は、図1に示
した温度条件に対応するものである。屈折率の均質性
(測定領域内の屈折率のばらつき)については、測定領
域内の屈折率の最大値と最小値の差△n(PV値)で示
し、さらに、レンズとして使用した場合の光学性能に直
接影響を与える波面収差のRMS値(パワー成分補正
後)を示した。
The sample shape used was a cylinder of φ150 × t50. FIG. 1 is a diagram schematically showing temperature conditions during heat treatment in each of the examples and comparative examples. Table 1 shows the qualities of the samples used in each of the examples and comparative examples before the heat treatment (on the left side of the arrow) and the qualities obtained by heat-treating the samples under the temperature conditions shown in Table 2 (the arrow indicates (Right side). The temperature conditions A to L in Table 2 correspond to the temperature conditions shown in FIG. The homogeneity of the refractive index (dispersion of the refractive index within the measurement region) is indicated by the difference Δn (PV value) between the maximum value and the minimum value of the refractive index within the measurement region, and the optical property when used as a lens. The RMS value (after power component correction) of the wavefront aberration that directly affects the performance is shown.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】〔実施例1〕試料を表2の温度条件により
熱処理した。干渉計により屈折率分布を測定したとこ
ろ、△n(PV値)は初期値6.3×10-6から1×10-6以下
の0.7×10-6となった。また、母材の合成時の生じた屈
折率分布の極値は3個であったが上記条件で回転熱処理
したところ中央部のみの1個に減少し、さらに石英ガラ
スのインゴットの合成時の回転軸からオフセットして切
り出されたための中央非対称な屈折率分布は中央対称な
屈折率分布に補正された。極値が1個で中央対称な屈折
率分布ではパワー補正の効果が大きくなるためRMS値
(パワー成分補正後)も良化した。透過率の測定は、精
密に調整された分光光度計を用い、高精度に研磨された
10mm厚のテストピースの193nm内部透過率を測定し
たところ、熱処理後も99.9%が維持されていた。
Example 1 The sample was heat-treated under the temperature conditions shown in Table 2. When the refractive index distribution was measured by an interferometer, Δn (PV value) was changed from an initial value of 6.3 × 10 -6 to 0.7 × 10 -6 , which is 1 × 10 -6 or less. Moreover, the extreme value of the refractive index distribution generated during the synthesis of the base material was three, but when the rotary heat treatment was carried out under the above conditions, it was reduced to only one in the central part, and further the rotation during the synthesis of the quartz glass ingot was performed. The centrally asymmetric refractive index profile due to being cut off from the axis was corrected to a centrally symmetrical refractive index profile. The RMS value (after correction of the power component) is improved because the effect of power correction is large in the centrally symmetric refractive index distribution with one extreme value. The transmittance was measured using a precisely adjusted spectrophotometer, and the 193 nm internal transmittance of a 10 mm-thick test piece that was highly accurately polished was measured. As a result, 99.9% was maintained even after the heat treatment.

【0037】〔比較例1〕試料を表2の温度条件により
熱処理した。干渉計により屈折率分布を測定したとこ
ろ、△n(PV値)は十分良化しなかった。また、合成
時の生じた屈折率分布の極値は3個のままであり、屈折
率分布も中央非対称であった。このためRMS値(パワ
ー成分補正後)においてもパワー補正の効果が小さかっ
た。内部透過率は、2000℃という高温で長時間保持した
ため193nmでの10mm内部透過率は99.6%に低下し
た。
Comparative Example 1 The sample was heat-treated under the temperature conditions shown in Table 2. When the refractive index distribution was measured by an interferometer, Δn (PV value) was not sufficiently improved. In addition, the extreme values of the refractive index distribution generated at the time of synthesis remained three, and the refractive index distribution was also asymmetric in the center. Therefore, the effect of power correction was small even in the RMS value (after power component correction). Since the internal transmittance was kept at a high temperature of 2000 ° C. for a long time, the internal transmittance of 10 mm at 193 nm decreased to 99.6%.

