JPS62256762A - Carbonaceous powder for oxidation-resistant high density high strength carbon material and manufacture - Google Patents

Carbonaceous powder for oxidation-resistant high density high strength carbon material and manufacture

Info

Publication number
JPS62256762A
JPS62256762A JP61313716A JP31371686A JPS62256762A JP S62256762 A JPS62256762 A JP S62256762A JP 61313716 A JP61313716 A JP 61313716A JP 31371686 A JP31371686 A JP 31371686A JP S62256762 A JPS62256762 A JP S62256762A
Authority
JP
Japan
Prior art keywords
weight
parts
quinoline
carbonaceous
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61313716A
Other languages
Japanese (ja)
Other versions
JPH0559865B2 (en
Inventor
勝博 長山
福田 典良
高橋 祥介
長沢 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPS62256762A publication Critical patent/JPS62256762A/en
Publication of JPH0559865B2 publication Critical patent/JPH0559865B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はるつぼ、シール材、原子炉用遮蔽材、ロケット
・ジェットエンジン用のノズルなどの高密度・高強度に
加え、耐酸化性が要求される分野で使用される炭素材料
用炭素質粉末の組成と製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to crucibles, sealing materials, shielding materials for nuclear reactors, nozzles for rocket and jet engines, etc., which require high density and high strength as well as oxidation resistance. The present invention relates to the composition and manufacturing method of carbonaceous powder for carbon materials used in the field of carbon materials.

〈従来技術とその問題点〉 炭素材料は高温における耐熱性(非酸化雰囲気)、耐薬
品性、良導電性、軽量性、潤滑性更には中性子減速能性
等極めて優れた特性を有しているため、産業上の利用分
野で使用されている。しかしながら、高密度・高強度化
が困難であることに加えて、酸化雰囲気においては容易
に酸化劣化するといった欠点を有しているため、その用
途が限られてくるといった面も存在している。
<Prior art and its problems> Carbon materials have extremely excellent properties such as heat resistance at high temperatures (non-oxidizing atmosphere), chemical resistance, good electrical conductivity, lightness, lubricity, and neutron moderation ability. Therefore, it is used in industrial applications. However, in addition to being difficult to increase density and strength, it also has the disadvantage of being easily oxidized and deteriorated in an oxidizing atmosphere, which limits its use.

こうした炭素材料の本質的な問題点を解消するために、
近年めざましい改良、研究が進められている。例えば、
炭素材料の高密度・高強度化といった観点からみれば、
従来炭素材料か伝統的に骨材コークスとバインダーとし
てのピッチ類を混ネッ・粉砕後、焼成、黒鉛化すること
により製造されていたのに対し、近年バインダーを使用
せずに高密度・高強度炭素材料を製造しようとする方法
が提案されている。
In order to solve these essential problems of carbon materials,
In recent years, remarkable improvements and research have been made. for example,
From the perspective of increasing the density and strength of carbon materials,
In the past, carbon materials were traditionally produced by mixing aggregate coke and pitch as a binder, grinding, firing, and graphitizing, but in recent years, high density and high strength materials have been produced without the use of binders. Methods have been proposed to attempt to produce carbon materials.

例えば特開昭49−2379号にみられるような光学的
異方性小球体を利用する方法あるいは特開昭54−64
096号における摩砕した生コークスを利用する方法等
がその例である。館者の従来法による炭素材料ではカサ
比重l、65〜1.75g/crn’、+ff+ Lず
強度400〜600kg/crn’が程度がせいぜいで
あったのに対し、後者の新規製造方法ではカサ比重1.
9〜2.0g/cば、曲げ強度800〜1000 kg
/crn2の高密度・高強度化が可能であり注目を浴び
ている。このように炭素材料の高密度・高強度化は著し
い進歩が認められるが、該高密度・高強度の炭素材料で
あってもその耐酸化性の点では、一般炭素材に比べ若干
優れているとはいえ、500℃以上の空気中では容易に
酸化し、その耐酸化性を改善向上させることは重要な課
題であった。
For example, a method using optically anisotropic small spheres as seen in JP-A-49-2379, or JP-A-54-64.
An example is the method using ground raw coke in No. 096. The carbon material manufactured by Kan's conventional method had a bulk specific gravity l of 65 to 1.75 g/crn', +ff+ L and a strength of 400 to 600 kg/crn' at best, whereas the latter's new manufacturing method had a bulk Specific gravity 1.
9~2.0g/c, bending strength 800~1000kg
It is possible to increase the density and strength of /crn2, and it is attracting attention. In this way, remarkable progress has been made in increasing the density and strength of carbon materials, but even these high-density and high-strength carbon materials are slightly superior to general carbon materials in terms of oxidation resistance. However, it is easily oxidized in air at temperatures above 500°C, and improving its oxidation resistance has been an important issue.

また、等方性・高密度・高強度・炭素材料原料粉の製造
方法としては、ピッチを熱処理後、生成した光学的異方
性小球体を溶剤抽出・力焼する方法(特開昭54−15
7791号)が提案されている。光学的異方性小球体自
身は異方性であるが、球形であるため成型後、成型体と
しては等方性となり、また自己焼結性を有しているため
、バインダーを使用することなく等方性・高密度・高強
度の炭素材料を与える。
In addition, as a method for producing isotropic, high-density, high-strength, carbon material raw material powder, after heat-treating the pitch, the generated optically anisotropic small spheres are extracted with a solvent and calcined (Japanese Unexamined Patent Application Publication No. 1983-1999). 15
No. 7791) has been proposed. Although the optically anisotropic small spheres themselves are anisotropic, their spherical shape makes them isotropic after molding, and they have self-sintering properties, so they can be molded without the use of a binder. Provides isotropic, high-density, and high-strength carbon materials.

