JPS62256480A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS62256480A
JPS62256480A JP61098762A JP9876286A JPS62256480A JP S62256480 A JPS62256480 A JP S62256480A JP 61098762 A JP61098762 A JP 61098762A JP 9876286 A JP9876286 A JP 9876286A JP S62256480 A JPS62256480 A JP S62256480A
Authority
JP
Japan
Prior art keywords
power generation
electrode
amorphous semiconductor
semiconductor layer
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098762A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Kenji Tomita
賢時 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61098762A priority Critical patent/JPS62256480A/en
Priority to US07/032,164 priority patent/US4773943A/en
Publication of JPS62256480A publication Critical patent/JPS62256480A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve and stabilize output characteristics by a method wherein a plurality of 20-200mum-diameter pores are formed at certain intervals in an opening provided for the establishment of connection. CONSTITUTION:A second electrode 4c in a power-generating region (c) is provided with a connecting extension 41c extending as far as a cutaway 42b in a power-generating region (b). A first electrode 2b of the power-generating region (b) is so arranged that it faces the connecting extension 41c of the power- generating region (c) with an amorphous semiconductor layer 3 positioned between. The amorphous semiconductor layer 3 is provided with a connecting opening 5c consisting of pores 51... lined up at certain intervals in the portion where the first electrode 2b of the power-generating region (b) faces the connecting extension 41c, and the connecting extension 41c and the first electrode 2b of the power-generating region (b) are electrically connected with each other through the connecting opening 5c. This design enables the opening voltage Voc to stabilize at a high value and the curve factor FF to occupy as high as 40% in the whole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽電池や光センサー等の非晶質半導体層を有
する光起電力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to photovoltaic devices having an amorphous semiconductor layer, such as solar cells and optical sensors.

〔発明の背景〕[Background of the invention]

本発明者らは、先にレーザー照射により形成した接続用
開口部を通じて複数個の発電区域を直列接続する光起電
力装置を提案した。
The present inventors previously proposed a photovoltaic device in which a plurality of power generation areas are connected in series through connection openings formed by laser irradiation.

第2図(a)はその光起電力装置の平面図であり、第2
図(b)は同図(a)中A−^”線断面図であり、第2
図(c)は同図(a)中B−B’線断面図であり、第2
図(d)は同図(a)中c−c’線断面図である。
FIG. 2(a) is a plan view of the photovoltaic device, and the second
Figure (b) is a cross-sectional view taken along the line A-^'' in Figure (a).
Figure (c) is a sectional view taken along the line B-B' in Figure (a).
Figure (d) is a sectional view taken along line c-c' in figure (a).

図中、1は絶縁基板であり、2a〜2cは第1電極であ
り、3は非晶質半導体層であり、4a〜4cは第2電極
である。
In the figure, 1 is an insulating substrate, 2a to 2c are first electrodes, 3 is an amorphous semiconductor layer, and 4a to 4c are second electrodes.

絶縁基板1は透光性ガラス、セラミック、表面が絶縁処
理されたステンレス板等が使用される。
The insulating substrate 1 is made of translucent glass, ceramic, a stainless steel plate whose surface is insulated, or the like.

該基板1の一生面にスパッタリング法やプラズマCVD
法で酸化錫(SnO□)や酸化インジウム・錫(ITo
)等から成る第1電極2a〜2cが夫々形成される。
The entire surface of the substrate 1 is subjected to sputtering or plasma CVD.
tin oxide (SnO□) and indium tin oxide (ITo)
), etc., are respectively formed.

次に、基板1の一生面の略全域に亘り非晶質半導体層3
が形成される。該非晶質半導体層3は光照射により正孔
及び又は電子が発生されるようにP−I−N接合が施さ
れている0図示していないが、P層は100〜200 
人、INは5000〜7000人、N層は300〜70
0人であり、非晶質半導体層3の厚みは約0.5〜0.
8μm程度である。
Next, an amorphous semiconductor layer 3 is formed over substantially the entire surface of the substrate 1.
is formed. The amorphous semiconductor layer 3 is provided with a P-I-N junction so that holes and/or electrons are generated by light irradiation.
people, IN is 5000-7000 people, N layer is 300-70 people
The thickness of the amorphous semiconductor layer 3 is approximately 0.5 to 0.0.
It is about 8 μm.

