JPS5853481B2 - resistance composition - Google Patents

resistance composition

Info

Publication number
JPS5853481B2
JPS5853481B2 JP51054033A JP5403376A JPS5853481B2 JP S5853481 B2 JPS5853481 B2 JP S5853481B2 JP 51054033 A JP51054033 A JP 51054033A JP 5403376 A JP5403376 A JP 5403376A JP S5853481 B2 JPS5853481 B2 JP S5853481B2
Authority
JP
Japan
Prior art keywords
resistance
composition
resistor
fine powder
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51054033A
Other languages
Japanese (ja)
Other versions
JPS52136391A (en
Inventor
禎造 前田
幸男 中村
益三 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51054033A priority Critical patent/JPS5853481B2/en
Publication of JPS52136391A publication Critical patent/JPS52136391A/en
Publication of JPS5853481B2 publication Critical patent/JPS5853481B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は抵抗組成物、特に固定抵抗器、可変抵抗器、混
成集積回路用抵抗体、あるいは電熱器用発熱体などに用
いられる抵抗組成物に関するもので、詳細には、Co
2 S iまたはCo8iのいずれか一方または両方か
らなる導電性微粉末とガラスフリットとを含有すること
を特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance composition, particularly a resistance composition used for a fixed resistor, a variable resistor, a resistor for a hybrid integrated circuit, a heating element for an electric heater, etc. Co
It is characterized by containing conductive fine powder made of either or both of 2S i and Co8i and a glass frit.

従来、精密用固定抵抗器や混成集積回路用抵抗体などに
は、一般に銀(Ag)とパラジウム(Pd )、あるい
は酸化ルテニウム(RuO2)などの貴金属系の導電性
微粉末と、ガラスフリットなどからなる抵抗組成物が用
いられている。
Conventionally, precision fixed resistors and resistors for hybrid integrated circuits have generally been manufactured using conductive fine powders of precious metals such as silver (Ag), palladium (Pd), or ruthenium oxide (RuO2), and glass frit. The following resistance composition is used.

この組成物を用いた抵抗器は、貴金属もしくはその酸化
物とガラスフリットとからなるため、耐熱性、耐電力に
優れ、かつ信頼性の高い抵抗器として、一般に知られて
いる。
Since a resistor using this composition is made of a noble metal or its oxide and glass frit, it is generally known as a resistor that has excellent heat resistance and power resistance, and is highly reliable.

しかしながら、この抵抗組成物は、Ag・Pdあるいは
ルテニウム(Ru)などの貴金属、またはその酸化物を
用いているため、価格が非常に高くなる。
However, since this resistor composition uses a noble metal such as Ag/Pd or ruthenium (Ru), or an oxide thereof, it becomes very expensive.

特に低い抵抗値の抵抗組成物は、導電性微粉末を多く必
要とするため、高価となり、一般用の安価な抵抗器に使
用しにくいのが、大きな欠点である。
A major drawback of a resistive composition having a particularly low resistance value is that it requires a large amount of conductive fine powder, making it expensive and difficult to use in general-purpose inexpensive resistors.

一方、貴金属を用いない抵抗組成物には、酸化インジウ
ムや炭化タングステンなどの導電性微粉末と、ガラスフ
リットとを用いたものが知られている。
On the other hand, resistor compositions that do not use noble metals include those that use conductive fine powder such as indium oxide or tungsten carbide and glass frit.

しかしながら、これらはいずれも抵抗組成物を焼成する
とき、窒素などの不活性気圏中で焼成することが必要で
、空気中焼成に比べて、焼成が煩雑であり、かつ焼成コ
ストが大巾に高くなる。
However, in both of these methods, when firing the resistance composition, it is necessary to fire it in an inert atmosphere such as nitrogen, which makes the firing process more complicated and the firing cost significantly higher than firing in air. Become.

また抵抗緒特性も必ずしも満足できるものではなかった
Furthermore, the resistive characteristics were not necessarily satisfactory.