耐酸化性に優れた高密度・高強度炭素材料の製造法とし
ては即ち上述した摩砕生コークスにB、C(炭化ホウ素
) 、 5iC(炭化ケイ素)混合物を配合後成型・焼
成する方法(特開昭59−131576号)、光学的異
方性小球体に炭化ホウ素を混合後、成型・焼成する方法
(特願昭60−248557号)などが提案されている
A method for producing a high-density, high-strength carbon material with excellent oxidation resistance is a method of blending a mixture of B, C (boron carbide), and 5iC (silicon carbide) with the above-mentioned ground raw coke, followed by molding and firing (special method). Japanese Patent Application No. 60-248557) has been proposed, in which boron carbide is mixed into optically anisotropic small spheres and then molded and fired.

又一方で炭素材料の表面にセラミックスの膜をコーティ
ングする方法、更にはリン酸化合物、あるいはシリカ系
溶液を炭素材料内部に含浸させる方法が実際に実施され
ている。
On the other hand, a method of coating the surface of a carbon material with a ceramic film, and a method of impregnating the inside of the carbon material with a phosphoric acid compound or a silica-based solution are actually practiced.

しかしながら摩砕コークスを利用する方法においては、
生コークスを摩砕し、自己焼結性を発現させ、セラミッ
クスと均一に混合することに極めて長時間を有すること
及び中心となる炭素質が極めて結晶性の悪い摩砕生コー
クスのみに限られること及び生コークス自身が600〜
1000℃の温度範囲で急激に収縮を示すために大型ブ
ロックを安定して製造することが困難である等の問題点
を有していた。
However, in the method using ground coke,
It takes an extremely long time to grind raw coke, develop self-sintering properties, and mix it uniformly with ceramics, and the core carbonaceous material is limited to only ground raw coke with extremely poor crystallinity. And the raw coke itself is 600~
It has had problems such as rapid shrinkage in the temperature range of 1000°C, making it difficult to stably manufacture large blocks.

一方炭素材料表面にセラミックスをコーティングする方
法ではコーティングのむらあるいは炭素材料とセラミッ
クスとの熱膨張係数の違いにより容易に剥離する等の問
題を有している。更には含浸法によれば高密度・高強度
の炭素材料では気孔径、気孔率か小さいため、内部まで
均一に含浸させることが難しく耐酸化性の向上は表面付
近に限られてしまうといった欠点を有する。
On the other hand, the method of coating the surface of a carbon material with ceramics has problems such as easy peeling due to uneven coating or a difference in coefficient of thermal expansion between the carbon material and the ceramics. Furthermore, the impregnation method has the disadvantage that the pore size and porosity of high-density, high-strength carbon materials are small, making it difficult to uniformly impregnate the inside, and that the improvement in oxidation resistance is limited to the vicinity of the surface. have

〈発明の目的〉 本発明の目的は、セラミックスの種類、炭素質の種類に
かかわらず、高密度・高強度で耐酸化性に優れた炭素材
料を工業的に安定して製造出来るセラミックスを含む炭
素質粉末および該炭素質粉末の経済的な製造方法を提供
するにある。
<Objective of the Invention> The object of the present invention is to produce a carbon material containing ceramics that can industrially stably produce a carbon material with high density, high strength, and excellent oxidation resistance, regardless of the type of ceramics or the type of carbonaceous material. The present invention provides a carbonaceous powder and an economical method for producing the carbonaceous powder.

〈発明の構成〉 本発明等の研究によればセラミックスを含む耐酸化性に
優れた炭素材料を製造し得る炭素質粉末の組成は100
重量部の炭素質に対し1〜50wt%のセラミックスを
含み炭素質中のキノリン可溶分く以下QS成分という)
の量が炭素質中のキノリン不溶分(以下Ql成分という
)100重量部に対し10〜50重量部であってかつキ
ノリン可溶分中のベンゼン不溶分(以下Bl成分という
)とベンゼン可溶分(以下BS成分という)の比率がベ
ンゼン不溶分(Bl成分)100重量部に対しベンセン
可溶分(BS成分)5〜30重量部であることが最適で
あることがわかった。
<Structure of the Invention> According to the research of the present invention, etc., the composition of carbonaceous powder that can produce carbon materials with excellent oxidation resistance including ceramics is 100%.
The quinoline-soluble portion of the carbonaceous material contains 1 to 50 wt% of ceramics based on the weight of the carbonaceous material (hereinafter referred to as QS component)
The amount of is 10 to 50 parts by weight per 100 parts by weight of quinoline insoluble matter (hereinafter referred to as Ql component) in the carbonaceous material, and the benzene insoluble matter (hereinafter referred to as Bl component) and benzene soluble component in the quinoline soluble matter. (hereinafter referred to as BS component) was found to be optimal in a ratio of 5 to 30 parts by weight of benzene soluble component (BS component) to 100 parts by weight of benzene insoluble component (Bl component).

上記の耐酸化性に優れた高密度・高強度炭素材料用炭素
質粉末は以下の方法により製造することができる。
The above-mentioned carbonaceous powder for high-density and high-strength carbon materials having excellent oxidation resistance can be produced by the following method.