次いて、基板1に配列形成した各第1電極28〜2c上
の非晶質半導体N3の一部に、配列方向に沿ってレーザ
ー照射により接続用開口部58〜5Cが形成される。
Next, connection openings 58 to 5C are formed in part of the amorphous semiconductor N3 on each of the first electrodes 28 to 2c arranged on the substrate 1 by laser irradiation along the arrangement direction.

接続用開口部5a〜5cはNd−YAGレーザー照射に
よって非晶質半導体層3のみが吸収除去され、貫通され
ることにより、第1電極2a〜2Cが露出する。
Only the amorphous semiconductor layer 3 is absorbed and removed by the Nd-YAG laser irradiation, and the first electrodes 2a to 2C are exposed through the connection openings 5a to 5c.

更に、非晶質半導体1i3上に、略第1電極2a〜2c
に対応するとともに接続用開口部58〜5Cを露出する
切り欠は部42a〜42cを形成するように第2電極4
8〜4cが被着形成される。第2電極4a〜4cは壇=
塩抵抗加熱法、スパッタリング法で形成されたニッケル
(Ni)、アルミニウム(AI)、チタン(Ti)、ク
ロム(Cr)等である。
Further, approximately first electrodes 2a to 2c are provided on the amorphous semiconductor 1i3.
The notches that correspond to the connection openings 58 to 5C and expose the connection openings 58 to 5C are formed in the second electrode 4 so as to form portions 42a to 42c.
8 to 4c are deposited and formed. The second electrodes 4a to 4c are podium =
These include nickel (Ni), aluminum (AI), titanium (Ti), chromium (Cr), etc. formed by a salt resistance heating method or a sputtering method.

これにより発電区域a”−’cが基板1上に形成される
As a result, power generation areas a''-'c are formed on the substrate 1.

該発電区域a−cの電気的接続は前記第2電極48〜4
cを形成する際にマスクの操作またはエツチングの処理
によって同時に隣接する発電区域a、bの切り欠は部4
2a、 42bにまで延びる接続用延長部41b〜41
cを設けることにより行われる。即ち、発電区域aの第
1電極2aは接続用開口部5aを通じて発電区域すの第
2電極の接続用延長部41bに、発電区域すの第1電極
2bは接続用開口部5bを通じて発電区域Cの第2電極
の接続用延長部41bに夫々接続し、各発電区域a−c
の直列接続が達成される。
Electrical connections between the power generation areas a-c are made using the second electrodes 48 to 4.
When forming part 4, the notches of adjacent power generation areas a and b are simultaneously formed by mask operation or etching process.
Connection extensions 41b to 41 extending to 2a and 42b
This is done by providing c. That is, the first electrode 2a of the power generation area A is connected to the connection extension part 41b of the second electrode of the power generation area A through the connection opening 5a, and the first electrode 2b of the power generation area A is connected to the power generation area C through the connection opening 5b. are connected to the connecting extensions 41b of the second electrodes of the respective power generation areas a-c.
series connection is achieved.

そして、直列的に電気接続された各発電区域a〜Cを有
する光起電力装置の出力は、発電区域aの第2電極4a
と1発電区域Cの切り欠は部42cで第1電極2cが露
出する接続用開口部5C上に形成された接続端子部6C
との間から得られる。
The output of the photovoltaic device having each of the power generation areas a to C electrically connected in series is determined by the second electrode 4a of the power generation area a.
The notch of the first power generation area C is a connection terminal portion 6C formed on the connection opening 5C through which the first electrode 2c is exposed at the portion 42c.
It can be obtained from between.