本発明はこのような問題点を解決することができたもの
であって、Co2SiまたはCoSiの一方またはその
混合物からなる導電性微粉末、およびガラスフリットを
用いることによって、高性能で、かつ安価なグレーズ抵
抗体を構成することのできる抵抗組成物を提供するもの
である。
The present invention has been able to solve these problems, and by using conductive fine powder made of Co2Si or CoSi or a mixture thereof, and glass frit, a high-performance and inexpensive product can be produced. The present invention provides a resistance composition that can constitute a glazed resistor.

以下、本発明の抵抗組成物について詳細に説明する。Hereinafter, the resistance composition of the present invention will be explained in detail.

導電性微粉末は、coとSiの化合物であるC 02
S tまたはCoS i、またはその混合物からなる。
The conductive fine powder is C 02 which is a compound of co and Si.
Consisting of S t or CoS i or a mixture thereof.

導電性微粉末は、coとSiの各微粉末を2=1(原子
比)またはl:1(原子比)で混合し、粉末のままか、
またはブロック状に成形した後、真空中または不活性気
圏中において、800〜1500℃の範囲内の温度で熱
処理して反応させ、Co2SiまたはCoSiを生成さ
せた後、微粉砕して作る。
The conductive fine powder can be prepared by mixing fine powders of cobalt and silicon at a ratio of 2=1 (atomic ratio) or 1:1 (atomic ratio), and either leaving it as a powder or
Alternatively, after forming into a block shape, it is heat-treated and reacted at a temperature within the range of 800 to 1500°C in a vacuum or an inert atmosphere to generate Co2Si or CoSi, and then finely pulverized.

CoとSiとの混合比率は、必ずしも化学量論的組成比
に限定するものではなく、多少のずれは特に問題ない。
The mixing ratio of Co and Si is not necessarily limited to the stoichiometric composition ratio, and a slight deviation is not particularly problematic.

導電材料の粉砕は、ステンレススチール棒であら粉砕し
、つぎに、らいかい機で粉砕し、さらにポットにメタノ
ールとともにいれ、ボールミル粉砕をする。
The conductive material is crushed using a stainless steel rod, then crushed using a grinder, and then placed in a pot with methanol and crushed using a ball mill.

粉砕時間は、24〜240時間程度で十分であるが、必
要に応じてより粉砕してもよい。
A grinding time of about 24 to 240 hours is sufficient, but the grinding time may be longer if necessary.

ガラスフリットは、たとえば硼酸(H2SO4) :
51.3重量饅、炭酸バリウム(BaC03): 34
.2重量%、酸化けい素(S iO□):3.4重量%
、炭酸カルシウム(CaCOs): 2.55重量饅お
よび酸化マグネシウム(MgO): 2.55重量饅を
混合し、アルミするつぼにいれ、1200℃の温度に加
熱して溶融させ、つぎにポットにメタノールとともにい
れ、10〜240時間ボールミル粉砕をして作製するガ
ラス原料は溶融条件下で酸化物にかわる。
Glass frit is made of, for example, boric acid (H2SO4):
51.3 weight cake, barium carbonate (BaC03): 34
.. 2% by weight, silicon oxide (SiO□): 3.4% by weight
, calcium carbonate (CaCOs): 2.55 weight rice cake and magnesium oxide (MgO): 2.55 weight rice cake were mixed, placed in an aluminum crucible, heated to a temperature of 1200°C to melt, and then poured methanol into the pot. The glass raw material, which is prepared by ball milling for 10 to 240 hours, turns into an oxide under melting conditions.

たとえば、H2SO4はB2O3に、BaCO3はBa
Oに、CaCO3はCaOに変化する。
For example, H2SO4 becomes B2O3, BaCO3 becomes Ba
O, CaCO3 changes to CaO.

導電性微粉末およびガラスフリットの粒径は0.1〜数
μのオーダが良好である。
The particle size of the conductive fine powder and glass frit is preferably on the order of 0.1 to several microns.

なお、ガラスフリットは必ずしも上記組成に限定するも
のではない。
Note that the glass frit is not necessarily limited to the above composition.

つぎに、導電性微粉末とガラスフリットを適当な比率で
混合し、印刷適正を与えるため、たとえば、テレピン油
とエチルセルローズを9:l(重量比)の比率に混合し
た有機質粘結剤を添加して、ペースト状の抵抗組成物を
作製する。
Next, the conductive fine powder and glass frit are mixed in an appropriate ratio, and an organic binder, such as a mixture of turpentine oil and ethyl cellulose in a ratio of 9:1 (weight ratio), is added in order to give printing properties. A paste-like resistance composition is prepared.

有機質粘結剤の添加量は、導電性微粉末とガラスフリッ
トの量logに対して5gが適当であるが、ガラスフリ
ットの量が多くなるにともない有機質粘結剤の量をやや
多くしたほうが良好である。
The appropriate amount of organic binder to be added is 5 g based on the log of the amount of conductive fine powder and glass frit, but as the amount of glass frit increases, it is better to slightly increase the amount of organic binder. It is.

このペースト状の抵抗組成物を200メツシユのスクリ
ーンメツシュを用いて、アルミナ磁器基板上に印刷し、
120℃で乾燥させてから、最高温度700〜900℃
に加熱したトンネル炉を通して焼威してグレーズ抵抗体
を作る。
This paste-like resistance composition was printed on an alumina porcelain substrate using a 200-mesh screen mesh,
After drying at 120℃, the maximum temperature is 700-900℃
A glazed resistor is made by incineration through a tunnel furnace heated to .

電極は抵抗体を印刷し焼成する前に、AgとPdとガラ
スフリットを含むペーストをスクリーン印刷し、乾燥後
、焼威したAg Pd電極を用いた。
The electrodes used were Ag-Pd electrodes in which a paste containing Ag, Pd, and glass frit was screen printed, dried, and fired before printing and firing the resistor.

しかし、Ag Pd電極のかわりに、金電極や銀電極を
用いてもよい。
However, a gold electrode or a silver electrode may be used instead of the Ag Pd electrode.

なお、抵抗組成物を磁器基板上に印刷する必要のない場
合、たとえば、体形の場合には、有機質粘結剤は特に必
要とはしない。
Note that when there is no need to print the resistive composition on a ceramic substrate, for example, in the case of a body shape, an organic binder is not particularly required.

このときは、導電性微粉末とガラスフリットの混合物の
みで、この混合物に少量の水を添加して成形し、高温に
加熱することによって抵抗体を作ることができた。
At this time, it was possible to make a resistor using only a mixture of conductive fine powder and glass frit by adding a small amount of water to this mixture, molding it, and heating it to a high temperature.

以下、実施例について説明する。Examples will be described below.

実施例 l Co、!−8iの各微粉末を2:l(原子比)に混合し
、ブロック状に成形した後、・真空中において1400
℃で2時間、熱処理して、C02S tを主成分とする
導電材料を作製した。
Example l Co,! -8i fine powders were mixed at a ratio of 2:l (atomic ratio) and formed into a block, and then
A conductive material containing C02St as a main component was produced by heat treatment at ℃ for 2 hours.

これを微粉砕して導電性微粉末とした。This was finely pulverized to obtain a conductive fine powder.

つぎに、この導電性微粉末とガラスフリットとを第1表
に示す割合で配合し、有機質粘結剤を添加して、抵抗組
成物を作製した。
Next, this conductive fine powder and glass frit were blended in the proportions shown in Table 1, and an organic binder was added to prepare a resistance composition.

この抵抗組成物をアルミナ磁器基板上に、200メツシ
ユのスクリーンメツシュを用いてスクリーン印刷し、1
20℃で乾燥させてから、最高温度850℃または80
0℃に加熱したトンネル炉を通して焼威し、抵抗体を作
製した。
This resistive composition was screen printed on an alumina porcelain substrate using a 200 mesh screen mesh.
After drying at 20℃, the maximum temperature is 850℃ or 80℃.
A resistor was produced by burning through a tunnel furnace heated to 0°C.

焼成後の膜厚は、約15μであった。The film thickness after firing was about 15μ.

25℃における面積抵抗値、25℃と125℃の温度間
で測定した抵抗温度係数を第1表に示す。
Table 1 shows the sheet resistance value at 25°C and the temperature coefficient of resistance measured between 25°C and 125°C.

負荷寿命特性は、12、5 mW71tdの負荷電力を
、周囲温度70℃で、15時間印加、0.5時間除去を
くりかえし、1ooo時間経過した時の抵抗値変化率で
評価した結果、すべての試料について、±1%以内であ
った。
The load life characteristics were evaluated by applying a load power of 12.5 mW71 td at an ambient temperature of 70°C for 15 hours and removing it for 0.5 hours, and evaluating the rate of change in resistance value after 100 hours. It was within ±1%.

また湿度特性は、周囲温度70℃、相対湿度90〜95
%中で測定し、1000時間後の抵抗値変化率で±1%
以内であった。
In addition, the humidity characteristics are as follows: ambient temperature: 70°C, relative humidity: 90-95°C.
±1% resistance change rate after 1000 hours
It was within

なお、試料1〜5ではCo2Siを192時間ボールミ
ル粉砕したものを、また試料6〜8ではC,02S s
を24時間ボールミル粉砕したものを用いた。
In addition, samples 1 to 5 were made by ball milling Co2Si for 192 hours, and samples 6 to 8 were made by using C,02S s
was ground in a ball mill for 24 hours.

実施例 2 CoとSiの各微粉末を1:l(原子比)に混合し、ブ
ロック状に底形した後、真空中において、1400℃で
熱処理して、CoSiを主成分とする導電材料を作った
Example 2 Co and Si fine powders were mixed at a ratio of 1:1 (atomic ratio), formed into a block shape, and then heat treated at 1400°C in vacuum to form a conductive material containing CoSi as the main component. Had made.

この導電材料を24時間ボールミル粉砕して導電性微粉
末を作製した。
This conductive material was ground in a ball mill for 24 hours to produce conductive fine powder.

つぎに、導電性微粉末とガラスフリットを第2表に示す
割合で配合し、有機質粘結剤を添加して抵抗組成物中本
を作製した。
Next, conductive fine powder and glass frit were blended in the proportions shown in Table 2, and an organic binder was added to prepare a resistive composition core.

この抵抗組成物を、実施例1と同様にして、アルミナ磁
器基板上に印刷し、乾燥後、焼威して抵抗体を作製した
This resistor composition was printed on an alumina ceramic substrate in the same manner as in Example 1, dried, and burned to produce a resistor.

面積抵抗値、抵抗温度係数を第2表に示す。Table 2 shows the area resistance value and temperature coefficient of resistance.

また、負荷寿命特性ならびに湿度特性は、実施例1と同
様にして測定した結果、すべての試料について、抵抗値
変化率は±1%以内であった。
Further, the load life characteristics and humidity characteristics were measured in the same manner as in Example 1, and as a result, the resistance value change rate was within ±1% for all samples.

実施例 3 Co2Si(l!−CoSiの各微粉末を、第3表に示
す割合で配合し、有機質粘結剤を添加して抵抗組成物を
作製した。
Example 3 Each fine powder of Co2Si (l!-CoSi) was blended in the proportions shown in Table 3, and an organic binder was added to prepare a resistance composition.

この抵抗組成物を、実施例1と同様にして、アルミナ磁
器基板上に印刷し、乾燥後、焼威し、抵抗体を作製した
This resistor composition was printed on an alumina ceramic substrate in the same manner as in Example 1, dried, and burned to produce a resistor.

25℃における面積抵抗値、25℃と125℃間で測定
した抵抗温度係数を第3表に示す。
Table 3 shows the sheet resistance value at 25°C and the temperature coefficient of resistance measured between 25°C and 125°C.

なお、CoSi、Co2Siともに24時間ボールミル
粉砕をしたものを用いた。
Note that both CoSi and Co2Si were used after being ground in a ball mill for 24 hours.

負荷寿命特性ならびに湿度特性は、実施例1と同様にし
て測定した結果、すべての試料について、抵抗値変化率
は、±1%以内であった。
The load life characteristics and humidity characteristics were measured in the same manner as in Example 1, and the resistance change rate was within ±1% for all samples.

以上、実施例から明らかなように、本発明のけい化ニッ
ケルとけい化コバルトの混合物からなる導電性微粉末と
、ガラスフリットとを含有する抵抗組成物を用いた抵抗
体は、低い抵抗値のものを容易に得られること、負荷寿
命特性、湿度特性などの抵抗緒特性が優れていること、
金属けい化物ならびにガラスからなるため不燃性である
こと、空気中で焼成して抵抗体を作製することができ、
またAg・やPd、RuO2などからなる貴金属系の抵
抗組成物に比べて、非常に安価であることなど多くの利
点を有するものである。
As is clear from the examples above, a resistor using a resistive composition containing a conductive fine powder made of a mixture of nickel silicide and cobalt silicide and glass frit of the present invention has a low resistance value. can be obtained easily, has excellent resistance characteristics such as load life characteristics and humidity characteristics,
Since it is made of metal silicide and glass, it is nonflammable and can be fired in air to create a resistor.
Furthermore, it has many advantages such as being extremely inexpensive compared to noble metal-based resistance compositions made of Ag., Pd, RuO2, etc.

したがって、混成集積回路用抵抗体や抵抗ネットワーク
だけでなく、電力用や一般用の各種固定抵抗器や可変抵
抗器あるいは電熱器用発熱体などにも使用でき、さらに
は、特に低い抵抗値のものは、一種の導体としても使用
することができるなど、その用途は広い。
Therefore, it can be used not only for resistors and resistance networks for hybrid integrated circuits, but also for various fixed resistors and variable resistors for electric power and general use, as well as heating elements for electric heaters. It has a wide range of uses, including being able to be used as a kind of conductor.

Claims (1)

【特許請求の範囲】[Claims] 1 Co2SiまたはCoS iの1種またはその混合
物からなる導電性微粉末、およびガラスフリフトを含有
し、この導電性微粉末とガラスフリットとの重量比が1
0:90〜80 : 20であることを特徴とする抵抗
組成物。
1 contains a conductive fine powder made of one type of Co2Si or CoSi or a mixture thereof, and a glass frit, and the weight ratio of the conductive fine powder and the glass frit is 1.
A resistance composition characterized in that the ratio is 0:90 to 80:20.
JP51054033A 1976-05-11 1976-05-11 resistance composition Expired JPS5853481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51054033A JPS5853481B2 (en) 1976-05-11 1976-05-11 resistance composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51054033A JPS5853481B2 (en) 1976-05-11 1976-05-11 resistance composition

Publications (2)

Publication Number Publication Date
JPS52136391A JPS52136391A (en) 1977-11-15
JPS5853481B2 true JPS5853481B2 (en) 1983-11-29

Family

ID=12959265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51054033A Expired JPS5853481B2 (en) 1976-05-11 1976-05-11 resistance composition

Country Status (1)

Country Link
JP (1) JPS5853481B2 (en)

Also Published As

Publication number Publication date
JPS52136391A (en) 1977-11-15

Similar Documents

Publication Publication Date Title
US3682840A (en) Electrical resistor containing lead ruthenate
US4060663A (en) Electrical resistor glaze composition and resistor
US4657699A (en) Resistor compositions
CN104464991A (en) Method for preparing linear positive temperature coefficient thermistor slurry
JPS6038802B2 (en) Electrical resistors and their manufacture
US4323484A (en) Glaze resistor composition
US3951672A (en) Glass frit containing lead ruthenate or lead iridate in relatively uniform dispersion and method to produce same
US3836340A (en) Vanadium based resistor compositions
US4684543A (en) Starting mixture for an insulating composition comprising a lead glass, silk-screening ink comprising such a mixture, and the use of said ink for the protection of hybrid microcircuits on ceramic substrates
JPS5931841B2 (en) Resistance materials and resistors made from them
JPS5853481B2 (en) resistance composition
JP2005209744A (en) Thick film resistor paste, thick film resistor, electronic component
JPS5853485B2 (en) resistance composition
JPS5845161B2 (en) resistance composition
JPS5836481B2 (en) resistance composition
JPH0135481B2 (en)
JPS5832441B2 (en) Glaze products
JP2002198203A (en) Resistor paste, thick-film resistor formed of the same, and circuit board equipped with the thick-film resistor
JPH08186004A (en) Resistor material, resistor paste and resistor using the same
JPS6250041B2 (en)
JPS62256407A (en) Manufacture of resistive compound
JPS5820122B2 (en) Thermistor parts
JPH01103801A (en) Resistance composition
JPS6059705A (en) Thermistor material
JPS62209801A (en) Glaze resistor paste