(1)100重量部の炭素質に対し1〜50wt%のセ
ラミックスを含み、炭素質中のキノリン可溶分の量か炭
素質中のキノリン不溶分100重量部に対し、10〜5
0重量部であフてかつキノリン可溶分中のベンゼン不溶
分とベンセン可溶分の比率がベンゼン不溶分100重量
部に対しベンゼン可溶分5〜30重量部である耐酸化性
に優れた高密度・高強度炭素材料用炭素質粉末を製造す
るにあたり、タール・ピッチ類にセラミックスを添加し
て充分撹拌後、タール・ピッチ類に対しキノリンよりも
抽出力の弱い溶剤を原料タール・ピッチ類100重量部
に対し200〜1000重量部使用して抽出濾過操作を
行って炭素質粉末を得ることを特徴とする耐酸化性に優
れた高密度・高強度炭素材料用炭素質粉末の製造方法。
(1) Contains 1 to 50 wt% of ceramics based on 100 parts by weight of carbonaceous material, and the amount of quinoline soluble content in carbonaceous material is 10 to 50% by weight per 100 parts by weight of quinoline insoluble content in carbonaceous material.
0 parts by weight, and the ratio of benzene-insoluble to benzene-soluble in the quinoline-soluble content is 5 to 30 parts by weight per 100 parts by weight of benzene-insoluble. Excellent oxidation resistance. In producing carbonaceous powder for high-density and high-strength carbon materials, ceramics are added to tar and pitch, and after thorough stirring, a solvent that has a weaker extraction power than quinoline for tar and pitch is added to the raw material tar and pitch. A method for producing a carbonaceous powder for a high-density and high-strength carbon material having excellent oxidation resistance, which comprises using 200 to 1000 parts by weight per 100 parts by weight and performing an extraction filtration operation to obtain a carbonaceous powder.

(2)100重量部の炭素質に対し1〜50wt%のセ
ラミックスを含み、炭素質中のキノリン可溶分の量が炭
素質中のキノリン不溶分100重量部に対し、10〜5
0重量部であってかつキノリン可溶分中のベンゼン不溶
分とベンゼン可溶分の比率がベンゼン不溶分100重量
部に対しベンゼン可溶分5〜30重量部である耐酸化性
に優れた高密度・高強度炭素材料用炭素質粉末を製造す
るにあたり、タール・ピッチ類にセラミックスを添加し
て充分撹拌後、さらに500℃以下の温度で加熱処理し
、次いでタール・ピッチ類に対しキノリンよりも抽出力
の弱い溶剤を原料タール・ピッチ類100重量部に対し
200〜1000重量部使用して抽出・−過操作を行っ
て炭素質粉末を得ることを特徴とする耐酸化性に優れた
高密度・高強度炭素材料用炭素質粉末の製造方法。
(2) Contains 1 to 50 wt% of ceramics based on 100 parts by weight of carbonaceous material, and the amount of quinoline soluble content in the carbonaceous material is 10 to 50% by weight per 100 parts by weight of quinoline insoluble content in the carbonaceous material.
0 parts by weight, and the ratio of benzene-insoluble to benzene-soluble in the quinoline-soluble content is 5 to 30 parts by weight per 100 parts by weight of benzene-insoluble. In producing carbonaceous powder for high-density and high-strength carbon materials, ceramics are added to tar and pitch, thoroughly stirred, and then heat-treated at a temperature of 500°C or less. High density with excellent oxidation resistance characterized by obtaining carbonaceous powder by performing extraction and over-operation using 200 to 1000 parts by weight of a solvent with weak extraction power per 100 parts by weight of raw material tar/pitch.・Production method of carbonaceous powder for high-strength carbon material.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明においては、炭素質としてタール・ピッチ類を用
いる。ここでいうタール・ピッチ類とピッチ単独体のみ
ならず、後に詳述するQ!酸成分石炭系あるいは石油系
のコークス、光学的異方性小球体など)を付加せしめた
タール・ピッチを広く意味するものである。
In the present invention, tar pitch is used as the carbonaceous material. Not only tar/pitch and pitch alone, but also Q! It broadly refers to tar pitch to which acid components (coal-based or petroleum-based coke, optically anisotropic spherules, etc.) have been added.

本発明者等は炭素質粉末あるいはセラミックスを含む炭
素質粉末の種々の焼結機構を詳細に研究した結果、炭素
質粉末の焼結は炭素質中のキノリン不溶分(Ql成分)
のまわりに均一に分散したキノリン可溶分(QS成分)
が成形体の焼成時に若干軟化溶融過程をへて、キノリン
不溶分(Ql成分)間に強い接着性を発現することによ
り進むことを発見した。ここで炭素質中のキノリン不溶
分(Ql成分)とは、石油系あるいは石炭系コークス更
に光学的異方性小球体等を意味し、骨材成分とみなすこ
とができる。
As a result of detailed research into various sintering mechanisms of carbonaceous powder or carbonaceous powder containing ceramics, the present inventors found that sintering of carbonaceous powder is caused by the quinoline insoluble content (Ql component) in the carbonaceous powder.
Quinoline soluble component (QS component) uniformly dispersed around
It was discovered that this progresses by developing strong adhesive properties between the quinoline insoluble components (Ql component) after passing through a slight softening and melting process during firing of the molded body. Here, the quinoline insoluble content (Ql component) in carbonaceous material means petroleum-based or coal-based coke, optically anisotropic small spheres, etc., and can be regarded as an aggregate component.