第4図は従来の光起電力装置の接続部の部分拡大図であ
る。即ち、第2図(a)の光起電力装置において丸で囲
んだ部分に相当する。
FIG. 4 is a partially enlarged view of a connecting portion of a conventional photovoltaic device. That is, it corresponds to the circled part in the photovoltaic device of FIG. 2(a).

接続用開口部5bは非晶質半導体Wi3を貫通する巾d
が20〜200 μの直線状の溝52で構成されている
。これは、Nd−YAGレーザーの発振のQスイッチの
周波数を2KHz、基板1に対するレーザー走査速度を
100+nm /seeに設定することにより形成され
る本発明者らは10cm角の製造用ガラス基板上に4個
の発電区域が直列接続した上述の光起電力装置した。
The connection opening 5b has a width d passing through the amorphous semiconductor Wi3.
It is composed of linear grooves 52 with a diameter of 20 to 200 μm. This is formed by setting the Q-switch frequency of the Nd-YAG laser oscillation to 2 KHz and the laser scanning speed for the substrate 1 to 100+nm/see. The above-mentioned photovoltaic device has several power generating sections connected in series.

(次頁に続く) (前頁の表1の続き) 表1から考察できる様に、開放電圧(voc)が1゜2
8〜2.64Vとばらつきが大きく、さらに曲線因子(
FF)が低い。特に資料番号25.29,30,32,
35.37,38゜42は開放電圧(voc)が2.O
vに満たない。さらに21個の光起電力装置全体の曲線
因子(PF)の平均が0゜6以下である。
(Continued on the next page) (Continued from Table 1 on the previous page) As can be considered from Table 1, the open circuit voltage (voc) is 1°2
There is a large variation between 8 and 2.64V, and the fill factor (
FF) is low. Especially document numbers 25.29, 30, 32,
35.37, 38°42 has an open circuit voltage (voc) of 2. O
Less than v. Furthermore, the average fill factor (PF) of all 21 photovoltaic devices is 0°6 or less.

これは、Nd−YAGレーザーの発振のQスイッチ周波
数が高いため、非晶質半導体層3の開口断面においてP
−1−N接合の破壊が起こり、電気的リークが発生する
ためと考えられる。
This is because the Q-switch frequency of the oscillation of the Nd-YAG laser is high, so P in the aperture cross section of the amorphous semiconductor layer 3 is
It is thought that this is because the -1-N junction is destroyed and electrical leakage occurs.

(本発明の目的) 本発明は上述の知見に鑑み案出されたものであり、その
目的は、出力特性が向上し、且つ安定化する光起電力装
置を提供することにある。
(Objective of the Present Invention) The present invention has been devised in view of the above-mentioned findings, and its object is to provide a photovoltaic device with improved and stabilized output characteristics.

(問題点を解決するための手段) 本発明が上述の問題点を解決するために行った具体的手
段は、非晶質半導体層と、該非晶質半導体層の上下面に
形成された電極とからなる少なくとも2個の発電区域を
絶縁基板上に配列形成し、第1の発電区域の一方の電極
は隣接して配列された第2の発電区域の他方の電極又は
その接続用延長部上にまで延びた第1の発電区域の接続
用延長部を有し、該第2の発電区域の他方の電極又はそ
の接続用延長部は非晶質半導体層を挟んで該第1の発電
区域の接続用延長部と少なくとも対向するように配置さ
れ、該非晶質半導体層は該第2の発電区域の他方の電極
又はその接続用延長部と該第1の発電区域の接続用延長
部との対向部分に接続用開口部を有し、該第1の発電区
域の接続用延長部と該第2の発電区域の他方の電極又は
その接続用延長部とが1亥接続用開口部を通じて電気的
に接続された光起電力袋において、前記接続用開口部が
直径20〜200μ−の小孔を複数個断続的に形成して
なることである。即ち、小孔の径をalJIll、レー
ザー照射の発振ロスイッチの周波数をfKIIz。
(Means for Solving the Problems) The specific measures taken by the present invention to solve the above-mentioned problems include an amorphous semiconductor layer and electrodes formed on the upper and lower surfaces of the amorphous semiconductor layer. at least two power generation areas are formed in an array on an insulating substrate, one electrode of the first power generation area is placed on the other electrode of the second power generation area arranged adjacently or a connecting extension thereof. The other electrode of the second power generation area or its connection extension extends to connect the first power generation area with an amorphous semiconductor layer in between. The amorphous semiconductor layer is arranged to face at least the second electrode of the second power generation area or the connection extension thereof and the connection extension of the first power generation area. has a connection opening in the first power generation area, and the connection extension of the first power generation area and the other electrode of the second power generation area or its connection extension are electrically connected through the connection opening. In the photovoltaic bag, the connection opening is formed by intermittently forming a plurality of small holes having a diameter of 20 to 200 μm. That is, the diameter of the small hole is alJIll, and the frequency of the oscillation switch for laser irradiation is fKIIz.

