JPS62255438A - Method for partially hydrogenating nucleus of aromatic hydrocarbon - Google Patents

Method for partially hydrogenating nucleus of aromatic hydrocarbon

Info

Publication number
JPS62255438A
JPS62255438A JP61097364A JP9736486A JPS62255438A JP S62255438 A JPS62255438 A JP S62255438A JP 61097364 A JP61097364 A JP 61097364A JP 9736486 A JP9736486 A JP 9736486A JP S62255438 A JPS62255438 A JP S62255438A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
hydrogenation
solution
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61097364A
Other languages
Japanese (ja)
Inventor
Shuichi Niwa
修一 丹羽
Fujio Mizukami
富士夫 水上
Tatsuo Murakami
達夫 村上
Mitsunori Nishida
光徳 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fuji Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Chemical Industries Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP61097364A priority Critical patent/JPS62255438A/en
Publication of JPS62255438A publication Critical patent/JPS62255438A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:In partially hydrogenating an aromatic hydrocarbon by reacting the aromatic hydrocarbon with a H2 gas in the presence of water and a hydrogenating catalyst, the catalyst obtained by dispersing Ru and Cu as main components into a solid derived from metallic hydroxide colloid is used. CONSTITUTION:In partially hydrogenating nucleus of an anomatic hydrocarbon in the presence of water, a catalyst obtained by dispersing Ru and Cu as main components into a solid derived from metallic hydroxide colloid is used. The catalyst is prepared by blending a solution of the metallic hydroxide colloid (e.g. silicic acid sol, alumina sol or titania sol) with a solution of a Tu salt and a Cu salt in an organic solvent, subjecting the blend to spray drying and heat-treating the spray dried blend at 200-800 deg.C in a H2 atmosphere. A polar solvent (e.g. polyhydric alcohol or acetylacetone) having multiple coordination ability or crosslinking coordination ability is preferable as the organic solvent. The amount of water used is 0.01-20pts.wt based on 1pts.wt. raw material.

Description

【発明の詳細な説明】 本発明は、芳香族炭化水素の部分核水素化法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for partial nuclear hydrogenation of aromatic hydrocarbons.

芳香族炭化水素の部分核水素化物、たとえば。Partial nuclear hydrides of aromatic hydrocarbons, e.g.

シクロヘキセンやアルキルシクロヘキセン等は。Cyclohexene, alkylcyclohexene, etc.

合成原料として重要な化合物であり、その工業的に有利
な製法の開発が望まれている。しかしながらこのような
芳香族炭化水素の部分核水素化物の製造は困難であり、
芳香族炭化水素をA常の方法で水素化すると芳香核は部
分水)ご化されずに完全水素化され、ンクロパラフィン
を笑える。
It is an important compound as a synthetic raw material, and it is desired to develop an industrially advantageous manufacturing method. However, it is difficult to produce such partial nuclear hydrides of aromatic hydrocarbons;
When aromatic hydrocarbons are hydrogenated by a conventional method, the aromatic nuclei are completely hydrogenated without being partially oxidized, and chromoparaffins are completely hydrogenated.

従来、このような部分核二に素化に関する方法としては
、アルカリ全屈の存在下、液体アンモニアを溶媒として
水素化を行う方法(西ドイツ特許第1443377号お
よび第1793757号明細書)が知られている。この
方法は、比較的良好な部分核水素化物の収率を手えるも
のの、複雑な反応繰作を必要とするため工業的方法とし
ては不適当である。
Hitherto, as a method for such partial nuclear dihydration, there has been known a method in which hydrogenation is carried out using liquid ammonia as a solvent in the presence of total alkali concentration (West German Patent Nos. 1443377 and 1793757). There is. Although this method provides a relatively good yield of partial nuclear hydrides, it is unsuitable as an industrial method because it requires complicated reaction procedures.