【0038】〔実施例2〕試料を表2の温度条件により
熱処理した。熱処理温度の大半が結晶化温度域であるに
もかかわらず、上限下限温度での保持を行わなかったこ
とにより結晶化は見られなかった。干渉計により屈折率
分布を測定したところ、△n(PV値)は1×10-6以下
となった。また、合成時の生じた屈折率分布の極値は3
個から中央部のみの1個に減少し、中央対称な屈折率分
布に補正された。RMS値(パワー成分補正後)も良化
し、193nmでの10mm内部透過率も99.9%を維持し
た。
Example 2 A sample was heat-treated under the temperature conditions shown in Table 2. Although most of the heat treatment temperature was in the crystallization temperature range, no crystallization was observed because the temperature was not maintained at the upper and lower limit temperatures. When the refractive index distribution was measured by an interferometer, Δn (PV value) was 1 × 10 −6 or less. In addition, the extreme value of the refractive index distribution generated during synthesis is 3
The number was reduced from one to only one in the central portion, and the refractive index distribution was corrected to have central symmetry. The RMS value (after power component correction) also improved and the 10 mm internal transmittance at 193 nm also maintained 99.9%.

【0039】〔比較例2〕試料を表2の温度条件により
熱処理した。著しい結晶化により光学的な物性評価はで
きなかった。
Comparative Example 2 A sample was heat-treated under the temperature conditions shown in Table 2. Optical properties could not be evaluated due to remarkable crystallization.

【0040】[0040]

【発明の効果】以上のように、本発明の石英ガラスの製
造方法によれば、紫外光の高透過性と屈折率の高均質性
を備えた石英ガラスが得られる。また、従来、熱処理前
の石英ガラス母材にΔn=1×10-5程度の局所的な屈折
率の不均質分布が存在した場合は、2000℃以下の熱処理
では処理後にその局所的に不均質な屈折率分布が残存し
たのに対し、本発明の石英ガラスの製造方法は2000℃以
下でもその均質化が図れる。
As described above, according to the method for producing quartz glass of the present invention, quartz glass having high transmittance of ultraviolet light and high homogeneity of refractive index can be obtained. Conventionally, if there was a local inhomogeneous distribution of the refractive index of about Δn = 1 × 10 -5 in the quartz glass base material before the heat treatment, the heat treatment at 2000 ° C or below causes the local inhomogeneity in the refractive index. While the refractive index distribution remained, the method for producing quartz glass of the present invention can achieve homogenization even at 2000 ° C. or lower.

【0041】熱処理する石英ガラス母材に発生させる一
時的な応力は合成時にできた石英ガラス母材の屈折率の
不均質分布が局所的な不均質であっても、高温・高圧で
保持することなく低い保持温度を複数回上下させること
により行われる。本発明においては、高温・高圧での熱
処理が不要となり、温度、圧力などの処理条件の制御が
容易になる。熱処理中の石英ガラス内への不純物の拡散
を抑制できる。
Temporary stress generated in the quartz glass base material to be heat-treated should be maintained at high temperature and high pressure even if the inhomogeneous distribution of the refractive index of the quartz glass base material produced during synthesis is locally inhomogeneous. It is performed by raising and lowering the low holding temperature multiple times. In the present invention, heat treatment at high temperature and high pressure is unnecessary, and control of processing conditions such as temperature and pressure becomes easy. It is possible to suppress the diffusion of impurities into the quartz glass during the heat treatment.

【0042】また、高純度のSiO2粉末、または塊で作っ
た母型内で熱処理することにより、熱処理時の温度分布
を少なくし、外型であるカーボングラファイトとの反応
を抑制することができる。さらに、Δn=1×10-5程度
の局所的に不均質な屈折率分布をもつ石英ガラス母材を
用いても、屈折率のばらつきΔn=1×10-6程度以下の
光学的に均質な石英ガラスを製造することが可能とな
る。
Further, by performing heat treatment in a mother die made of high-purity SiO 2 powder or agglomerates, the temperature distribution during the heat treatment can be reduced and the reaction with carbon graphite as the outer die can be suppressed. . Furthermore, even if a silica glass base material having a locally inhomogeneous refractive index distribution of about Δn = 1 × 10 -5 is used, the dispersion of the refractive index is Δn = 1 × 10 -6 It becomes possible to manufacture quartz glass.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は実施例および比較例の熱処理時の温度
条件を模式的に示した図である。
FIG. 1 is a diagram schematically showing temperature conditions during heat treatment in Examples and Comparative Examples.