基板に対するレーザー照射の走査速度をxmm/sec
とすると a−f<x (aはレーザーの出力、レーザーの焦点位置又は光学系
により可変する。)とした。
The scanning speed of laser irradiation to the substrate is x mm/sec.
Then, a−f<x (a is variable depending on the output of the laser, the focal position of the laser, or the optical system).

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明の光起電力装置の接続部分の一部拡大図
である。即ち、第2図(a)の光起電力装置の丸で囲ん
だ部分に相当する。
FIG. 1 is a partially enlarged view of the connecting portion of the photovoltaic device of the present invention. That is, it corresponds to the circled part of the photovoltaic device in FIG. 2(a).

第1電極2a〜2c、非晶質半導体N3、第2電極4a
〜4C1接続用端子6Cの層構成、形状は第2図(a)
〜(c)に示す光起電力装置と同一であり、詳細な説明
は省略する。
First electrodes 2a to 2c, amorphous semiconductor N3, second electrode 4a
~4C1 The layer structure and shape of the connection terminal 6C are shown in Figure 2 (a)
It is the same as the photovoltaic device shown in ~(c), and detailed explanation will be omitted.

発電区域Cの第2電極4Cは発電区域すの切り欠は部4
2bにまで延びる接続用延長部41cを有し、発電区域
すの第1の電極2bは非晶質半導体層3を挟んで該発電
区域Cの接続用延長部41cと対向するように配設され
、該非晶質半導体J!!3は発電区域すの第1電極2b
と該接続用延長部41cとの対向部に断続的に並んだ小
孔51・・・から成る接続用開口部5cを有し、発電区
域Cの接続用延長部41cと発電区域すの第1電極2b
とが接続用開口部5Cを通じて電気的に接続されている
The second electrode 4C of the power generation area C has a notch in the power generation area C.
The first electrode 2b of the power generation area C is arranged to face the connection extension part 41c of the power generation area C with the amorphous semiconductor layer 3 in between. , the amorphous semiconductor J! ! 3 is the first electrode 2b of the power generation area
It has a connection opening 5c consisting of small holes 51 arranged intermittently in the opposite part of the connection extension 41c of the power generation area C and the first connection extension 41c of the power generation area C. Electrode 2b
are electrically connected through the connection opening 5C.

前記小孔51・・・から成る接続用開口部5Cの具体的
な形成方法は、Nd−YAGレーザーを利用し、レーザ
ー発振Qスイッチの周波数を2KHz、基板1に対する
レーザー光の走査速度を200mm/SECとした。
A specific method for forming the connection opening 5C consisting of the small holes 51 is as follows: using an Nd-YAG laser, setting the frequency of the laser oscillation Q switch to 2KHz, and scanning the laser beam with respect to the substrate 1 at a scanning speed of 200mm/ SEC.

これにより直径50μの小孔51・・・が断続的に並ん
だ接続用開口部5bとなる。
As a result, a connection opening 5b is formed in which small holes 51 having a diameter of 50 μm are arranged intermittently.