−−一方、工業的に見て比較的興味ある方法として、水
の存在下において、ルテニウム触媒を用いて水素化を行
う方法が知られている(特開昭53−48938号、5
3−85849号、 53−83350号等)、この場
合のルテニウム触媒は、シリカやアルミナ等の多孔質担
体にルテニウムを担持させたものであるが1部分核水素
化物の収率は低く、工業的見地からは末だ満足し得るも
のではなかった。
--On the other hand, a method of hydrogenation using a ruthenium catalyst in the presence of water is known as a relatively interesting method from an industrial perspective (Japanese Patent Application Laid-Open No. 53-48938, 5
3-85849, 53-83350, etc.), the ruthenium catalyst in this case is one in which ruthenium is supported on a porous carrier such as silica or alumina, but the yield of partial nuclear hydride is low and it is not suitable for industrial use. From my point of view, it was completely unsatisfactory.

本発明者らはさきにルテニウムおよび銅をケイ素アルコ
キシドの加水分解生成物から誘導されたシリカゲル中に
均一に分散させた触媒を用いることによる芳香族炭化水
素の部分水素化法(特開昭59−155328号)を見
出した。この方法に用いる触媒はルテニウム化合物およ
び銅化合物を含む極性溶媒とケイ素アルコキシド溶液を
混合し均一な溶液とし、加水分解により均一なゾルから
ゾル全体をゲル化させることによって得られている。こ
の手法は、従来の含侵法による触媒の調製が担体となる
固体表面に溶液中の触媒成分を担持させる固−液反応で
あったのに対して、担体と触媒成分を溶液中で均一とな
した後に担体成分をゲル化させ、その固体表面とに触媒
成分を担持させるという液−液反応による担持法といえ
る。液−液反応であるから均一な担持触媒が得られると
いう特徴があるが、工業的見地からはケイ素アルコキシ
ドの価格が高いこと、加水分解により得られたゲルの取
扱いの点などの欠点も有している。
The present inventors previously proposed a method for partial hydrogenation of aromatic hydrocarbons (Japanese Unexamined Patent Application Publication No. 59-111) using a catalyst in which ruthenium and copper were uniformly dispersed in silica gel derived from the hydrolysis product of silicon alkoxide. 155328). The catalyst used in this method is obtained by mixing a polar solvent containing a ruthenium compound and a copper compound with a silicon alkoxide solution to form a uniform solution, and then gelling the entire sol by hydrolysis. In contrast to the conventional catalyst preparation using the impregnation method, which involves a solid-liquid reaction in which catalyst components in a solution are supported on the solid surface of a support, this method allows the support and catalyst components to be uniformly supported in a solution. This can be said to be a supporting method based on a liquid-liquid reaction, in which the carrier component is gelled after the reaction, and the catalyst component is supported on the solid surface. Since it is a liquid-liquid reaction, it is characterized by the ability to obtain a uniformly supported catalyst, but from an industrial standpoint it also has drawbacks such as the high cost of silicon alkoxide and the difficulty in handling the gel obtained by hydrolysis. ing.

そこで本発明者は、この液−液反応によって担持するこ
とに着目し、担体となる化合物の金属水酸化物コロイド
溶液を使用して得られる担持ルテニウムおよび銅触媒が
高い触媒活性を持つことを見出し、該触媒を用いること
を特徴とする芳香族炭化水素の部分核水素化法を提供す
るものである。
Therefore, the present inventors focused on supporting by this liquid-liquid reaction and found that supported ruthenium and copper catalysts obtained using a metal hydroxide colloidal solution of a compound serving as a support have high catalytic activity. , provides a method for partial nuclear hydrogenation of aromatic hydrocarbons characterized by using the catalyst.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用される触媒は以下の如く製造される
。すなわち、金属水酸化物コロイド溶液とルテニウム化
合物および銅化合物を溶解させた有機溶媒溶液を混合し
、加熱攪拌する。ここにおいて有機溶媒としては多座配
位能を有する極性溶媒が必須となる。つまり、金属水酸
化物ゲルの表面の水酸基とルテニウムおよび銅の金属イ
オンとを多座配位能を有する極性溶媒が架橋した形で結
合させ、ゲルの表面に均一に分散させる。ついで、この
混合溶液を乾燥することにより固体状の金属水酸化物ゲ
ル表面に均一にルテニウム化合物と銅化合物が分散した
金属水酸化物担持ルテニウム・銅化合物が得られる。金
属水醜化物コロイド溶液としては、ケイ酸ゾル、アルミ
ナゾル、チタニアゾルなどが選択され、あるいは、これ
らの1種以北を選択するも可能である。ゾルの分散媒は
水性であっても、有機性であっても良く、有機性の場合
ルテニウム化合物、銅化合物を溶解している極性溶媒溶
液と相互に溶解しあうことを必要とする。
The catalyst used in the present invention is produced as follows. That is, a metal hydroxide colloidal solution and an organic solvent solution in which a ruthenium compound and a copper compound are dissolved are mixed and heated and stirred. Here, as the organic solvent, a polar solvent having polydentate coordination ability is essential. That is, the hydroxyl groups on the surface of the metal hydroxide gel and the metal ions of ruthenium and copper are bonded together in a cross-linked manner by a polar solvent having multidentate coordination ability, and are uniformly dispersed on the surface of the gel. Then, by drying this mixed solution, a metal hydroxide-supported ruthenium/copper compound in which the ruthenium compound and the copper compound are uniformly dispersed on the surface of the solid metal hydroxide gel is obtained. As the metal water oxide colloidal solution, silicate sol, alumina sol, titania sol, etc. are selected, or it is also possible to select one of these or more. The dispersion medium of the sol may be aqueous or organic, and in the case of organic, it is required to be mutually dissolved with the polar solvent solution in which the ruthenium compound and copper compound are dissolved.