【図2】 本実施例において用いられる石英ガラスの製
造装置の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a quartz glass manufacturing apparatus used in this example.

【符号の説明】[Explanation of symbols]

1 石英ガラス母材 2 母型(SiO2) 3 外型 4 ヒーター 5 加熱炉 6 フェルト1 Quartz glass base material 2 Base mold (SiO 2 ) 3 Outer mold 4 Heater 5 Heating furnace 6 Felt

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平岩 弘之 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Hiraiwa 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】OH基を500ppm以上含有する石英ガラス母
材を、保持温度まで昇温して一定時間保持し、その後徐
々に降温する熱処理を行う石英ガラスの製造方法におい
て、前記保持温度を石英ガラスの歪点以上、昇華点以下
の範囲で複数回上下させることを特徴とする石英ガラス
の製造方法。
1. A method for producing quartz glass, wherein a quartz glass base material containing 500 ppm or more of OH groups is heated to a holding temperature, held for a certain period of time, and then heat-treated gradually to lower the holding temperature. A method for producing quartz glass, which comprises raising and lowering a plurality of times within a range from the strain point of the glass to the sublimation point thereof.
【請求項2】請求項1に記載の石英ガラスの製造方法に
おいて、前記熱処理の際に石英ガラス母材を100rpm以下
で回転することを特徴とする石英ガラスの製造方法。
2. The method for producing quartz glass according to claim 1, wherein the quartz glass base material is rotated at 100 rpm or less during the heat treatment.
【請求項3】請求項1に記載の石英ガラスの製造方法に
おいて、前記熱処理の際に石英ガラス母材を高純度SiO2
粉末またはSiO2 粉末を溶融した塊で作った母型に入れ
ることを特徴とする石英ガラスの製造方法。
3. The method for producing quartz glass according to claim 1, wherein the quartz glass base material is made of high-purity SiO 2 during the heat treatment.
A process for producing quartz glass, characterized in that the powder or SiO 2 powder is put into a matrix made of a molten mass.
【請求項4】請求項1に記載の石英ガラスの製造方法に
おいて、石英ガラス母材が「屈折率の均質性がΔn=1
×10-5程度以下の光学的に不均質な石英ガラス母材」で
あることを特徴とする「屈折率の均質性がΔn=1×10
-6程度以下の光学的に均質な石英ガラス」の製造方法。
4. The method for producing quartz glass according to claim 1, wherein the quartz glass base material has a “refractive index homogeneity Δn = 1.
× 10 -5 about less optically inhomogeneous quartz glass preform "feature that" the refractive index homogeneity Δn = 1 × 10 in that it is
-Method for producing "optically homogeneous quartz glass of about 6 or less".
【請求項5】請求項1に記載の石英ガラスの製造方法に
おいて、前記熱処理時の雰囲気はHe、N2、Arもしくはそ
れらの混合ガスであることを特徴とする石英ガラスの製
造方法。
5. The method for producing quartz glass according to claim 1, wherein the atmosphere during the heat treatment is He, N 2 , Ar or a mixed gas thereof.
【請求項6】請求項1に記載の石英ガラスの製造方法に
おいて、前記熱処理時の雰囲気はH2もしくはH2とHe、
N2、Arとの混合ガスであることを特徴とする石英ガラス
の製造方法。
6. The method for producing quartz glass according to claim 1, wherein the atmosphere during the heat treatment is H 2 or H 2 and He,
A method for producing quartz glass, which is a mixed gas of N 2 and Ar.
【請求項7】請求項1に記載の石英ガラスの製造方法に
おいて、石英ガラス母材が「入射光軸を含む断面に極値
が3つ以上の屈折率分布を持つ石英ガラス母材」である
ことを特徴とする「入射光軸を含む断面に極値がひとつ
で中央対称な屈折率分布を持つ石英ガラス」の製造方
法。
7. The method for producing silica glass according to claim 1, wherein the silica glass base material is “a silica glass base material having a refractive index distribution with three or more extreme values in the cross section including the incident optical axis”. A method of manufacturing "quartz glass having a centrally symmetric refractive index distribution with a single extreme value in the cross section including the incident optical axis".
【請求項8】請求項1に記載の石英ガラスの製造方法に
おいて、前記熱処理の保持温度の範囲が、1100〜1750℃
であることを特徴とする石英ガラスの製造方法。
8. The method for producing quartz glass according to claim 1, wherein the holding temperature range of the heat treatment is 1100 to 1750 ° C.
A method for producing quartz glass, characterized in that
JP6040226A 1994-03-11 1994-03-11 Production of quartz glass Pending JPH07247132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6040226A JPH07247132A (en) 1994-03-11 1994-03-11 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6040226A JPH07247132A (en) 1994-03-11 1994-03-11 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPH07247132A true JPH07247132A (en) 1995-09-26

