JPH04354539A - Catalytic activity gel - Google Patents

Catalytic activity gel

Info

Publication number
JPH04354539A
JPH04354539A JP3355266A JP35526691A JPH04354539A JP H04354539 A JPH04354539 A JP H04354539A JP 3355266 A JP3355266 A JP 3355266A JP 35526691 A JP35526691 A JP 35526691A JP H04354539 A JPH04354539 A JP H04354539A
Authority
JP
Japan
Prior art keywords
gel
catalytically active
sio2
temperature
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3355266A
Other languages
Japanese (ja)
Inventor
Angela Carati
アンゼラ・カラーチ
Enrico Davini
エンリコ・ダビーニ
Mario G Clerici
マリオ・ガブリエレ・クレリーチ
Giuseppe Bellussi
ジュセッペ・ベルッシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnamProgetti SpA
Eni Tecnologie SpA
Original Assignee
SnamProgetti SpA
Eniricerche SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SnamProgetti SpA, Eniricerche SpA filed Critical SnamProgetti SpA
Publication of JPH04354539A publication Critical patent/JPH04354539A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/14Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To provide amorphous gel exhibiting a catalyst activity in various reactions according to a supported metal oxide. CONSTITUTION: A soln. comprising (1) tetraalkyl ammonium hydride in which an alkyl group is an ethyl group, n-propyl group or n-butyl group, (2) a soluble silicon compd. to be hydrolyzed into SiO2 , and (3) one or more soluble salt or acid of metal is prepared. The obtained soln. is heated and gellated. Gel is dried and calcined at first in the atmosphere and then in an oxidizing atmosphere, to prepare amorphous gel having a catalyst activity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は、触媒活性を有する1以上の金属
酸化物が分散されたシリカマトリックスからなる触媒活
性ゲルに係る。本発明は、このゲルの触媒としての使用
にも係る。
The present invention relates to a catalytically active gel consisting of a silica matrix in which one or more catalytically active metal oxides are dispersed. The invention also relates to the use of this gel as a catalyst.

【0002】当分野では、触媒活性を有するある種の無
定形シリカ−アルミナゲルは公知である。例えば、ヨー
ロッパ特許出願第160,145号には、孔の平均直径
が典型的に50ないし500Åであり、シリカ/アルミ
ナの比が典型的に1/1ないし10/1である無定形シ
リカ−アルミナを使用した芳香族炭化水素のアルキル化
法が開示されている。M.R.S.Manton及びJ
.C.Davidtzは、Journal of Ca
talysis,60,pp.156−166(197
9)において、制御された孔容積を有する無定形シリカ
−アルミナ触媒の合成法について述べている。これらの
触媒は典型的には3.7ないし15nm(37ないし1
50Å)の直径を有している。イタリー国特許第1,2
19,692号には、X線分析上で無定形であり、微孔
性であり、触媒活性を有するシリカ−アルミナゲルが開
示されている。
Certain amorphous silica-alumina gels with catalytic activity are known in the art. For example, European Patent Application No. 160,145 describes amorphous silica-alumina in which the average pore diameter is typically 50 to 500 Å and the silica/alumina ratio is typically 1/1 to 10/1. A process for the alkylation of aromatic hydrocarbons is disclosed. M. R. S. Manton and J.
.. C. Davidtz is the Journal of Ca
taxis, 60, pp. 156-166 (197
9) describes a method for the synthesis of amorphous silica-alumina catalysts with controlled pore volume. These catalysts are typically 3.7 to 15 nm (37 to 1
50 Å) in diameter. Italian patents 1 and 2
No. 19,692 discloses a silica-alumina gel that is amorphous by X-ray analysis, microporous, and has catalytic activity.