前記ルテニウム化合物の有機溶媒溶液としてはエチレン
グリコール、プロピレングリコール、グリセリン等の多
価アルコール類、アセチルアセト7等の極性イg機溶媒
を挙げることができ、それらの溶媒に塩化ルテニウムや
臭化ルテニウム等のルテニウム塩や、アセチルアセトン
ルテニウム等の他、エチレンジアミン、フェナンスロリ
ン、ビピリジル等のキレート化剤と結合したルテニウム
アンミン錯体、およびカルボニルルテニウム錯体やルテ
ノセン等の有機ルテニウム錯体、あるいはルテニウムア
ルコキシド等のルテニウム化合物を溶解させた溶液を用
いることができる。また、銅化合物の8奴についても、
前記と同様にして得ることができる。
Examples of the organic solvent solution of the ruthenium compound include polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin, and polar organic solvents such as acetylacetate 7. Among these solvents, ruthenium chloride, ruthenium bromide, etc. In addition to ruthenium salts such as ruthenium acetylacetonate, ruthenium ammine complexes combined with chelating agents such as ethylenediamine, phenanthroline, and bipyridyl, organic ruthenium complexes such as carbonylruthenium complexes and ruthenocene, and ruthenium compounds such as ruthenium alkoxides. A dissolved solution can be used. Also, regarding the 8 copper compounds,
It can be obtained in the same manner as above.

本発明で用いる前記金属酸化水物ゲル中に分散させたル
テニウム−m触媒において、ルテニウム担持礒は、金属
換算で0.01〜50玉簗%、好ましくは0.1〜20
屯賃%、銅担持省は金属換算でルテニラム担持賃の2〜
20重量%である。金属水酸化物コロイド溶液とルテニ
ウム化合物および銅化合物を溶解させた有機溶媒溶液の
混合方法は、特に限定するものではない。加熱攪拌時の
温度は室温ないし 100℃、好ましくは40ないし8
0℃である。
In the ruthenium-m catalyst dispersed in the metal oxide hydride gel used in the present invention, the amount of supported ruthenium is 0.01 to 50%, preferably 0.1 to 20% in terms of metal.
Tonnage rate%, copper carrying rate is 2 to 2 of the ruthenium carrying rate in metal equivalent
It is 20% by weight. The method of mixing the metal hydroxide colloid solution and the organic solvent solution in which the ruthenium compound and the copper compound are dissolved is not particularly limited. The temperature during heating and stirring is room temperature to 100°C, preferably 40 to 8°C.
It is 0°C.

、に92明において用いる触媒は、使用に際し1通常の
水素ガス流通還元法で、還元処理を行って。
Before use, the catalyst used in 92 Ming was subjected to a reduction treatment using a conventional hydrogen gas flow reduction method.