しかも、キノリン可溶分(QS成分)が焼成過程で軟化
溶融するためには、若干のBS成分が必要であり、その
比率はQS成分中のBI酸成分通常β成分と呼ばれる)
100重量部に対し5重量面+11 L講りIV韮づ仁
zi晶畳り♂へI4  岸Jし「10中ムぞ高く優れた
粘結性を有するといわれているが、BS成分が全く存在
しない系においてはβ成分は全く軟化溶融せず骨材成分
間に強固な接着を発現しえない。ところが若干のBS成
分が存在する系においてはBS成分が溶剤的な役割をは
たしてβ成分は容易に焼成過程で軟化溶融し、骨材成分
間に強固な接着を発現する。BS成分は炭化収率が低く
、大きな粘結力を有しないといわれているが、このよう
にβ成分の粘結力発現に大きな役割をはたす。
Moreover, in order for the quinoline soluble content (QS component) to soften and melt during the firing process, a small amount of BS component is necessary, and the ratio of the BI acid component in the QS component is usually called the β component)
For 100 parts by weight, 5 weight + 11 In a system where there is no BS component, the β component does not soften or melt at all and cannot form strong adhesion between the aggregate components.However, in a system where some BS component is present, the BS component acts as a solvent and the β component is easily bonded. During the firing process, the BS component softens and melts, creating strong adhesion between the aggregate components.The BS component has a low carbonization yield and is said to not have large cohesive strength. It plays a major role in the expression of force.

一方BS成分の量があまり増加し過ぎると、QS成分の
系の流動度が増加し、炭素材料製造時に成形体に割れや
膨れ現象を生じやすいことに加え、成形体焼成時に多量
の揮発分を発生し、焼成体に多量の気孔を生成し、高密
度・高強度化が困難になるため、BS成分の存在量とし
てはβ成分(即ちQS成分中のBl成分)100重量部
に対し30重量部以下としなければならない。
On the other hand, if the amount of the BS component increases too much, the fluidity of the QS component system increases, which tends to cause cracking and blistering phenomena in the molded body during carbon material production, and also causes a large amount of volatile matter to be generated during firing of the molded body. The amount of BS component present is 30 parts by weight per 100 parts by weight of the β component (i.e. Bl component in the QS component). It must be below the department.

更にQS成分の量としては、QS成分が骨材成分の周囲
に均一に分散した系では骨材成分(即ち炭素質中のQ1
成分)100重量部に対し!0ffi量部以」二あれば
充分であり、一方501i部をMえると、全体的に揮発
分が増加し、焼成体に割わ、膨わが起り易くなる。
Furthermore, in a system where the QS component is uniformly dispersed around the aggregate component, the amount of QS component (i.e. Q1 in the carbonaceous material) is
Ingredients) per 100 parts by weight! It is sufficient if the amount is less than 0ffi parts.On the other hand, if it exceeds 501i parts, the volatile content increases as a whole, and the fired product is more likely to crack and swell.

こうした炭素質に対するセラミックスの添加量は1〜5
0wt%、好ましくは1〜20W[%である。セラミッ
クスの添加量が1%未満の場合には高温での充分な耐酸
化性が期待できず、一方50wt%を趙こる場合にはセ
ラミックス粒子が炭素質骨材粒子の接着を阻害するので
高強度の炭素材料が製造できない。
The amount of ceramic added to such carbonaceous material is 1 to 5
0wt%, preferably 1 to 20W[%. If the amount of ceramic added is less than 1%, sufficient oxidation resistance at high temperatures cannot be expected, while if it is added 50wt%, the ceramic particles will inhibit the adhesion of the carbonaceous aggregate particles, resulting in high strength. carbon materials cannot be manufactured.

添加されるセラミックスの種類としては5iC1B、C
,Si、BN等あるいはこれらの混合物が効果的である
。又セラミックスあるいは石油系コークス、石炭系コー
クス、光学的異方性小球体などの骨材成分の粒径は得ら
れる炭素材料の特性に影晋を及ぼすので、細かな粒子で
あることが望ましく、通常20μm(好ましくは10μ
m)以下であることが望ましい。こうして得られたセラ
ミックスを含む炭素質粉末であれば、これをもはやバイ
ンダーを添加する必要もなくそのまま成形焼成、必要に
応じ黒鉛化を行うことにより、曲げ強度800〜120
0kg/crn’で耐酸化性に優れた炭素材料を得るこ
とができる。
The types of ceramics added are 5iC1B, C
, Si, BN, etc. or a mixture thereof are effective. In addition, the particle size of aggregate components such as ceramics, petroleum coke, coal coke, optically anisotropic small spheres, etc. affects the properties of the obtained carbon material, so fine particles are desirable, and usually 20μm (preferably 10μm
m) Desirably the following. The carbonaceous powder containing ceramics obtained in this way can be shaped and fired as it is without the need to add a binder, and graphitized if necessary to achieve a bending strength of 800 to 120.
A carbon material with excellent oxidation resistance can be obtained at 0 kg/crn'.

更に該セラミックスを含む炭素質粉末を工業的に安定し
て製造し得る製造方法を以下に詳細に説明する。
Further, a manufacturing method capable of industrially stably manufacturing the carbonaceous powder containing the ceramics will be described in detail below.

上述した如く、該セラミックスを含む炭素質粉末はセラ
ミックス及び炭素質粉末中のQI酸成分骨材成分)のま
わりに粘結成分であるQS成分が均一に分散しているこ
とが重要である。従って従来の粉状の骨材成分と粘度の
高い粘結成分を所定量混ネッする方法では多大な動力と
長時間を要するし、それをもってしても満足する分散を
得るには困難な面がある。
As mentioned above, it is important that the ceramic-containing carbonaceous powder has the QS component, which is a caking component, uniformly dispersed around the ceramics and the QI acid component (aggregate component) in the carbonaceous powder. Therefore, the conventional method of mixing a predetermined amount of powdered aggregate components and highly viscous viscous components requires a large amount of power and a long time, and even with that, it is difficult to obtain a satisfactory dispersion. be.