【0003】発明者らは、1以上の金属酸化物が均一に
分散され、微孔性領域内に単一様式の孔(直径約10Å
)を有するマトリックスでなる触媒活性のゲルを新たに
見出し、本発明に至った。このゲルは、含有された種々
の酸化物に応じて異なった反応(主として酸化反応及び
酸触媒反応)において触媒活性を発揮する。これによれ
ば、本発明は、酸触媒反応又は酸化反応において触媒活
性を有し;チタン、ガリウム、クロム、鉄、ジルコニウ
ム、バナジウム、モリブデン、亜鉛、コバルト、リン及
びスズの中から選ばれる触媒活性を有する1以上の金属
の酸化物が均一に分散されたシリカマトリックスでなり
;微孔性領域内に単一様式の孔及び大きい表面積を有し
;SiO2/金属酸化物のモル比が5/1ないし300
/1であるX線分析上無定形のゲルを提供する。前記ゲ
ルは、(a) (1)アルキル基がエチル基、n−プロ
ピル基及びn−ブチル基の中から選ばれるものであるテ
トラアルキルアンモニウムヒドロキシド(TAA−OH
);(2)SiO2に加水分解される可溶性ケイ素化合
物;(3)1以上の金属(その酸化物が触媒活性を発揮
する)の1以上の可溶性塩又は酸を、SiO2/金属酸
化物もモル比が5/1ないし300/1であり、TAA
−OH/SiO2のモル比が0.05/1ないし0.5
/1であり、H2O/SiO2のモル比が5/1ないし
40/1である量で前記各構成成分を含有する水溶液を
調製し;(b)このようにして得られた溶液を加熱して
ゲル化させ;(c)ゲルを乾燥させ;(d)初めに不活
性雰囲気において、ついで酸化雰囲気において乾燥ゲル
をか焼することによって得られる。
[0003] The inventors have discovered that one or more metal oxides are uniformly dispersed, forming monomodal pores (approximately 10 Å in diameter) within the microporous region.
) We have newly discovered a catalytically active gel consisting of a matrix having the following properties, leading to the present invention. This gel exhibits catalytic activity in different reactions (mainly oxidation reactions and acid-catalyzed reactions) depending on the various oxides contained therein. According to this, the present invention has a catalytic activity in an acid-catalyzed reaction or an oxidation reaction; a silica matrix in which oxides of one or more metals having a homogeneous distribution; monomodal pores and large surface area within the microporous region; a molar ratio of SiO2/metal oxide of 5/1; or 300
The present invention provides a gel that is amorphous on X-ray analysis and has a particle size of /1. The gel comprises (a) (1) a tetraalkylammonium hydroxide (TAA-OH) in which the alkyl group is selected from ethyl, n-propyl, and n-butyl;
); (2) a soluble silicon compound that is hydrolyzed to SiO2; (3) one or more soluble salts or acids of one or more metals (the oxides of which exhibit catalytic activity); The ratio is between 5/1 and 300/1, and TAA
-OH/SiO2 molar ratio is 0.05/1 to 0.5
/1 and the molar ratio of H2O/SiO2 is 5/1 to 40/1; (b) heating the solution thus obtained; (c) drying the gel; (d) calcining the dried gel first in an inert atmosphere and then in an oxidizing atmosphere.

【0004】上記操作の工程(a)において、テトラ−
エチル、n−プロピル、又はn−ブチルアンモニウムヒ
ドロキシドの使用は重要である。この点に関連して、テ
トラメチルアンモニウムヒドロキシドのような同種のア
ンモニウム化合物の使用はメゾポアー(mesopor
e)を有するゲルの形成を導く。前記方法の工程(a)
で使用される可溶性ケイ素化合物は、好ましくはテトラ
エチルシリケートのようなテトラアルキルシリケートで
ある。1以上の金属(その酸化物が特に酸及び酸化触媒
反応形の触媒活性を発揮する)の水溶性塩又は酸は、当
該金属の水溶性又は加水分解性の塩及び酸の中から選ば
れる。前記方法の工程(a)の操作は、室温(20−2
5℃)又は室温以上、ゲル開始温度(約50℃)以下の
温度で行われる。工程(a)において水溶性構成成分が
添加される順序は重要ではない。しかしながら、まず初
めにテトラアルキルアンモニウムヒドロキシド及びその
酸化物が触媒活性を発揮する金属の可溶性化合物を含有
する水溶液を調製し、次いで可溶性ケイ素化合物をこの
水溶液に添加することが好ましい。水溶液構成成分を含
有する水−アルコール溶液も工程(a)において使用で
きる。いずれの場合においても、得られる水溶液中にお
ける構成成分のモル比は下記のとおりでなければならな
い。 SiO2/金属酸化物          5/1ない
し300/1TAA−OH/SiO2        
      0.05/1ないし0.5/1H2O/S
iO2                 5/1ない
し40/1これらのモル比は、好ましくは下記のとおり
である。 SiO2/金属酸化物          10/1な
いし200/1TAA−OH/SiO2       
       0.1/1ないし0.3/1H2O/S
iO2                 10/1な
いし25/1
In step (a) of the above operation, tetra-
The use of ethyl, n-propyl or n-butylammonium hydroxide is important. In this regard, the use of homologous ammonium compounds, such as tetramethylammonium hydroxide,
e) leading to the formation of a gel with Step (a) of the method
The soluble silicon compound used in is preferably a tetraalkyl silicate, such as tetraethyl silicate. The water-soluble salts or acids of one or more metals, the oxides of which exhibit catalytic activity, especially in the acid and oxidation-catalyzed form, are selected from water-soluble or hydrolyzable salts and acids of the metals in question. The operation of step (a) of the method is carried out at room temperature (20-2
5° C.) or at a temperature higher than room temperature and lower than the gel initiation temperature (about 50° C.). The order in which the water-soluble components are added in step (a) is not critical. However, it is preferable to first prepare an aqueous solution containing a soluble compound of the metal in which the tetraalkylammonium hydroxide and its oxide exhibit catalytic activity, and then add the soluble silicon compound to this aqueous solution. Water-alcoholic solutions containing aqueous components can also be used in step (a). In either case, the molar ratios of the constituents in the resulting aqueous solution must be as follows: SiO2/metal oxide 5/1 to 300/1 TAA-OH/SiO2
0.05/1 to 0.5/1H2O/S
iO2 5/1 to 40/1 These molar ratios are preferably as follows. SiO2/metal oxide 10/1 to 200/1 TAA-OH/SiO2
0.1/1 to 0.3/1H2O/S
iO2 10/1 to 25/1