活性化する。この場合の還元処理温度は50〜900℃
、好ましくは200〜800℃である0本発明の触媒は
この還元処理後に反応器に充填使用する0本発明におけ
る芳香族炭化水素の部分核水素化法は、水ど前記ルテニ
ウム・銅触媒の存在下において、芳香族炭化水素と水素
カスとを反応させることによって実施される。この場合
、水の使用量は、yJ香旌炭化水素1重量部に対して0
.01〜20重清部、好ましくは0.1〜5重清部であ
り、触媒の使用量は芳香族炭化水素に対し、0,01〜
50重量%好ましくは、0.1〜1重量%である0反応
温度は0〜300℃、好ましくは50〜220℃であり
、反応圧力は0.O1〜 500kg/c履2.好まし
くは1〜200kg/am;  である。
Activate. The reduction treatment temperature in this case is 50-900℃
, preferably from 200 to 800°C. The catalyst of the present invention is charged into a reactor after this reduction treatment. The method described below is carried out by reacting aromatic hydrocarbons with hydrogen scum. In this case, the amount of water used is 0 for 1 part by weight of yJ Xiangjeong hydrocarbon.
.. 01 to 20 parts of heavy liquid, preferably 0.1 to 5 parts of heavy liquid, and the amount of catalyst used is 0.01 to 20 parts of heavy liquid relative to the aromatic hydrocarbon.
50% by weight, preferably 0.1-1% by weight. The reaction temperature is 0-300°C, preferably 50-220°C, and the reaction pressure is 0. O1 ~ 500kg/c 2. Preferably it is 1 to 200 kg/am;

本発明の方〃、を天地する場合1反応は連続式または回
分式で行うことができ、必りに応じ、抽シJ添加物、た
とえば、リン酸コバルト、硫酩コバルト、塩化ニッケル
、塩化鉄などの金1ヱ塩やN a OHlKOH等のア
ルカリ、[lなどの酸を反応系に添加することができる
0本発明においては反応溶媒の使用は特に心安とされな
いが、エタノール、インプロピルアルコール、ジオキサ
ン、ヘキサン ツメチルホルムアミド、ジメチルスルホ
キンド等の溶媒を用いることができる。未発明で原料と
して用いる芳香族炭化水素の具体例としては、たとえば
、ベンゼン、トルエン、キシレン等が挙げられる。
In the case of the method of the present invention, the reaction can be carried out continuously or batchwise, and if necessary, extracting additives, such as cobalt phosphate, cobalt sulfur, nickel chloride, iron chloride, may be added. In the present invention, it is not particularly safe to use reaction solvents, but gold salts such as ethanol, alkalis such as NaOHlKOH, acids such as [l] can be added to the reaction system, but ethanol, inpropyl alcohol, Solvents such as dioxane, hexane methylformamide, dimethylsulfoquine, etc. can be used. Specific examples of aromatic hydrocarbons that are not yet invented and can be used as raw materials include benzene, toluene, xylene, and the like.

次に本発明を実施例によりさらに詳細に説明する。なお
、実施例において示した転化率及び選択率はいずれも反
応により生成した有機液層をガスクロマトグラフィーで
分析してそれぞれ指定する物質について次式によって求
めた値である。
Next, the present invention will be explained in more detail with reference to Examples. It should be noted that the conversion rates and selectivities shown in the Examples are both values obtained by analyzing the organic liquid layer produced by the reaction by gas chromatography and using the following formula for each designated substance.

転化率(モル%)= [1−(A/B)コ×100A・
・・・・反応液中の芳香族炭化水素モル数B・・・・・
原料芳香族炭化水素モル数選択率(モル%)=  C/
DX100C・・・・・シクロオレフィンのモル数D・
・・・・反応生成物の全モル数 参考例1(触媒調整法) 300mlの三角フラスコに塩化ルテニウム 0.52
g塩化第二銅0.05gを取り、エチレングリコール5
6gを加え60℃で2時間攪拌する。この液に75.1
gの重版ケイ酸ゾル(触媒化成製S−208)を加えさ
らに2時間攪拌する。得られた黒縁色の混合溶液を−熱
、&iL入口温度200℃、出口温度 120℃で噴霧
乾燥すると黒緑色固体21gが得られる。これは、ルテ
ニウム含量1改量%、銅含贋0.1重量%のシリカゲル
である。
Conversion rate (mol%) = [1-(A/B)×100A・
...Number of moles of aromatic hydrocarbon in the reaction solution B...
Raw material aromatic hydrocarbon mole selectivity (mol%) = C/
DX100C...Number of moles of cycloolefin D.
...Total number of moles of reaction products Reference example 1 (catalyst preparation method) Ruthenium chloride 0.52 in a 300 ml Erlenmeyer flask
g Take 0.05 g of cupric chloride, add 5 g of ethylene glycol
Add 6g and stir at 60°C for 2 hours. 75.1 for this liquid
g of reprinted silicic acid sol (S-208 manufactured by Catalyst Kasei) was added and stirred for further 2 hours. The obtained black-rimmed mixed solution is spray-dried at -heat, &iL inlet temperature of 200°C and outlet temperature of 120°C to obtain 21 g of a black-green solid. This is a silica gel with a ruthenium content of 1% by weight and a copper content of 0.1% by weight.

参考例2(触媒調整法) 300mlの三角フラスコに塩化ルテニウム1.Og、
塩化第2銅0.085gを取り、エチレングリコール1
11.8gを加え60℃で1時間攪拌する。この液にア
ルミナツル(B産化学製アルミナゾル100)を加えて
2時間攪拌する。混合溶液は黄色からうす線色に変化す
る。この後、参考例1と同様の方法にて80.1gのル
テニウム含Hl il”(礒%銅含′a o 、 工□
7t。
Reference Example 2 (Catalyst Preparation Method) Ruthenium chloride 1. Og,
Take 0.085 g of cupric chloride and add 1 ethylene glycol
Add 11.8 g and stir at 60°C for 1 hour. Alumina sol (Alumina sol 100 manufactured by B-san Kagaku) is added to this liquid and stirred for 2 hours. The mixed solution changes from yellow to a pale line color. Thereafter, 80.1 g of ruthenium-containing HL (10% copper-containing,
7t.

ψ%のアルミナゲルを得る。Obtain ψ% alumina gel.

実施例1 参考例1で得たルテニウム含量1!rLj11タロ、銅
0.1重量%のシリカゲル2gを14時6交の水素気流
中500℃で8時間還元処理し活性化した。
Example 1 Ruthenium content obtained in Reference Example 1 is 1! 2 g of silica gel containing rLj11 taro and 0.1% by weight of copper was activated by reduction treatment at 500° C. for 8 hours in a hydrogen stream of 6 hours at 14 hours.

次に、内容g 500m lのオートクレーブに、ベン
ゼン160m1 、水100m1を仕込み、さらに前記
の活性化したルテニウムΦ銅含有シリカゲル2gを加え
た後、容黒内部空間を十分に水〕仁カスと置換し、水素
圧カフ0kg/ cm2 、温度 180℃の条件下“
でy応を行った。この場合、電磁誘導回転式により、8
00回転/分で攪拌を行った0反応液を適宜抜き出して
ガスクロマトグラフィーで、分析した結果反応時間1時
間で、ベンゼン転化率77.5モルヲ≦、シクロヘキセ
7収率2日、6デ6の成、債を得た。
Next, 160 ml of benzene and 100 ml of water were charged into an autoclave with a content of 500 ml, and 2 g of the activated ruthenium Φ copper-containing silica gel was added, and the internal space of the body was sufficiently replaced with water and keratin scum. , under the conditions of hydrogen pressure cuff 0 kg/cm2 and temperature 180°C.
I did a response. In this case, by electromagnetic induction rotation type, 8
After stirring at 00 revolutions/min, the reaction solution was appropriately extracted and analyzed by gas chromatography. The results showed that the reaction time was 1 hour, the conversion rate of benzene was 77.5 mol≦, the yield of cyclohexene 7 was 2 days, and the yield of 6 de 6 and obtained a bond.

実施例2 参考例2で得たルテニウム含:、?−1七4デ5.銅0
.1ffC;J+C%のアルミナゲル2gを毎時61の
水素気流中300℃で8時間量元処理し活性化した。
Example 2 Ruthenium-containing obtained in Reference Example 2:,? -174 de5. Copper 0
.. 2 g of alumina gel containing 1ffC; J+C% was activated by mass treatment at 300° C. for 8 hours in a hydrogen flow of 61/hour.