本発明者等は粘度の低いタール・ピッチ類に対し所定量
のセラミックスさらにはコークス(石油系及び石炭系コ
ークス)、光学的異方性小球体などの骨材成分を添加し
、充分撹拌混合後、キノい溶剤を使用し溶剤抽出を行う
ことにより所望のセラミックスを含む炭素質粉末が製造
できることを見い出した。
The present inventors added a predetermined amount of ceramics, coke (petroleum-based and coal-based coke), optically anisotropic small spheres, and other aggregate components to low-viscosity tar and pitch, and after thorough stirring and mixing. It has been discovered that carbonaceous powder containing desired ceramics can be produced by solvent extraction using a solid solvent.

使用する溶剤としては、ピッチに対してキノリンよりも
抽出の弱いベンゼン、トルエン、ピリジンあるいはター
ル軽油、タール中油等が可能である。残存するQS成分
の量及び組成(BI酸成分BS成分の比率)は使用する
溶剤の種類、使用量、抽出回数、温度、時間等を選択す
ることにより制御できる。通常、使用する溶剤の量が増
加すると残存するQS成分の量は増加し、一方でQS成
分中のBS成分は低下する傾向を示す。又抽出回数が増
加すると、QS成分の量及びQS成分中のBS成分は低
下する傾向を示す。
Possible solvents include benzene, toluene, pyridine, tar light oil, tar medium oil, etc., which are weaker in extracting pitch than quinoline. The amount and composition of the remaining QS component (ratio of BI acid component to BS component) can be controlled by selecting the type of solvent used, the amount used, the number of extractions, temperature, time, etc. Generally, as the amount of solvent used increases, the amount of the remaining QS component tends to increase, while the BS component in the QS component tends to decrease. Furthermore, as the number of extractions increases, the amount of QS components and the BS component in the QS components tend to decrease.

通常溶剤使用量は原料タール・ピッチ類100重量部に
対し200重量部〜1000重量部、抽出回数は1〜3
回が適当である。この範囲内で溶剤を使用し、抽出を行
えば、所期の組成の炭素質粉末を得ることができる。
Usually the amount of solvent used is 200 parts by weight to 1000 parts by weight per 100 parts by weight of raw material tar/pitch, and the number of extractions is 1 to 3 times.
times is appropriate. If extraction is performed using a solvent within this range, a carbonaceous powder with the desired composition can be obtained.

V桔抽出操作を4〒う前r セラミ−14フ京らrはコ
ークス、光学的異方性小球体などの骨材成分を含むター
ル・ピッチ類を500℃以下の温度で熱処理することは
、コークスなどの骨材成分、セラミックスと粘結成分で
あるQS成分の親和性を増加し、かつQS成分の量及び
組成を制御するうえで効果的である。500℃を越す熱
処理はコークス化が急速に進行し、QS成分が消失する
ために避けなくてはならない。一方、400〜500℃
の熱処理温度においては、光学的異方性小球体の生成を
見るが既述したごとく該小球体もQ!酸成分みなすこと
ができる。
4 times before performing the extraction operation Cerami-14 Fukyo et al. Heat treating tar and pitch containing aggregate components such as coke and optically anisotropic spherules at temperatures below 500°C It is effective in increasing the affinity of the QS component, which is a viscous component, with aggregate components such as coke and ceramics, and controlling the amount and composition of the QS component. Heat treatment exceeding 500°C must be avoided because coking progresses rapidly and the QS component disappears. On the other hand, 400-500℃
At heat treatment temperatures of It can be considered an acid component.

更に工業的により安定して耐酸化性を有する炭素材料を
製造するためには、タール・ピッチ類に対してセラミッ
クスさらには骨材成分の添加撹拌、溶剤抽出あるいはセ
ラミックスさらには骨材成分の添加撹拌、加熱処理、溶
剤抽出を経て得た本発明におけるセラミックスを含む炭
素質粉末を実質的に酸素のない雰囲気下で200〜50
0℃で力位処理することが効果的であることを発見した
。即ち、該炭素質粉末を200〜500℃で力位処理す
ることはQS成分中の低揮発分をQS成分の粘結力を消
失することなく除去することができる。200℃以下の
温度では揮発分の除去効果を期待できず、500℃を越
すと急速にQS成分の粘結力が消失するため、力位処理
温度としては200〜500℃の範囲を選定しなければ
ならない。
Furthermore, in order to industrially produce carbon materials that are more stable and have oxidation resistance, it is necessary to add and stir ceramics or even aggregate components to tar/pitch, solvent extraction, or add and stir ceramics or aggregate components. The carbonaceous powder containing the ceramics of the present invention obtained through heat treatment and solvent extraction is heated to 200 to 50% in an atmosphere substantially free of oxygen.
It has been discovered that force treatment at 0°C is effective. That is, by subjecting the carbonaceous powder to a force position treatment at 200 to 500° C., the low volatile content in the QS component can be removed without losing the cohesive strength of the QS component. If the temperature is below 200°C, no effect of removing volatile matter can be expected, and if the temperature exceeds 500°C, the cohesive force of the QS component will rapidly disappear, so the force treatment temperature must be selected in the range of 200 to 500°C. Must be.

この力位処理は炭素質粉末中のQS成分量がQl成分1
00重量部に対し、30〜50重量部あるいはQS成分
中のBS成分の量がBl成分の100重量部に対し20
〜30重量部である場合により効果的である。即ち該組
成となるようなセラミックスを含む炭素質粉末は、大型
の炭素材料や成形体の焼成速度を速くした場合には、焼
成体に割れや膨わが発生しやすい傾向となり、工業的な
面で問題となるが、力位処理により容易に炭素材料を得
ることができる。
In this force position treatment, the amount of QS component in the carbonaceous powder is 1
00 parts by weight, or the amount of BS component in the QS component is 20 parts by weight relative to 100 parts by weight of the Bl component.
It is more effective when the amount is 30 parts by weight. In other words, carbonaceous powders containing ceramics having the above composition tend to crack or bulge in the fired bodies when the firing speed of large carbon materials or molded bodies is increased, and this is a problem from an industrial perspective. Although this poses a problem, carbon materials can be easily obtained by force position treatment.