【0005】調製法の工程(b)における
ゲル化は、溶液を温度50ないし70℃、好ましくは約
60℃に加熱することによって行われる。ゲル化の完了
にかかる時間は、温度、濃度、その他の要素によって異
なるが、通常15分から5時間、典型的には約25ない
し60分間である。単に溶液を加熱することによってゲ
ル化が行われることは重要なことである。この点に関連
して、公知の方法の如くゲル化が酸性条件下で行われる
場合、特に多孔度及び孔サイズ分布に関して好ましから
ざる特徴をもったゲルが生成される。このようにして得
られたゲルを本発明の方法の工程(c)において乾燥さ
せる。この乾燥処理は、好適には温度150℃以下、好
ましくは約90ないし100℃で、水分を完全に又は実
質的に完全に除去するに十分な時間をかけて行われる。 本発明の方法の1具体例では、工程(c)における乾燥
はスプレー乾燥法によって行われる。この場合、ガスの
入口温度230ないし250℃、出口温度140ないし
160℃で操作されるスプレードライヤーを使用でき、
該ドライヤーにゲルを小滴の形で注入し、これらの小滴
を不活性ガスと接触させる。いずれの場合にも、ゲルを
本発明の方法の工程(d)でか焼する。このか焼は好適
には初めに窒素の如き不活性雰囲気において行われ、次
いで空気の如き酸化雰囲気において行われる。か焼温度
は好適には500ないし700℃、好ましくは約500
ないし600℃である。か焼時間は4ないし20時間と
様々であるが、典型的には約6ないし16時間である。
Gelation in step (b) of the preparation process is carried out by heating the solution to a temperature of 50 to 70°C, preferably about 60°C. The time it takes for gelation to complete varies depending on temperature, concentration, and other factors, but typically ranges from 15 minutes to 5 hours, typically about 25 to 60 minutes. Importantly, gelation takes place simply by heating the solution. In this regard, if gelation is carried out under acidic conditions, as in known methods, gels are produced which have unfavorable characteristics, particularly with regard to porosity and pore size distribution. The gel thus obtained is dried in step (c) of the method of the invention. This drying process is suitably carried out at a temperature below 150°C, preferably from about 90 to 100°C, for a period of time sufficient to completely or substantially completely remove moisture. In one embodiment of the method of the invention, the drying in step (c) is carried out by a spray drying method. In this case, a spray dryer operated at a gas inlet temperature of 230 to 250°C and an outlet temperature of 140 to 160°C can be used;
The gel is injected into the dryer in the form of droplets and these droplets are brought into contact with an inert gas. In each case, the gel is calcined in step (d) of the method of the invention. This calcination is preferably carried out first in an inert atmosphere such as nitrogen and then in an oxidizing atmosphere such as air. The calcination temperature is suitably between 500 and 700°C, preferably about 500°C.
to 600°C. Calcination times vary from 4 to 20 hours, but are typically about 6 to 16 hours.