本発明者らは10cm角の製造用ガラス基板上に、4個
の発電区域が直列接続した光起電力装置を21ケ作成し
、従来の光起電力装置で測定した時と同一の条件下で夫
々の出力特性を測定した。 その結果を表2で示す。
The present inventors fabricated 21 photovoltaic devices in which four power generation areas were connected in series on a 10 cm square manufacturing glass substrate, and under the same conditions as when measuring with a conventional photovoltaic device. The output characteristics of each were measured. The results are shown in Table 2.

表  2 (次頁に続く) (前頁の表2の続き) 表2から明瞭にわかる様に、開放電圧Vocが2゜54
〜2.70Vという高い値で安定する。また曲線因子(
FF)も資料番号1.20を除いては0.75以上とい
う極めて高い値を示し、21ケの光起電力装置の平均で
も0.77以上の極めて高い値となる。また最大出力を
計算しても半数以上の12ケの装置が29.0μW以上
の高出力光起電力装置が得られる。
Table 2 (Continued on next page) (Continued from Table 2 on previous page) As can be clearly seen from Table 2, the open circuit voltage Voc is 2°54
It stabilizes at a high value of ~2.70V. Also, the fill factor (
FF) also shows an extremely high value of 0.75 or more except for document number 1.20, and even the average of 21 photovoltaic devices has an extremely high value of 0.77 or more. Furthermore, even when calculating the maximum output, more than half of the 12 devices are high output photovoltaic devices with a power of 29.0 μW or more.

上述の実施例では接続用開口部5bである小孔51・・
・の直径aが50μであるが、その直径aが最低20μ
程度あれば20μ八程度の電流を支障なく流すことがで
き、またその直径aが200μ以上になると、欲小孔5
1・・・をレーザー照射時に小孔中央部のエネルギーが
増大しすぎ、第1電極2a〜2cまでも除去したり、非
晶質半導体層3に多大なダメージを与え、短絡や導通不
良を起こしてしまう。
In the above embodiment, the small hole 51 which is the connection opening 5b...
・The diameter a is 50μ, but the diameter a is at least 20μ
If the diameter is more than 200μ, a current of about 20μ8 can be passed through without any problem, and if the diameter a is 200μ or more, the small hole 5
1. When irradiating laser, the energy in the center of the small hole increases too much, and even the first electrodes 2a to 2c are removed, causing great damage to the amorphous semiconductor layer 3, causing short circuits and poor conduction. It ends up.

第3図は本発明の光起電力装置の他の実施例の平面図で
ある。
FIG. 3 is a plan view of another embodiment of the photovoltaic device of the present invention.

この実施例の光起電力装置は基板1上の第1電極2d〜
2fの延長部21d〜21f上にある非晶質半導体層3
の一部に、配列方向に沿って直線状に形成された接続用
開口部5を有し、第2電極4d〜4fの接続用延長部4
1e〜41fが接続用開口部5を通じて隣接する発電区
域d weの接続用延長部21d〜21eに接続され、
発電区域d−fの直列接続が達成される。該光起電力装
置であっても、上述したようにレーザー発振のQスイッ
チの周波数をfと、基板1に封子るレーザー光の走査速
度aとの設定により該接続用開口部5を直径20〜20
0μの小孔51・・・とすることができる。
The photovoltaic device of this embodiment has a first electrode 2d on a substrate 1.
Amorphous semiconductor layer 3 on extension parts 21d to 21f of 2f
A connection opening 5 formed linearly along the arrangement direction is formed in a part of the connection extension 4 of the second electrodes 4d to 4f.
1e to 41f are connected to the connection extensions 21d to 21e of the adjacent power generation areas dwe through the connection openings 5,
A series connection of power generation areas d-f is achieved. Even in this photovoltaic device, as described above, the connection opening 5 is set to have a diameter of 20 mm by setting the frequency of the laser oscillation Q switch to f and the scanning speed a of the laser light sealed in the substrate 1. ~20
The small hole 51 can have a diameter of 0 μm.

上述の実施例によれば、小孔51・・・が並設された接
続用開口部5の形成にあたって、レーザー光を定常的に
照射することにより形成されるので、製造が極めて容易
となる。
According to the above-mentioned embodiment, the connection opening 5 in which the small holes 51 are arranged in parallel is formed by constant irradiation with a laser beam, which makes manufacturing extremely easy.

尚、上述の実施例では基板/透明電極/非晶質半導体N
/金属電極の光起電力装置を示したが、基板/金属電極
/非晶質半導体層/透明電極の構造の光起電力装置であ
ってもよい。
In the above embodiment, the substrate/transparent electrode/amorphous semiconductor N
/Although a photovoltaic device having a metal electrode is shown, a photovoltaic device having a structure of a substrate/metal electrode/amorphous semiconductor layer/transparent electrode may be used.

〔効果〕〔effect〕

以上、本発明の光起電力装置によれば、非晶質半導体層
と、該非晶質半導体層の上下面に形成された第1、第2
電極とから成る少なくとも2個の発電区域を絶縁基板上
に配列形成した光起電力装置において、第1の発電区域
及びそれと隣接して配列された第2の発電区域とが、複
数個の小孔から成る接続用開口部を通じて直列接続が行
われ、該接続用開口部を形成する際、非晶質半導体層に
ダメージを与えず、P−1−N接合を乱すことが少ない
光起電力装置であるため、開口電圧(Voc)が高い値
で安定し、且つ曲線因子(PF)が、全体的に40χと
いう極めて高い比率で向上する。また、特性が安定する
ことより、歩留も向上し、低コトス化が達成できる。
As described above, according to the photovoltaic device of the present invention, the amorphous semiconductor layer and the first and second
In a photovoltaic device, in which at least two power generation areas consisting of electrodes are arranged and formed on an insulating substrate, the first power generation area and the second power generation area arranged adjacent to the first power generation area are formed by a plurality of small holes. The photovoltaic device is a photovoltaic device in which series connection is made through a connection opening made of Therefore, the aperture voltage (Voc) is stabilized at a high value, and the fill factor (PF) is overall improved at an extremely high rate of 40χ. Furthermore, since the properties are stable, the yield can be improved and cost reduction can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光起電力装置の一部拡大平面図であり
、第2図(a)は従来の光起電力装置の平面図、第2図
(b)は同図中凸−A”線断面図であり、第2図(c)
は同図中B−8’線断面図であり、第2図(d)は同図
中c−c’線断面図である。第3図は本発明の光起電力
装置の他の実施i面図であり、第4図は従来の光起電力
装置の一部拡大平面図である。 l・・・・基板 2a−2f  ・・第1電極 3・・・・非晶質半導体層 4 a nf  ・・第2電極 5.5a〜5c・接続用開口部 51・・・・小孔
FIG. 1 is a partially enlarged plan view of the photovoltaic device of the present invention, FIG. 2(a) is a plan view of a conventional photovoltaic device, and FIG. 2(b) is a convex-A "It is a line cross-sectional view, and FIG. 2(c)
is a cross-sectional view taken along the line B-8' in the figure, and FIG. 2(d) is a cross-sectional view taken along the line c-c' in the same figure. FIG. 3 is a plan view of another implementation of the photovoltaic device of the present invention, and FIG. 4 is a partially enlarged plan view of the conventional photovoltaic device. l...Substrate 2a-2f...First electrode 3...Amorphous semiconductor layer 4 anf...Second electrode 5.5a-5c/Connection opening 51...Small hole

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質半導体層と、該非晶質半導体層の上下面に
形成された電極とからなる少なくとも2個の発電区域を
絶縁基板上に配列形成し、第1の発電区域の一方の電極
は隣接して配列された第2の発電区域の他方の電極又は
その接続用延長部上にまで延びた第1の発電区域の接続
用延長部を有し、該第2の発電区域の他方の電極又はそ
の接続用延長部は非晶質半導体層を挟んで該第1の発電
区域の接続用延長部と少なくとも対向するように配置さ
れ、該非晶質半導体層は該第2の発電区域の他方の電極
又はその接続用延長部と該第1の発電区域の接続用延長
部との対向部分に複数個の小孔から成る接続用開口部を
有し、該第1の発電区域の接続用延長部と該第2の発電
区域の他方の電極又はその接続用延長部とが該接続用開
口部を通じて電気的に接続された光起電力装置。
(1) At least two power generation areas each consisting of an amorphous semiconductor layer and an electrode formed on the upper and lower surfaces of the amorphous semiconductor layer are arranged and formed on an insulating substrate, and one electrode of the first power generation area is formed. has a connecting extension of the first power generating area extending over the other electrode of the second power generating area arranged adjacently or the connecting extension thereof; The electrode or its connection extension is disposed to at least face the connection extension of the first power generation area with the amorphous semiconductor layer in between, and the amorphous semiconductor layer is located opposite the connection extension of the first power generation area with the amorphous semiconductor layer in between. A connection opening consisting of a plurality of small holes is provided in an opposing portion between the electrode or its connection extension and the connection extension of the first power generation area, and the connection extension of the first power generation area and the other electrode of the second power generation area or its connecting extension are electrically connected through the connecting opening.
(2)前記接続用開口部を形成する小孔の直径が20〜
200μmであることを特徴とする特許請求の範囲第1
項記載の光起電力装置。
(2) The diameter of the small hole forming the connection opening is 20~
Claim 1 characterized in that the diameter is 200 μm.
The photovoltaic device described in Section 1.
JP61098762A 1986-03-31 1986-04-29 Photovoltaic device Pending JPS62256480A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61098762A JPS62256480A (en) 1986-04-29 1986-04-29 Photovoltaic device
US07/032,164 US4773943A (en) 1986-03-31 1987-03-30 Photovoltaic device and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098762A JPS62256480A (en) 1986-04-29 1986-04-29 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS62256480A true JPS62256480A (en) 1987-11-09

Family

ID=14228421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098762A Pending JPS62256480A (en) 1986-03-31 1986-04-29 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS62256480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174999A (en) * 2016-03-24 2017-09-28 ローム株式会社 Organic thin film solar cell module and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174999A (en) * 2016-03-24 2017-09-28 ローム株式会社 Organic thin film solar cell module and electronic equipment

Similar Documents

Publication Publication Date Title
EP0195148A1 (en) Photovoltaic device and method of manufacture
JPS61260683A (en) Thin film solar module and manufacture thereof
US4773943A (en) Photovoltaic device and a method of producing the same
US4789641A (en) Method of manufacturing amorphous photovoltaic-cell module
EP0189976A2 (en) Extremely lightweight, flexible semiconductor device arrays and method of making same
JPS62256480A (en) Photovoltaic device
JPS60206077A (en) Manufacture of amorphous semiconductor solar cell
JP2586654B2 (en) Manufacturing method of thin film solar cell
JPS61199672A (en) Photovoltaic device
JPH0525253Y2 (en)
JPS6342180A (en) Manufacture of integrated type photovoltaic device
JPS62232176A (en) Photovoltaic device
JP2798772B2 (en) Method for manufacturing photovoltaic device
JPS60240164A (en) Amorphous solar battery
JPS6261376A (en) Solar battery
JPH0555612A (en) Manufacture of integrated amorphous solar battery
JP2000261020A (en) Integrated thin-film solar battery
JPS6467978A (en) Amorphous photocell
JPS6252927A (en) Method for forming electrode of thin film semiconductor device
JPH06177408A (en) Thin film solar battery and its manufacture
JP2726045B2 (en) Light power generator
JPS62154788A (en) Integrated type solar battery
JPS6211280A (en) Solar battery and manufacture of the same
JP2819538B2 (en) Method for manufacturing photovoltaic device
JPH0443432B2 (en)