該力位処理に際してQS成分の一部がQI化する反応が
起るが、該QS成分からのQl成分も依然として強い粘
結力を有しており高密度・高強度の炭素材料を製造する
ことが可能である。
During the force treatment, a reaction occurs in which a part of the QS component becomes QI, but the Ql component from the QS component still has strong cohesive strength, making it possible to produce a high-density and high-strength carbon material. is possible.

以下に本発明を具体的な実施例でもって説明する。The present invention will be explained below with reference to specific examples.

〈実施例〉 (実施例1) 軟化点60℃のタール・ピッチに、202オートクレー
ブを使用して、約10μmに粉砕した84C及び石油系
コークスをそれぞれ2wt%、20wt%添加し、15
0℃の温度下で撹拌、混合した。該タール・ピッチを3
倍量のタール中油(沸点範囲、140〜270℃)を使
用して120℃の温度で2時間抽出後、f過操作を行っ
た。f過残留物を軽くアセトンで洗浄後、真空下で24
時間60℃の温度で乾燥を行った。得られた84Cを含
む炭素質粉末の組成は、表1の通りであった。
<Example> (Example 1) Using a 202 autoclave, 2 wt% and 20 wt% of 84C and petroleum coke, which were crushed to about 10 μm, were added to tar pitch with a softening point of 60°C, and 15
The mixture was stirred and mixed at a temperature of 0°C. The tar pitch is 3
After extraction using twice the amount of oil in tar (boiling range, 140-270°C) at a temperature of 120°C for 2 hours, a filtration operation was carried out. After washing the excess residue lightly with acetone, it was washed under vacuum for 24 hours.
Drying was carried out at a temperature of 60°C for a period of time. The composition of the obtained carbonaceous powder containing 84C was as shown in Table 1.

表 1.  84Gを含む炭素質粉末の組成該炭素質粉
末をそのまま800 kg/cゴの成形圧力下で80φ
X30hmmサイズで成形を行い、1000℃焼成、2
000℃黒鉛化を行った。得られた黒鉛材料の物理特性
及び空気流量中(4f/DIin)  1000℃×2
時間で酸化試験を行った。比較として、特公昭54−1
57791号に示される光学的異方性小球体商品名にM
FC(川崎製鉄■製)を800 kg/crn’の成形
圧力下で80φx30hmmサイズで成形し、更に10
00℃焼成、2000℃黒鉛化を行って得られたセラミ
ックスを含まない高密度・高強度黒鉛ブロックの試験結
果を表2に合せて示した。
Table 1. Composition of carbonaceous powder containing 84G The carbonaceous powder was processed into 80φ under a molding pressure of 800 kg/c
Molded in x30hmm size, baked at 1000℃, 2
000°C graphitization was performed. Physical properties of the obtained graphite material and air flow rate (4f/DIin) 1000°C x 2
An oxidation test was conducted at hr. For comparison, the special public service 1973
M in the optically anisotropic small sphere trade name shown in No. 57791
FC (manufactured by Kawasaki Steel Corporation) was molded into a size of 80φ x 30hmm under a molding pressure of 800 kg/crn', and further 10
Table 2 also shows the test results of a ceramic-free high-density, high-strength graphite block obtained by firing at 00°C and graphitizing at 2000°C.

(実施例2) 軟化点60℃のタール・ピッチに、20ILオートクレ
ーブを使用して、約10μmに粉砕したSiC及びB、
Cをそれぞれ1.5wt%添加し、該タール・ピッチを
150℃の温度下で撹拌、混合した後、更に430℃×
0.5時間、常圧下で熱処理を行った。この熱処理に際
し光学的異方性小球体の生成が認められた。
(Example 2) SiC and B ground to about 10 μm using a 20IL autoclave on tar pitch with a softening point of 60°C,
After adding 1.5 wt% of each of C and stirring and mixing the tar pitch at a temperature of 150°C, the mixture was further heated at 430°C
Heat treatment was performed for 0.5 hour under normal pressure. During this heat treatment, the formation of optically anisotropic spherules was observed.

該熱処理ピッチを4倍量のタール中油(沸点範囲、14
0〜270℃)を使用して120℃の温度で2時間抽出
後、f過操作を行った。該抽出f道操作は2回縁り返し
た。デ過残留物を軽くアセトンで洗浄後、真空下で24
時間、60℃の温度で乾燥を行った。得られたSiC及
び84Gを含む炭素質粉末の組成は、表3の通りであっ
た。
The heat-treated pitch was mixed with four times the amount of tar oil (boiling point range, 14
After extraction at a temperature of 120°C for 2 hours, a filtration operation was performed. The extraction process was repeated twice. After washing the residue lightly with acetone, it was placed under vacuum for 24 hours.
Drying was carried out at a temperature of 60° C. for hours. The composition of the obtained carbonaceous powder containing SiC and 84G was as shown in Table 3.