【0006】このようにして得られた本発明の触媒活性
シリカゲルは、X線分析において完全に無定形である構
造を持ち、SiO2/金属酸化物の比が最初に供給され
たケイ素及び他の金属化合物の比に等しく、5/1ない
し300/1、好ましくは10/1ないし200/1で
ある特徴を有する。この金属シリカゲルは560ないし
1000 m2/g(BET定量)の大きな表面積を有
する。孔の総容積は0.3ないし0.6 ml/gであ
る。孔は平均直径約10Å以下で、狭いサイズ分布の微
孔の範囲内である。特に、直径30Å以上の孔は存在し
ないか、実質的に存在しない。また直径20Å以上の孔
も一般的には存在しない。本発明の金属−シリカゲルは
触媒活性を有し、この触媒活性の型は結合された酸化物
の種類に依存する。例えば、モリブデン、チタン及びバ
ナジウムの中から選ばれる1以上の金属の酸化物を含有
する金属−シリカゲルはオレフィンのシクロオレフィン
へのエポキシ化において活性を有する。モリブデン及び
バナジウム含有の金属−シリカゲルはアミンのオキシム
への酸化においても同じく活性を有し、カリウム又は鉄
を含有する金属−シリカゲルはオレフィンのオリゴメリ
ゼーションにおいて活性を有する。ジルコニウム、モリ
ブデン、バナジウム又はクロム、又はそれらの混合物を
含有する金属−シリカゲルは、好ましくはフェノールの
ピロカテコール及びヒドロキノンへのヒドロキシル化に
おいて活性を有する。本発明をさらに詳述するため、下
記にいくつかの実施例を例示する。
The catalytically active silica gel of the invention thus obtained has a structure that is completely amorphous in X-ray analysis, and the SiO2/metal oxide ratio is similar to that of the initially supplied silicon and other metals. The ratio of the compounds is equal and has the characteristic of being between 5/1 and 300/1, preferably between 10/1 and 200/1. This metal silica gel has a large surface area of 560 to 1000 m2/g (BET determination). The total volume of the pores is 0.3 to 0.6 ml/g. The pores have an average diameter of about 10 Å or less, falling within the narrow size distribution of micropores. In particular, pores with a diameter of 30 Å or more are absent or substantially absent. Additionally, pores with a diameter of 20 Å or more are generally absent. The metal-silica gels of the present invention have catalytic activity, and the type of catalytic activity depends on the type of oxide attached. For example, metal-silica gels containing oxides of one or more metals selected from molybdenum, titanium, and vanadium are active in the epoxidation of olefins to cycloolefins. Metal-silica gels containing molybdenum and vanadium are likewise active in the oxidation of amines to oximes, and metal-silica gels containing potassium or iron are active in the oligomerization of olefins. Metal-silica gels containing zirconium, molybdenum, vanadium or chromium, or mixtures thereof, are preferably active in the hydroxylation of phenol to pyrocatechol and hydroquinone. In order to further explain the invention, some examples are illustrated below.

【0007】実施例1 ガリウムシリカゲル   磁石式撹拌機を具備し、撹拌−加熱プレート上に置
いたパイレックスガラス製の400ccビーカーに、テ
トラプロピルアンモニウムヒドロキシドの30重量%水
溶液38gを導入した。この水溶液をさらに水26.7
ccで希釈し、Ga(NO3)3・8H2O 1.33
gを加えた。次いで混合物を約55℃に加熱し、テトラ
エチルシリケート 34.7gを透明な温かい水溶液に
添加した。系がゲル化するまで、一般的にはエチルシリ
ケートを添加してから約1時間混合物を撹拌し、完全に
透明で緻密なゲル(もはや撹拌不可能である)を生成し
た。次いで、ゲルを外界温度にて48時間放置して熟成
させ、回転エバポレーター上のフラスコ(1リットル)
に入れた。エバポレーターの恒温浴の温度を約90℃に
調節し、フラスコを最大速度で回転させ、軽い空気流を
サンプル上に送給して大気圧下での乾燥を促進させた。 これらの条件下で3〜4時間維持した。次いで得られた
サンプルを100℃において1時間オーブンに入れた。 このようにして得られた乾燥ゲルを窒素中、550℃に
て3時間か焼し(熱分解によって固形物内に補足された
有機物質のほとんどを除去するために)、次いで未燃焼
の残留炭素分を空気中、600℃で10時間燃焼して除
去した。得られたガリウムシリカゲル(11.2g)は
下記の特徴を有していた。 表面積  :  823m2/g 孔の容積:  0.32cm3/g 孔の平均直径(BET)は約10Å以下で直径20Å以
上の孔は存在しなかった。
Example 1 Gallium Silica Gel 38 g of a 30% by weight aqueous solution of tetrapropylammonium hydroxide was introduced into a 400 cc beaker made of Pyrex glass equipped with a magnetic stirrer and placed on a stirring/heating plate. Add this aqueous solution to 26.7 ml of water.
Ga(NO3)3.8H2O 1.33 diluted with cc
g was added. The mixture was then heated to approximately 55°C and 34.7g of tetraethylsilicate was added to the clear warm aqueous solution. The mixture was stirred until the system gelled, typically about 1 hour after adding the ethyl silicate, producing a completely clear, dense gel (no longer stirrable). The gel was then left to age for 48 hours at ambient temperature and transferred to a flask (1 liter) on a rotary evaporator.
I put it in. The temperature of the constant temperature bath of the evaporator was adjusted to approximately 90° C., the flask was rotated at maximum speed, and a light stream of air was passed over the sample to promote drying under atmospheric pressure. These conditions were maintained for 3-4 hours. The resulting sample was then placed in an oven at 100°C for 1 hour. The dry gel thus obtained was calcined in nitrogen at 550 °C for 3 hours (to remove most of the organic matter trapped in the solid by pyrolysis) and then the unburnt residual carbon was removed by burning in air at 600°C for 10 hours. The obtained gallium silica gel (11.2 g) had the following characteristics. Surface area: 823 m2/g Pore volume: 0.32 cm3/g The average diameter of the pores (BET) was about 10 Å or less, and there were no pores with a diameter of 20 Å or more.

【0008】実施例2 スズシリカゲル   水148.3g、テトラプロピルアンモニウムヒド
ロキシド 31.3g及び(NH4)2SnCl6 4
gからなる水溶液にテトラエチルシリケート 104.
1gを添加してスズシリカゲル(32.3g)を調製し
た。実施例1で述べたように操作を行った。
Example 2 Tin silica gel 148.3 g of water, 31.3 g of tetrapropylammonium hydroxide and (NH4)2SnCl6 4
Tetraethyl silicate in an aqueous solution consisting of 104.g.
Tin silica gel (32.3 g) was prepared by adding 1 g. The operation was performed as described in Example 1.

【0009】実施例3 チタンシリカゲル   下記のようにしてチタンシリカゲルを調製した。テ
トラエチルシリケート104.1g及びテトラエチルオ
ルトチタネート 4.5gからなる混合物を、水103
.8g及びテトラプロピルアンモニウムヒドロキシド 
31.3gを含有する水溶液に添加した。約2時間後、
均一で透明な黄色のゲルが生成した。得られたゲルを窒
素流下100℃にて回転エバポレーター内で乾燥させた
。次いで550℃にて窒素中で1時間、空気中で10時
間か焼した。ゲル 31.9gを得た。
Example 3 Titanium Silica Gel Titanium silica gel was prepared as follows. A mixture consisting of 104.1 g of tetraethyl silicate and 4.5 g of tetraethylorthotitanate was mixed with 103 g of water.
.. 8g and tetrapropylammonium hydroxide
was added to an aqueous solution containing 31.3 g. After about 2 hours,
A homogeneous, transparent yellow gel was formed. The resulting gel was dried in a rotary evaporator at 100° C. under a stream of nitrogen. It was then calcined at 550°C for 1 hour in nitrogen and 10 hours in air. 31.9 g of gel was obtained.

【0010】実施例4 バナジウムシリカゲル   テトラプロピルアンモニウムヒドロキシド 53g
(29.89%:滴定量)及び水55g含有の溶液に、
NH4VO3 2.3g及びテトラエチルオルトシリケ
ート 104g含有の第2溶液を添加して、バナジウム
シリカゲル(32.1g)を調製した。実施例1と同様
にして操作を行った。
Example 4 Vanadium silica gel tetrapropylammonium hydroxide 53g
(29.89%: titer) and a solution containing 55 g of water,
A second solution containing 2.3 g of NH4VO3 and 104 g of tetraethylorthosilicate was added to prepare vanadium silica gel (32.1 g). The operation was performed in the same manner as in Example 1.

【0011】実施例5 クロムシリカゲル   実施例1に述べた操作法に従って、テトラプロピル
アンモニウムヒドロキシド73g(29.89%:滴定
量)及び水55gからなる混合物に、Cr(NO3)3
・9H2O 4g、エタノール 50g及びテトラエチ
ルシリケート 104gからなる第2混合物を添加して
、クロムシリカゲル 33.3gを調製した。
Example 5 Chromium Silica Gel According to the procedure described in Example 1, Cr(NO3)3 was added to a mixture of 73 g (29.89% titration) of tetrapropylammonium hydroxide and 55 g of water.
- 33.3 g of chromium silica gel was prepared by adding a second mixture consisting of 4 g of 9H2O, 50 g of ethanol and 104 g of tetraethylsilicate.

【0012】実施例6 鉄シリカゲル   実施例1と同様の操作法に従って、テトラプロピル
アンモニウムヒドロキシド73g(29.89%:滴定
量)及び水55gを含有する溶液に、エタノール 50
g、Fe(NO3)3・9H2O 4g及びテトラエチ
ルシリケート 104gを含有する第2溶液を添加して
、このゲル(31.8g)を調製した。
Example 6 Iron Silica Gel Following the same procedure as in Example 1, 50 g of ethanol was added to a solution containing 73 g of tetrapropylammonium hydroxide (29.89% titration) and 55 g of water.
This gel (31.8 g) was prepared by adding a second solution containing g, 4 g of Fe(NO3)3.9H2O and 104 g of tetraethylsilicate.

【0013】実施例7 ジルコニウムシリカゲル   実施例1と同様の操作法に従って、水50g及びテ
トラプロピルアンモニウムヒドロキシド 85g(29
.89%:滴定量)を含有する溶液を、Zr(OC3H
7)4 6.5g及びテトラエチルシリケート 104
gを含有する第2溶液に添加して、このゲル(34.0
g)を調製した。
Example 7 Zirconium Silica Gel Following the same procedure as in Example 1, 50 g of water and 85 g of tetrapropylammonium hydroxide (29
.. A solution containing Zr(OC3H
7) 4 6.5g and tetraethyl silicate 104
This gel (34.0
g) was prepared.

【0014】実施例8 モリブデンシリカゲル   テトラプロピルアンモニウムヒドロキシド 53g
(28.89%:滴定量)及びモリブデン酸3.4gを
含有する溶液を、水55g及びテトラエチルシリケート
 104gを含有する第2溶液に添加して、このゲル(
35.8g)を調製した。
Example 8 Molybdenum silica gel tetrapropylammonium hydroxide 53g
(28.89%: titer) and 3.4 g of molybdic acid were added to a second solution containing 55 g of water and 104 g of tetraethylsilicate to obtain this gel (
35.8g) was prepared.

【0015】実施例9 亜鉛シリカゲル   テトラエチルシリケート 104g及びついでエタ
ノール 50g中のZnCl2 2.7gを、水30g
中にテトラプロピルアンモニウムヒドロキシド 70g
(29.89%:滴定量)を含有する溶液に添加した。 実施例1と同様の処理を行い、亜鉛シリカゲル 34.
3gを得た。
Example 9 Zinc silica gel 104 g of tetraethyl silicate and then 2.7 g of ZnCl2 in 50 g of ethanol were added to 30 g of water.
70g of tetrapropylammonium hydroxide inside
(29.89%: titer). Zinc silica gel was treated in the same manner as in Example 1. 34.
3g was obtained.

【0016】実施例10 コバルトシリカゲル   テトラプロピルアンモニウムヒドロキシド 81g
(29.89%:滴定量)を、水30g中にCo(NO
3)2・6H2O 5.8gを含有する溶液に添加した
。3M NaOHで24時間洗浄したクロマトグラフィ
ー純度の空気を非常にゆっくりと発泡させた。次いで、
テトラエチルシリケート 104gを添加し、実施例1
と同様の操作を行い、最終的にコバルトシリカゲル 3
0.6gを得た。
Example 10 Cobalt silica gel tetrapropylammonium hydroxide 81g
(29.89%: titration amount) in 30 g of water.
3) Added to a solution containing 5.8 g of 2.6H2O. Chromatographically pure air washed with 3M NaOH for 24 hours was bubbled through very slowly. Then,
Adding 104g of tetraethylsilicate, Example 1
Perform the same operation as above, and finally cobalt silica gel 3
0.6g was obtained.

【0017】実施例11 チタン/モリブデンシリカゲル   モリブデン酸3.4g、テトラプロピルアンモニウ
ムヒドロキシド 80g(28%:滴定量)及び水60
gを含有する溶液を調製した。次いで、テトラエチルシ
リケート 104g及びテトラエチルオルトチタネート
 4.5gをこの溶液に添加した。実施例1と同様に操
作を行って、チタン/モリブデンシリカゲル 35.7
gを得た。
Example 11 Titanium/molybdenum silica gel 3.4 g of molybdic acid, 80 g of tetrapropylammonium hydroxide (28% titration) and 60 g of water
A solution was prepared containing g. 104 g of tetraethyl silicate and 4.5 g of tetraethylorthotitanate were then added to this solution. By performing the same operation as in Example 1, titanium/molybdenum silica gel 35.7
I got g.

【0018】実施例12 リン/バナジウムシリカゲル   テトラプロピルアンモニウムヒドロキシド 70g
(28%:滴定量)、85%リン酸2.9g及びNH4
VO3 2.3gを含有する溶液を調製した。次いで、
水38g及びテトラエチルシリケート 104gをこの
溶液に添加した。実施例1と同様に操作を行って表面積
603m2/gのリン/バナジウムシリカゲル 32.
58gを得た。
Example 12 Phosphorus/vanadium silica gel tetrapropylammonium hydroxide 70g
(28%: titration amount), 2.9 g of 85% phosphoric acid and NH4
A solution containing 2.3 g of VO3 was prepared. Then,
38 g of water and 104 g of tetraethylsilicate were added to this solution. Phosphorus/vanadium silica gel with a surface area of 603 m2/g was prepared in the same manner as in Example 1.32.
58g was obtained.

【0019】実施例13 鉄/チタンシリカゲル   テトラプロピルアンモニウムヒドロキシド 75g
(28%:滴定量)及び水55gを含有する溶液を調製
した。テトラエチルシリケート 104g、テトラエチ
ルオルトチタネート 4.5g及びエタノール 50g
中にFe(NO3)3・9H2O 4gを含有する溶液
を添加した。実施例1と同様に操作を行って、鉄/チタ
ンシリカゲル 32.3gを得た。
Example 13 Iron/Titanium Silica Gel Tetrapropylammonium Hydroxide 75g
(28%: titer) and 55 g of water were prepared. Tetraethyl silicate 104g, tetraethylorthotitanate 4.5g and ethanol 50g
A solution containing 4 g of Fe(NO3)3.9H2O was added thereto. The same operation as in Example 1 was carried out to obtain 32.3 g of iron/titanium silica gel.

【0020】実施例14 モリブデンシリカゲルの触媒活性   実施例8の如くして調製したモリブデンシリカゲル
の触媒活性を、種々のオレフィンの第3級ブチルヒドロ
ペルオキシド(TBHP)によるエポキシ化及び過酸化
水素及びTBHPによるシクロヘキシルアミンのシクロ
ヘキシルオキシムへの酸化に関して試験した。 実施例14a シクロヘキセンのエポキシ化   シクロヘキセン 810mg(9.88ミリモル)
及びモリブデンシリカゲル 40mgを有孔のゴム製隔
膜を具備するねじ止めストッパーを装備したボトルに計
り入れた。ボトル(アンカー型磁石撹拌機を具備する)
を密封し、穿孔したアルミニウムブロックに入れた。ブ
ロックを85℃に加熱し、30分後、80%濃度のTB
HP 1.41g(12.5ミリモル)をシリンジで添
加した。反応の進行をガスクロマトグラフィー分析(内
標準を有する)によって追跡した。下記の結果が得られ
た。                          
                   転化率   
   選択率    25℃にて18時間後:  シク
ロヘキセン      30.2%      100
%                        
TBHP                30.9%
       77%    60℃にて18時間後:
  シクロヘキセン      45.0%     
 100%                    
    TBHP                5
7.7%       62%    85℃にて18
時間後:  シクロヘキセン      71.3% 
     100%                
        TBHP             
   95.0%       58%実施例14b 1−オクテンのエポキシ化   実施例14aと同様の操作法を使用して、モリブデ
ンシリカゲル 40mg、1−オクテン 730mg(
6.51ミリモル)及び80%濃度のTBHP 90m
g(0.8ミリモル)を反応に供した。100ないし1
10℃にて1時間反応を行った後、TBHPの転化率は
69.2%、選択率は13.4%であり、エポキシドの
収率及び選択率は9.3%であった。
Example 14 Catalytic Activity of Molybdenum Silica Gel The catalytic activity of molybdenum silica gel prepared as in Example 8 was investigated by epoxidation of various olefins with tertiary butyl hydroperoxide (TBHP) and by hydrogen peroxide and TBHP. The oxidation of cyclohexylamine to cyclohexyloxime was tested. Example 14a Epoxidation of cyclohexene Cyclohexene 810 mg (9.88 mmol)
and molybdenum silica gel were weighed into a bottle equipped with a screw stopper with a perforated rubber septum. Bottle (equipped with anchor-type magnetic stirrer)
was sealed and placed in a perforated aluminum block. The block was heated to 85°C and after 30 minutes, 80% concentration of TB was added.
1.41 g (12.5 mmol) of HP was added via syringe. The progress of the reaction was followed by gas chromatographic analysis (with internal standard). The following results were obtained.
Conversion rate
Selectivity After 18 hours at 25°C: Cyclohexene 30.2% 100
%
TBHP 30.9%
77% After 18 hours at 60°C:
Cyclohexene 45.0%
100%
TBHP 5
7.7% 62% 18 at 85℃
After hours: Cyclohexene 71.3%
100%
TBHP
95.0% 58% Example 14b Epoxidation of 1-octene Using a procedure similar to Example 14a, 40 mg of molybdenum silica gel, 730 mg of 1-octene (
6.51 mmol) and 80% concentration of TBHP 90m
g (0.8 mmol) was subjected to the reaction. 100 to 1
After reacting at 10° C. for 1 hour, the conversion rate of TBHP was 69.2%, the selectivity was 13.4%, and the yield and selectivity of epoxide were 9.3%.