次に、内容Ji500a+lのオートクレーブに、ベン
ゼン180+a1.水1001を仕込み、さらに前記の
活性化したルテニウム#銅含有シリカゲル2gを加えた
後、容器内部空間を十分に水素ガスと置換し、水素圧カ
フ0kg/cm7 、温度 180℃の条件下で反応を
行った。この場合、電磁誘導回転式により 800回転
/分で攪拌を行った0反応液を適宜抜き出してガスクロ
マトグラフィーで1分析した結果1反応時間1時間で、
ベンゼン転化率40.3モル%、シクロヘキセン収J 
21.0%の成績を得た。
Next, add benzene 180+a1. After charging 1,001 liters of water and adding 2 g of the activated ruthenium/copper-containing silica gel, the interior space of the container was sufficiently replaced with hydrogen gas, and the reaction was carried out under the conditions of a hydrogen pressure cuff of 0 kg/cm7 and a temperature of 180°C. went. In this case, the reaction solution was stirred at 800 rpm using an electromagnetic induction rotary system, and the reaction solution was extracted as needed and analyzed using gas chromatography.
Benzene conversion rate 40.3 mol%, cyclohexene yield J
A score of 21.0% was obtained.

実施例3〜6 参考例1で得たルテニウム含量1重量%、銅0、lli
%のシリカゲル2gを毎時61の水素気流中 400℃
で8時間量元処理し活性化した。
Examples 3 to 6 Ruthenium content 1% by weight, copper 0, lli obtained in Reference Example 1
% silica gel at 400°C in a hydrogen flow of 61% per hour.
The mixture was treated and activated for 8 hours.

実施例1の反応溶液中のベンゼンのかわりに、トルエン
、エチルベンゼン、クメン+  t −フチルベンゼン
などをそれぞれ用い、装置や実験条件を同様にして反応
を行った。その結果を表−1に示す。
In place of benzene in the reaction solution of Example 1, toluene, ethylbenzene, cumene+t-phthylbenzene, etc. were used, and the reaction was carried out using the same apparatus and experimental conditions. The results are shown in Table-1.

(以下余白)(Margin below)

Claims (5)

【特許請求の範囲】[Claims] (1)芳香族炭化水素を水および水素化触媒の存在下、
水素ガスと反応させて部分水素化する方法において、該
水素化触媒として、金属水酸化物コロイドから誘導され
る固体中に、主成分としてルテニウムおよび銅を分散し
た触媒を用いることを特徴とする芳香族炭化水素の部分
核水素化法。
(1) aromatic hydrocarbon in the presence of water and a hydrogenation catalyst,
A method of partial hydrogenation by reaction with hydrogen gas, characterized in that the hydrogenation catalyst is a catalyst in which ruthenium and copper are dispersed as main components in a solid derived from a metal hydroxide colloid. Partial nuclear hydrogenation method for group hydrocarbons.
(2)水素化触媒が金属水酸化物コロイド溶液とルテニ
ウム塩および銅塩を溶解した有機溶媒溶液を混合溶液と
なし、次いで乾燥したものを水素雰囲気下200ないし
800℃で加熱処理したものである特許請求の範囲第1
項記載の芳香族炭化水素の部分核水素化法。
(2) The hydrogenation catalyst is a mixed solution of a metal hydroxide colloidal solution and an organic solvent solution in which ruthenium salts and copper salts are dissolved, which is then dried and heat-treated at 200 to 800°C in a hydrogen atmosphere. Claim 1
The method for partial nuclear hydrogenation of aromatic hydrocarbons described in .
(3)金属水酸化物コロイド溶液が、ケイ酸ゾル、アル
ミナゾル、チタニアゾルの1種あるいは2種以上から選
ばれる特許請求の範囲第1項または第2項記載の芳香族
炭化水素の部分核水素化法。
(3) Partial nuclear hydrogenation of aromatic hydrocarbons according to claim 1 or 2, wherein the metal hydroxide colloidal solution is selected from one or more of silicic acid sol, alumina sol, and titania sol. Law.
(4)有機溶媒が、多座あるいは架橋配位能を有する極
性溶媒の1種あるいは2種以上から選ばれる特許請求の
範囲第2項記載の芳香族炭化水素の部分核水素化法。
(4) The method for partial hydrogenation of aromatic hydrocarbons according to claim 2, wherein the organic solvent is selected from one or more polar solvents having polydentate or crosslinking coordination ability.
(5)乾燥が、噴霧乾燥する方法である特許請求の範囲
第2項記載の芳香族炭化水素の部分核水素化法。
(5) The method for partial nuclear hydrogenation of aromatic hydrocarbons according to claim 2, wherein the drying is a spray drying method.
JP61097364A 1986-04-26 1986-04-26 Method for partially hydrogenating nucleus of aromatic hydrocarbon Pending JPS62255438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097364A JPS62255438A (en) 1986-04-26 1986-04-26 Method for partially hydrogenating nucleus of aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097364A JPS62255438A (en) 1986-04-26 1986-04-26 Method for partially hydrogenating nucleus of aromatic hydrocarbon