表3.SiC及び84Gを含む炭素質粉末の組成Si(
:+84(:   ・6.3wt%Ql    :  
 72.9wt% 該炭素質炭素質粉末まま800 kg/cm″の成形圧
力下で80φX30hmnサイズで成形を行い、更に1
000℃焼成、2000℃黒鉛化を行った。得られた黒
鉛材料の物理特性及び酸化特性(実験条件は実施例1に
同様)を表4に示した。
Table 3. Composition of carbonaceous powder containing SiC and 84G Si (
:+84(: ・6.3wt%Ql :
72.9 wt% The carbonaceous carbonaceous powder was molded into a size of 80 φ x 30 hmn under a molding pressure of 800 kg/cm'', and further 1
000°C firing and 2000°C graphitization were performed. Table 4 shows the physical properties and oxidation properties (experimental conditions were the same as in Example 1) of the graphite material obtained.

(実施例3) 20I1.オートクレーブを使用し、実施例2と同様の
手順に従って熱処理ピッチを得た。
(Example 3) 20I1. A heat-treated pitch was obtained using an autoclave and following the same procedure as in Example 2.

該熱処理ピッチを3倍量のタール中油(沸点範囲、14
0〜270℃)を使用して120℃の温度で2時間抽出
後、f過残留物を得た。デ過残留物はアセトンで洗浄後
、真空下で24時間、60℃の温度で乾燥を行った。得
られたSiC及び84Gを含む炭素質粉末の組成は、表
5の通りであった。
The heat-treated pitch was mixed with three times the amount of tar oil (boiling point range, 14
After extraction for 2 hours at a temperature of 120° C., an excess residue was obtained. The residue was washed with acetone and then dried under vacuum at a temperature of 60° C. for 24 hours. The composition of the obtained carbonaceous powder containing SiC and 84G was as shown in Table 5.

表5.5iC及びB、Cを含む炭素質粉末の組成SiC
+l14G   ・5.7wt%Ql      : 
   66、Owt%該炭素質炭素質粉末気流中で33
0℃×3時間の力位処理を実施した後、そのまま800
 kg/cny’の成形圧力下で80φX30hnon
サイズで成形を行い、更に1000℃焼成、2000℃
黒鉛化を行った。得られた黒鉛材料の物理特性及び酸化
特性(実験条件は実施例1に同様)を表6に示した。
Table 5.5 Composition of carbonaceous powder containing iC, B, and C SiC
+l14G ・5.7wt%Ql:
66, Owt% 33 in the carbonaceous powder air stream
After performing force treatment at 0°C for 3 hours,
80φX30hnon under molding pressure of kg/cny'
Shaped to size, then fired at 1000℃, then 2000℃
Graphitization was performed. Table 6 shows the physical properties and oxidation properties (experimental conditions were the same as in Example 1) of the graphite material obtained.

表 2.  黒鉛ブロックの物理特性と酸化反応性本発
明例 1.99    3405’    +250 
    ’109      1.1比較例 1.92
   1210   1080   87   100
表 4.  黒鉛ブロックの物理特性と酸化反応作表 
6.  黒鉛ブロックの物理特性と酸化反応性本発明例
 1.98    3800    1190    
 105      1.2〈発明の効果〉 本発明のセラミックスを含む炭素材料用炭素質粉末はセ
ラミックスを含むので、高密度・高強度である上著しく
耐酸化性に優れている。
Table 2. Physical properties and oxidation reactivity of graphite block Invention example 1.99 3405' +250
'109 1.1 Comparative example 1.92
1210 1080 87 100
Table 4. Physical properties and oxidation reaction table of graphite blocks
6. Physical properties and oxidation reactivity of graphite block Invention example 1.98 3800 1190
105 1.2 <Effects of the Invention> Since the carbonaceous powder for carbon materials containing ceramics of the present invention contains ceramics, it has high density and high strength as well as extremely excellent oxidation resistance.

また、本発明方法によれば、一般炭素材に比べ著しく酸
化反応性に優れた等方性・高密度・高強度炭素材料原料
粉を簡便なプロセスで製造することができる。
Furthermore, according to the method of the present invention, it is possible to produce raw material powder for an isotropic, high-density, and high-strength carbon material that has significantly superior oxidation reactivity compared to general carbon materials through a simple process.

本発明により製造した炭素材料原料粉は坩堝、シール材
、原子炉用遮蔽材、ロケット・ジェットエンジンのノズ
ルなど等方性・高密度・高強度に加え、耐酸化性が要求
される炭素材料の原料としての利用が期待される。
The carbon material raw material powder produced according to the present invention can be used for carbon materials that require isotropy, high density, and high strength as well as oxidation resistance, such as crucibles, sealing materials, shielding materials for nuclear reactors, and nozzles for rocket and jet engines. It is expected to be used as a raw material.

Claims (3)