Family

ID=12574842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6040226A Pending JPH07247132A (en) 1994-03-11 1994-03-11 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPH07247132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943586A2 (en) * 1998-01-23 1999-09-22 Nikon Corporation Synthetic silica glass and its manufacturing method
WO2001012566A1 (en) * 1999-08-12 2001-02-22 Nikon Corporation Method for preparation of synthetic vitreous silica and apparatus for heat treatment
US6442973B1 (en) 1995-01-06 2002-09-03 Nikon Corporation Synthetic silica glass and its manufacturing method
JP2003292328A (en) * 2002-04-01 2003-10-15 Shin Etsu Chem Co Ltd Synthetic quartz glass and heat treatment method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442973B1 (en) 1995-01-06 2002-09-03 Nikon Corporation Synthetic silica glass and its manufacturing method
EP0943586A2 (en) * 1998-01-23 1999-09-22 Nikon Corporation Synthetic silica glass and its manufacturing method
EP0943586A3 (en) * 1998-01-23 2000-01-19 Nikon Corporation Synthetic silica glass and its manufacturing method
WO2001012566A1 (en) * 1999-08-12 2001-02-22 Nikon Corporation Method for preparation of synthetic vitreous silica and apparatus for heat treatment
US6732546B1 (en) 1999-08-12 2004-05-11 Nikon Corporation Product method of synthetic silica glass and thermal treatment apparatus
KR100719817B1 (en) * 1999-08-12 2007-05-18 가부시키가이샤 니콘 Method for preparation of synthetic vitreous silica and apparatus for heat treatment
JP2003292328A (en) * 2002-04-01 2003-10-15 Shin Etsu Chem Co Ltd Synthetic quartz glass and heat treatment method therefor

Similar Documents

Publication Publication Date Title
US20040162211A1 (en) Fused silica having high internal transmission and low birefringence
JP2007182367A (en) Titania-doped quartz glass, euv lithographic member and photomask substrate and making method for titania-doped quartz glass
JP2001089170A (en) Optical silica glass member for f2 excimer laser transmission and method for producing the same
KR20120115952A (en) Titania-doped quartz glass and making method
EP1033350B1 (en) Synthetic quartz glass member for use in ArF excimer laser lithography
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
US20060081008A1 (en) Method for manufacturing synthetic silica glass substrate for photomask and synthetic silica glass substrate for photomask manufactured thereby
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
US6508084B1 (en) Method for producing optical quartz glass for excimer lasers and vertical-type heating furnace
JP2004123420A (en) Synthetic silica glass member for optical use and its manufacturing process
JP5486774B2 (en) Synthetic quartz glass
JPH07247132A (en) Production of quartz glass
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JP2814795B2 (en) Manufacturing method of quartz glass
JP2985540B2 (en) Manufacturing method of quartz glass
JP4114039B2 (en) Synthetic quartz glass
JP2000290026A (en) Optical quartz glass member for excimer laser
US6266978B1 (en) Method for producing synthetic quartz glass for use in ArF excimer laser lithography
JP5359044B2 (en) Synthetic quartz glass and method for producing synthetic quartz glass
EP1321439B1 (en) Method and furnace for producing an optical quartz glass
US20030064877A1 (en) Fused silica having high internal transmission and low birefringence
JP3163857B2 (en) Method for producing quartz glass and quartz glass member produced thereby
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JPH10167735A (en) Apparatus for production of synthetic quartz glass
JP3965552B2 (en) Method for producing synthetic quartz glass