Publications (1)

Publication Number Publication Date
JPS62255438A true JPS62255438A (en) 1987-11-07

Family

ID=14190447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097364A Pending JPS62255438A (en) 1986-04-26 1986-04-26 Method for partially hydrogenating nucleus of aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS62255438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681534A1 (en) * 1991-09-20 1993-03-26 Rhone Poulenc Chimie CONCENTRATED COLLOUID SOLUTIONS OF UNCERTAINED MONOCRYSTALLINE PARTICLES OF METAL OXIDES, PROCESS FOR PREPARING THEM AND THEIR APPLICATION TO THE PRODUCTION OF FILMS
US5334790A (en) * 1992-02-26 1994-08-02 Catalytica Process and catalyst for partially hydrogenating aromatics to produce cycloolefins
US5414171A (en) * 1992-02-26 1995-05-09 Catalytica, Inc. Process and washed catalyst for partially hydrogenating aromatics to produce cycloolefins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681534A1 (en) * 1991-09-20 1993-03-26 Rhone Poulenc Chimie CONCENTRATED COLLOUID SOLUTIONS OF UNCERTAINED MONOCRYSTALLINE PARTICLES OF METAL OXIDES, PROCESS FOR PREPARING THEM AND THEIR APPLICATION TO THE PRODUCTION OF FILMS
US5334790A (en) * 1992-02-26 1994-08-02 Catalytica Process and catalyst for partially hydrogenating aromatics to produce cycloolefins
US5414171A (en) * 1992-02-26 1995-05-09 Catalytica, Inc. Process and washed catalyst for partially hydrogenating aromatics to produce cycloolefins
US5424264A (en) * 1992-02-26 1995-06-13 Catalytica, Inc. Process and catalyst for partially hydrogenating aromatics to produce cycloolefins

Similar Documents

Publication Publication Date Title
JP4345038B2 (en) Process for selective hydrogenation of unsaturated compounds
JP4374557B2 (en) Method for preparing catalyst usable in conversion reaction of organic compound
JPH04354539A (en) Catalytic activity gel
JP2814711B2 (en) Method for producing cycloolefin
JPH0352475B2 (en)
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
US4780448A (en) Preparation of a catalyst containing copper and silica
KR930005254B1 (en) Method for producing cycloolefins
JPH01176451A (en) Hydrogenation catalyst
JPS63255253A (en) Production of amines
Li et al. Selective Phenol hydrogenation under mild condition over Pd catalysts supported on Al 2 O 3 and SiO 2
WO2018159599A1 (en) Method for producing transition metal-isocyanide complex
JPS62255438A (en) Method for partially hydrogenating nucleus of aromatic hydrocarbon
JP4221684B2 (en) Catalytic hydrogenation reforming method
JPS58219132A (en) Manufacture of cyclohexanol and cyclohexanone
JPS62130208A (en) Production of finely divided metal powder
CN114588929A (en) Supported copper nanocluster catalyst and application thereof in AHA coupling reaction
JP3159010B2 (en) Method for producing α-phenylethyl alcohol
JPS622849B2 (en)
JPH0229053B2 (en)
CN107774259B (en) Fischer-Tropsch synthesis catalyst and application thereof
WO2020098162A1 (en) Catalyst for preparing maleic acid by catalytic oxidation of furfural, and preparation method therefor and application thereof
JPH0329049B2 (en)
JPS6245544A (en) Production of cycloolefin
SU802264A1 (en) Method of preparing n-alkylaromatic amines