【特許請求の範囲】[Claims] (1)100重量部の炭素質に対し1〜50wt%のセ
ラミックスを含み、炭素質中のキノリン可溶分の量が炭
素質中のキノリン不溶分100重量部に対し、10〜5
0重量部であってかつキノリン可溶分中のベンゼン不溶
分とベンゼン可溶分の比率がベンゼン不溶分100重量
部に対しベンゼン可溶分5〜30重量部であることを特
徴とする耐酸化性に優れた高密度・高強度炭素材料用炭
素質粉末。
(1) Contains 1 to 50 wt% of ceramics based on 100 parts by weight of carbonaceous material, and the amount of quinoline soluble content in the carbonaceous material is 10 to 5% by weight per 100 parts by weight of quinoline insoluble content in the carbonaceous material.
0 parts by weight, and the ratio of benzene-insoluble to benzene-soluble in the quinoline-soluble content is 5 to 30 parts by weight per 100 parts by weight of benzene-insoluble. Carbonaceous powder for high-density and high-strength carbon materials with excellent properties.
(2)100重量部の炭素質に対し1〜50wt%のセ
ラミックスを含み、炭素質中のキノリン可溶分の量が炭
素質中のキノリン不溶分100重量部に対し、10〜5
0重量部であってかつキノリン可溶分中のベンゼン不溶
分とベンゼン可溶分の比率がベンゼン不溶分100重量
部に対しベンゼン可溶分5〜30重量部である耐酸化性
に優れた高密度・高強度炭素材料用炭素質粉末を製造す
るにあたり、タール・ピッチ類にセラミックスを添加し
て充分撹拌後、タール・ピッチ類に対しキノリンよりも
抽出力の弱い溶剤を原料タール・ピッチ類100重量部
に対し200〜1000重量部使用して抽出濾過操作を
行って炭素質粉末を得ることを特徴とする耐酸化性に優
れた高密度・高強度炭素材料用炭素質粉末の製造方法。
(2) Contains 1 to 50 wt% of ceramics based on 100 parts by weight of carbonaceous material, and the amount of quinoline soluble content in the carbonaceous material is 10 to 50% by weight per 100 parts by weight of quinoline insoluble content in the carbonaceous material.
0 parts by weight, and the ratio of benzene-insoluble to benzene-soluble in the quinoline-soluble content is 5 to 30 parts by weight per 100 parts by weight of benzene-insoluble. In producing carbonaceous powder for high-density and high-strength carbon materials, ceramics are added to tar and pitch, and after thorough stirring, a solvent with a weaker extraction power than quinoline for tar and pitch is added to the raw material tar and pitch. A method for producing a carbonaceous powder for use in high-density and high-strength carbon materials having excellent oxidation resistance, characterized in that carbonaceous powder is obtained by performing an extraction filtration operation using 200 to 1000 parts by weight based on the weight part.
(3)100重量部の炭素質に対し1〜50wt%のセ
ラミックスを含み、炭素質中のキノリン可溶分の量が炭
素質中のキノリン不溶分100重量部に対し、10〜5
0重量部であってかつキノリン可溶分中のベンゼン不溶
分とベンゼン可溶分の比率がベンゼン不溶分100重量
部に対しベンゼン可溶分5〜30重量部である耐酸化性
に優れた高密度・高強度炭素材料用炭素質粉末を製造す
るにあたり、タール・ピッチ類にセラミックスを添加し
て充分撹拌後、さらに500℃以下の温度で加熱処理し
、次いでタール・ピッチ類に対しキノリンよりも抽出力
の弱い溶剤を原料タール・ピッチ類100重量部に対し
200〜1000重量部使用して抽出・濾過操作を行っ
て炭素質粉末を得ることを特徴とする耐酸化性に優れた
高密度・高強度炭素材料用炭素質粉末の製造方法。
(3) Contains 1 to 50 wt% of ceramics based on 100 parts by weight of carbonaceous material, and the amount of quinoline soluble content in the carbonaceous material is 10 to 5% by weight per 100 parts by weight of quinoline insoluble content in the carbonaceous material.
0 parts by weight, and the ratio of benzene-insoluble to benzene-soluble in the quinoline-soluble content is 5 to 30 parts by weight per 100 parts by weight of benzene-insoluble. In producing carbonaceous powder for high-density and high-strength carbon materials, ceramics are added to tar and pitch, thoroughly stirred, and then heat-treated at a temperature of 500°C or less. High-density carbonaceous powder with excellent oxidation resistance is obtained by performing extraction and filtration operations using 200 to 1000 parts by weight of a solvent with weak extraction power per 100 parts by weight of raw material tar and pitch. A method for producing carbonaceous powder for high-strength carbon materials.
JP61313716A 1986-01-06 1986-12-26 Carbonaceous powder for oxidation-resistant high density high strength carbon material and manufacture Granted JPS62256762A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP41686 1986-01-06
JP61-416 1986-01-06

Publications (2)

Publication Number Publication Date
JPS62256762A true JPS62256762A (en) 1987-11-09
JPH0559865B2 JPH0559865B2 (en) 1993-09-01

Family

ID=11473193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313716A Granted JPS62256762A (en) 1986-01-06 1986-12-26 Carbonaceous powder for oxidation-resistant high density high strength carbon material and manufacture

Country Status (1)

Country Link
JP (1) JPS62256762A (en)

Also Published As

Publication number Publication date
JPH0559865B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
JP3755150B2 (en) High density self-sintered silicon carbide / carbon / graphite composite material and method for producing the same
US4883617A (en) Method of forming binderless carbon materials
JPH0826709A (en) Production of carbon material
JPS62256762A (en) Carbonaceous powder for oxidation-resistant high density high strength carbon material and manufacture
CA2086858C (en) Sinterable carbon powder
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS63242912A (en) Carbonaceous powder for carbon material and production thereof
JPH02271908A (en) Production of high-density and high-strength carbon material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH0735299B2 (en) Method for producing isotropic high strength carbon material having low coefficient of thermal expansion
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPH02192412A (en) Production of high-density high-strength carbon material having excellent oxidation resistance
JPS60131872A (en) Carbon material bonding composition and manufacture
JPS6235964B2 (en)
JPH07215775A (en) Production of carbon-carbon composite material
JPS61270259A (en) Manufacture of antiabrasive silicon carbide sintered body
JP3094502B2 (en) Manufacturing method of carbon material
JP2758962B2 (en) Production method of raw material powder for isotropic, high density, high strength carbon materials
JPS59164604A (en) Manufacture of isotropic carbonaceous material of high density
JPS63159211A (en) Carbonaceous powder for hard carbon material and production thereof
JPS63139051A (en) Manufacture of high density high strength carbon material
JPH05848A (en) Production of high strength isotropic graphite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees