JPS62256407A - Manufacture of resistive compound - Google Patents

Manufacture of resistive compound

Info

Publication number
JPS62256407A
JPS62256407A JP61099610A JP9961086A JPS62256407A JP S62256407 A JPS62256407 A JP S62256407A JP 61099610 A JP61099610 A JP 61099610A JP 9961086 A JP9961086 A JP 9961086A JP S62256407 A JPS62256407 A JP S62256407A
Authority
JP
Japan
Prior art keywords
powder
resistance
silicide
alumina
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099610A
Other languages
Japanese (ja)
Inventor
健 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61099610A priority Critical patent/JPS62256407A/en
Publication of JPS62256407A publication Critical patent/JPS62256407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特に固定抵抗器、可変抵抗器および混成集積回
路用抵抗体に用いられる抵抗組成物の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method of manufacturing a resistor composition used in particular for fixed resistors, variable resistors and resistors for hybrid integrated circuits.

従来の技術 従来、精密固定抵抗器や混成集積回路用抵抗体などには
、一般に銀(人g)とパラジウム(Pd)あるいは酸化
ルテニウム(RuO2)などの貴金属系の導電性粉末と
ガラスフリットなどからなる抵抗組成物が用いられてい
る。この抵抗組成物を用いた抵抗器は、耐熱性、耐電力
性にすぐれ、かつ信頼性の高い抵抗器として一般に知ら
れている。しかしながら、この抵抗組成物はAg、 P
dあるいはルテニウム(Ru)などの貴金属またはその
酸化物を用いるため価格が非常に高くなるという欠点を
持っていた。
Conventional technology Conventionally, precision fixed resistors and resistors for hybrid integrated circuits have generally been manufactured using conductive powders made of noble metals such as silver, palladium (Pd), or ruthenium oxide (RuO2), and glass frit. The following resistance composition is used. A resistor using this resistance composition is generally known as a resistor that has excellent heat resistance and power resistance, and is highly reliable. However, this resistance composition contains Ag, P
Since it uses a noble metal such as d or ruthenium (Ru) or its oxide, it has the drawback of being very expensive.

そのため、卑金属のけい化物を導電性粉末として用いた
、比較的安価な抵抗組成物が考案された。
Therefore, a relatively inexpensive resistor composition using a base metal silicide as a conductive powder was devised.

この抵抗組成物は、金属けい化物粉末をそのまま導電性
粉末として用いたものであった。
This resistance composition used metal silicide powder as it was as conductive powder.

発明が解決しようとする問題点 このような金属けい化物粉末をそのまま導電性粉末とし
て用いたのでは、高抵抗領域を得ることはむつかしく、
導電性粉末のガラスフリットに対する割合を小さくして
高い抵抗値が得られても、抵抗の諸特性が悪く、高い抵
抗値を安定性良く得ることができないという問題があっ
た。
Problems to be Solved by the Invention If such metal silicide powder is used as a conductive powder, it is difficult to obtain a high resistance region.
Even if a high resistance value can be obtained by reducing the ratio of the conductive powder to the glass frit, there is a problem in that various resistance characteristics are poor and a high resistance value cannot be stably obtained.

本発明はこのような問題点を解決するもので、金属けい
化物粉末を用いて、高い抵抗値を安定性良く得ることを
目的とするものである。
The present invention is intended to solve these problems, and aims to stably obtain a high resistance value using metal silicide powder.

問題点を解決するだめの手段 この問題点を解決するために本発明は、金属けい化物粉
末とアルミナ粉末の混合物を不活性ガス中で焼成し粉砕
することにより、高性能かつ安価な高抵抗領域まで使用
可能な抵抗組成物を製造する方法を提供するものである
Means to Solve the Problem In order to solve this problem, the present invention creates a high-resistance region with high performance and low cost by firing and pulverizing a mixture of metal silicide powder and alumina powder in an inert gas. The present invention provides a method for producing a resistive composition that can be used up to

作用 上記方法によれば、安価でしかも負荷特性、耐湿性など
の抵抗緒特性の優れた抵抗組成物を得ることができる。
Effect: According to the above method, it is possible to obtain a resistive composition which is inexpensive and has excellent resistance properties such as load properties and moisture resistance.

実施例 以下、本発明の実施例について説明する。金属けい化物
を微粉末にしてガラスフリットと共に焼成しようとする
と粉末の粒子どうしが互いに凝集し、金属けい化物の景
が少くなくなった場合、抵抗の諸特性が著しく劣化し、
高い抵抗値を安定性良く得ることができなかったが本発
明の重要な点は、焼成過程中にアルミナ粉末を金属けい
化物粉末と共にガラス7リツト中に分散させ、アルミナ
がフィラーとして働き金属けい化物の凝集を防ぎ高抵抗
化をはかるというところにある。しかし、単にガラス7
リツト、アルミナ粉末、金属けい化物粉末を有機性粘結
剤と混合して焼成したのでは良い結果を得ることはでき
ない。けい化物粉末とアルミナ粉末を不活性ガス中1o
Oo′C〜1400°Cで1〜2時間熱処理し、けい化
物粉末とアルミナ粉末だけであらかじめ分散状態をつく
っておく必要がある。熱処理の温度が1000°Cよシ
低いと、けい化物粉末とアルミナ粉末の分散状態を維持
できない。また、1400℃を越えると組成変化を起こ
すため好しくない。ここで熱処理に用いるアルミナ粉末
の平均粒径は、けい化物粉末の平均粒径の5倍〜1/1
0倍の範囲が良好で、5倍よシ大きいと熱処理効果が表
われず、1/10倍よフ小さいと抵抗値の諸特性が劣化
する。上記の熱処理において、けい化物粉末とアルミナ
粉末の重量比が70;30以下になるとけい化物粉末の
分散状態が悪くなシ、その効果はほとんどなくなる。
Examples Examples of the present invention will be described below. If metal silicide is made into fine powder and fired together with glass frit, the powder particles will agglomerate with each other, and if the metal silicide becomes less visible, the various properties of the resistor will deteriorate significantly.
Although it has not been possible to obtain a high resistance value with good stability, the important point of the present invention is that alumina powder is dispersed in glass 7 liters together with metal silicide powder during the firing process, and the alumina acts as a filler and dissolves the metal silicide. The aim is to prevent agglomeration and increase resistance. But just glass 7
Good results cannot be obtained by mixing alumina powder, metal silicide powder, and organic binder with firing. Silicide powder and alumina powder in inert gas at 1o
It is necessary to perform a heat treatment at Oo'C to 1400C for 1 to 2 hours to create a dispersed state in advance using only the silicide powder and alumina powder. If the heat treatment temperature is lower than 1000°C, the dispersion state of the silicide powder and alumina powder cannot be maintained. Further, if the temperature exceeds 1400°C, the composition will change, which is not preferable. The average particle size of the alumina powder used for the heat treatment is 5 times to 1/1 of the average particle size of the silicide powder.
A range of 0 times is good; if it is larger than 5 times, the heat treatment effect will not appear, and if it is smaller than 1/10 times, various characteristics of the resistance value will deteriorate. In the above heat treatment, if the weight ratio of the silicide powder to the alumina powder is less than 70:30, the dispersion state of the silicide powder becomes poor and its effect is almost lost.

逆にその比が30ニア0よシ大きくなると粒子どうしの
接触が得にくくなシ、高い抵抗値は得られるものの抵抗
の諸特性が悪くなる。
On the other hand, if the ratio is larger than 30, it becomes difficult to obtain contact between the particles, and although a high resistance value can be obtained, various resistance characteristics deteriorate.

上記のようにして得られた金属けい化物粉末中アルミナ
粉末の焼結体を粉末にし、これを適当な有機性粘結剤と
ガラスフリットと共にペースト状にし、印刷、乾燥、焼
成することによシ耐熱性。
The sintered body of alumina powder in metal silicide powder obtained as described above is powdered, and this is made into a paste with an appropriate organic binder and glass frit, and then printed, dried, and fired. Heat-resistant.

耐電力性にすぐれた高抵抗まで利用可能なグレーズ抵抗
器の製造を可能にする。
It is possible to manufacture glaze resistors that can be used up to high resistance with excellent power resistance.

以下本発明の具体的な実施例を示す。Specific examples of the present invention will be shown below.

(実施例1) けい化モリブデン(Mo5i2) 、けい化タンタル(
TaSi2) lけい化マグネシラA (Mg2Si)
O比がモル比で3:1:2になるように各h Mo 、
 Ta 、 Mg 。
(Example 1) Molybdenum silicide (Mo5i2), tantalum silicide (
TaSi2) Magnesilla silicide A (Mg2Si)
Each h Mo so that the O ratio was 3:1:2 in molar ratio,
Ta, Mg.

8i を秤量し、これらをらいかい機で混合する。Weigh 8i and mix them in a sieve machine.

この混合物を2oφの径を有する金型で200kg/−
で加座膚刑千入へ?−の虐刑物をフルタナゼートに入れ
ムrガス中12oO°Cで2時間熱処理をする。このよ
うにして得られたけい化モリブデン。
200kg/- of this mixture in a mold with a diameter of 2oφ
So, to Kazadaka Senryu? - Place the tortured product in flutanazate and heat-treat at 12oO°C for 2 hours in murine gas. Molybdenum silicide obtained in this way.

けい化タンタル、けい化マグネシウムの混合物をらいか
い機であら粉砕し、メタノールと共にボットミルに入れ
170時間ボールミル粉砕、これを乾燥し導電性粉末と
して用いる。このようにして作製し九粒径1〜2μmの
導電性粉末と粒径0.3μmのアルミナ粉末を重量比で
60:400割合てらいかい機にて混合した。この混合
物を2oφの金型で2ookg/cotで加圧成型し、
この成型物をムrガス中1200℃で2時間焼成した。
A mixture of tantalum silicide and magnesium silicide is ground in a mill, placed in a bot mill with methanol, ground in a ball mill for 170 hours, dried, and used as a conductive powder. The electrically conductive powder thus prepared and having a particle size of 1 to 2 μm and the alumina powder having a particle size of 0.3 μm were mixed in a weight ratio of 60:400 using a mill. This mixture was pressure molded at 2ookg/cot in a 2oφ mold,
This molded product was fired at 1200° C. for 2 hours in murky gas.

この焼結体をステンレススチール棒であら粉砕し、次に
らいかい機で粉砕し、更にボットミルにメタノールと共
に入れ24時間ボールミル粉砕した。上記のようにして
得られた粉体を乾燥してグレーズ抵抗用組成物の導体原
料とした。
This sintered body was partially ground with a stainless steel rod, then ground with a miller, and then placed in a bot mill with methanol and ball milled for 24 hours. The powder obtained as described above was dried and used as a conductor raw material for a composition for glaze resistance.

ガラスフリットは、硼酸(H3BO,)、炭酸バリウム
(Bubo、 ) #炭酸カルシウム(caco、 )
 、アルミナ(ム1203)、二酸化けい素(8i02
)等を混合しアルミするつぼに入れ1200℃の温度で
溶融させ、次に水中に投入してあら粉砕する。あら粉砕
E〜だガラスフリットをらいかい機で粉砕し、更にメタ
ノールと共にポンドミルに入れて、72時間ボールミル
粉砕した。
Glass frit is made of boric acid (H3BO, ), barium carbonate (Bubo, ) #calcium carbonate (caco, )
, alumina (Mu1203), silicon dioxide (8i02)
), etc., put in an aluminum crucible and melt at a temperature of 1200°C, then put into water and pulverize. The glass frit was pulverized in a grinder, then placed in a pound mill with methanol, and pulverized in a ball mill for 72 hours.

導体原料とガラスフリットを第1表に示す割合(重量比
)で配合し、有機性粘結剤を添加し抵抗組成物を作製し
た。この抵抗組成物をアルミナ基板上に250メツシユ
のステンレススクリーンを用いてスクリーン印刷し、1
60°Cの温度で乾燥させてから最高温度850″Cの
トンネル炉に通して焼成し、抵抗体を作成した。このよ
うにして得られたグレーズ抵抗体の諸特性を第1表に示
す。
A conductor raw material and glass frit were blended in the proportions (weight ratio) shown in Table 1, and an organic binder was added to prepare a resistance composition. This resistor composition was screen printed on an alumina substrate using a 250 mesh stainless steel screen, and
A resistor was prepared by drying at a temperature of 60° C. and firing in a tunnel furnace at a maximum temperature of 850″C. Table 1 shows the characteristics of the glazed resistor thus obtained.

なお、短時間過負荷特性は400m”PI/−の電力を
6秒間印加した後の抵抗値変化率で評価した。
The short-time overload characteristics were evaluated by the rate of change in resistance value after applying a power of 400 m''PI/- for 6 seconds.

また耐湿性は温度60°C2相対湿度95チの雰囲気中
に1000時間放置した後の抵抗値変化率で評価した。
Moisture resistance was evaluated by the rate of change in resistance after being left in an atmosphere at a temperature of 60° C. and a relative humidity of 95° for 1000 hours.

(以下余 白) (実施例2) 実施例1で示したものと同じけい化物導電性粉末と粒径
3μmのアルミナ粉末を重量比で60:4oの割合てら
いかい機にて混合し、この混合物を実施例1で示したの
と同様にしてグレーズ抵抗組成物の導体原料とした。こ
の導体原料とガラスフリットを第2表に示す割合で(重
要比)配合し有機性粘結剤を添加して、抵抗組成物を作
成した。
(Left below) (Example 2) The same silicide conductive powder as shown in Example 1 and alumina powder with a particle size of 3 μm were mixed in a weight ratio of 60:4 in a sieve machine. The mixture was used as a conductor raw material for a glaze resistance composition in the same manner as in Example 1. This conductor raw material and glass frit were blended in the proportions (important ratios) shown in Table 2, and an organic binder was added to prepare a resistance composition.

この抵抗組成物を実施例1と同様にして、アルミナ基板
上に印刷し、乾燥後焼成して抵抗体を作製した。このよ
うにして得られたグレーズ抵抗体の諸特性を第2表に示
す。
This resistor composition was printed on an alumina substrate in the same manner as in Example 1, dried and fired to produce a resistor. Table 2 shows various properties of the glaze resistor thus obtained.

(以下余白) 発明の効果 以上、実施例から明らかなように、本発明は、金属けい
化物導電性粉末とアルミナ粉末をあらかじめ熱処理する
ことによって、金属けい化物粉末をよシ高い抵抗値領域
まで利用可能とし、更に負荷特性や耐湿性など抵抗路特
性を非常に優れたものにしている。更に、金属けい化物
、アルミナおよびガラスフリットで構成されているため
、空気中で焼成して使用でき、またムgやPd 、 R
uO2などからなる抵抗組成物に比べて非常に安価であ
るなど多くの特徴を有する抵抗組成物の製造方法を提供
するものであり、工業上きわめて有用である。
(Left below) Effects of the Invention As is clear from the examples, the present invention utilizes the metal silicide powder to a higher resistance value region by heat-treating the metal silicide conductive powder and the alumina powder in advance. Furthermore, the resistance path characteristics such as load characteristics and moisture resistance are extremely excellent. Furthermore, since it is composed of metal silicide, alumina, and glass frit, it can be fired in the air, and it can also be used by firing in the air.
The present invention provides a method for producing a resistive composition that has many features such as being much cheaper than resistive compositions made of uO2, etc., and is extremely useful industrially.

Claims (3)

【特許請求の範囲】[Claims] (1)Mo、Ta、Mgのけい化物から2種以上のけい
化物よりなる導電性粉末と、アルミナ粉末よりなる混合
物を1000℃〜1400℃の温度で不活性ガス中にて
熱処理し、得られた焼結体を粉砕する抵抗組成物の製造
方法。
(1) A mixture of a conductive powder made of two or more silicides of Mo, Ta, and Mg and alumina powder is heat-treated in an inert gas at a temperature of 1000°C to 1400°C. A method for producing a resistance composition by crushing a sintered body.
(2)導電性粉末とアルミナ粉末の重量比を30:70
〜70:30の範囲にする特許請求の範囲第1項記載の
抵抗組成物の製造方法。
(2) The weight ratio of conductive powder and alumina powder is 30:70.
A method for producing a resistive composition according to claim 1, wherein the ratio is in the range of 70:30.
(3)アルミナ粉末の平均粒径を導電性粉末の平均粒径
の5倍〜1/10倍の範囲にする特許請求の範囲第1項
記載の抵抗組成物の製造方法。
(3) The method for producing a resistance composition according to claim 1, wherein the average particle size of the alumina powder is in the range of 5 times to 1/10 times the average particle size of the conductive powder.
JP61099610A 1986-04-30 1986-04-30 Manufacture of resistive compound Pending JPS62256407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099610A JPS62256407A (en) 1986-04-30 1986-04-30 Manufacture of resistive compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099610A JPS62256407A (en) 1986-04-30 1986-04-30 Manufacture of resistive compound

Publications (1)

Publication Number Publication Date
JPS62256407A true JPS62256407A (en) 1987-11-09

Family

ID=14251865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099610A Pending JPS62256407A (en) 1986-04-30 1986-04-30 Manufacture of resistive compound

Country Status (1)

Country Link
JP (1) JPS62256407A (en)

Similar Documents

Publication Publication Date Title
CN111739675B (en) Thick film resistor paste
US4657699A (en) Resistor compositions
US4323484A (en) Glaze resistor composition
KR101138246B1 (en) Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor
JPS5821402B2 (en) thick film composition
CN114783649B (en) High-reliability high-resistance resistor paste for chip resistor
US3865742A (en) Resistor Compositions
JPS62256407A (en) Manufacture of resistive compound
JP4692028B2 (en) Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same
JP4285315B2 (en) Ru-MO powder, method for producing the same, and thick film resistor composition using the same
JPS5853485B2 (en) resistance composition
KR101166709B1 (en) Manufacturing method of paste composite for resistor, thick film resistor and manufacturing method of the resistor
CN114121336B (en) High-wear-resistance paste
JPS5853481B2 (en) resistance composition
JPS6130366B2 (en)
JPS5845161B2 (en) resistance composition
JPH113801A (en) Thick-film resistance paste and its manufacture
JPS6115522B2 (en)
JP2006069836A (en) Ruthenium complex oxide minute powder and its manufacturing method
JPH01248502A (en) Manufacture of conductive compound powder and resistor composition using said powder
JPS61166101A (en) Resistor composition
JPH04125901A (en) Composition for thick film resistor
JPS61220402A (en) Ptc paste
JPH01103801A (en) Resistance composition
JPS5832441B2 (en) Glaze products