【0021】実施例14c 2−シクロヘキセン−1−オールのエポキシ化  実施
例14aと同様の操作法を使用して、モリブデンシリカ
ゲル 40mg、2−シクロヘキセン−1−オール 1
.0g(10.2ミリモル)及び80%濃度のTBHP
 1.18g(10.5ミリモル)を反応に供した。8
0℃にて2時間反応を行った後、オレフィンの転化率は
66%、エポキシドの収率は82%、TBHPの転化率
は60%、選択率は87%であった。 実施例14d TBHPによるシクロヘキシルアミンの酸化  シクロ
ヘキシルアミン 860mg(8.24ミリモル)、触
媒40mg及び80%濃度のTBHP 1.07gをフ
ラスコに供給した。80℃にて2時間後、TBHPの転
化率は64%、シクロヘキシルアミンの転化率は30%
、オキシムの収率は5%であった。 実施例14e 過酸化水素によるシクロヘキシルアミンの酸化  シク
ロヘキシルアミン 860mg(8.24ミリモル)、
30%H2O2 1.6ml(16.48ミリモル)及
び触媒40mgをフラスコに供給した。85℃にて2時
間後、アミンの転化率は16%、オキシムの収率は8%
、基質に対するオキシムの選択率は50%であった。 実施例14f フェノールのヒドロキシル化   フェノール 25g、水2.5ml及び触媒0.3
gをフラスコに供給した。懸濁液を撹拌しながら100
℃に加熱した。 次いで、33%H2O2 6mlをゆっくりと滴加した
。反応の終了時、触媒を分離し、反応生成物をガスクロ
マトグラフィーで分析した。この温度にて30分後、H
2O2の転化率は100%、ピロカテコール+ヒドロキ
ノンの収率は19%であった。
Example 14c Epoxidation of 2-cyclohexen-1-ol Using a procedure similar to Example 14a, 40 mg of molybdenum silica gel, 2-cyclohexen-1-ol 1
.. 0 g (10.2 mmol) and 80% concentration of TBHP
1.18 g (10.5 mmol) was used for the reaction. 8
After carrying out the reaction at 0° C. for 2 hours, the olefin conversion rate was 66%, the epoxide yield was 82%, the TBHP conversion rate was 60%, and the selectivity was 87%. Example 14d Oxidation of cyclohexylamine with TBHP 860 mg (8.24 mmol) of cyclohexylamine, 40 mg of catalyst and 1.07 g of 80% strength TBHP were fed into a flask. After 2 hours at 80°C, the conversion of TBHP was 64% and the conversion of cyclohexylamine was 30%.
, the yield of oxime was 5%. Example 14e Oxidation of cyclohexylamine with hydrogen peroxide Cyclohexylamine 860 mg (8.24 mmol),
1.6 ml (16.48 mmol) of 30% H2O2 and 40 mg of catalyst were charged to the flask. After 2 hours at 85°C, amine conversion was 16% and oxime yield was 8%.
, the selectivity of oxime to substrate was 50%. Example 14f Hydroxylation of phenol 25 g phenol, 2.5 ml water and 0.3 catalyst
g was fed into the flask. 100 while stirring the suspension.
heated to ℃. Then 6 ml of 33% H2O2 was slowly added dropwise. At the end of the reaction, the catalyst was separated and the reaction products were analyzed by gas chromatography. After 30 minutes at this temperature, H
The conversion rate of 2O2 was 100%, and the yield of pyrocatechol + hydroquinone was 19%.

【0022】実施例15 バナジウムシリカゲルの触媒活性   実施例4に記載の如くして調製したバナジウムシリ
カゲルの触媒活性を、種々のオレフィンのエポキシ化及
びフェノールのヒドロキシル化に関して試験した。 実施例15a シクロヘキセンのエポキシ化   実施例14aと同様の操作法を使用して、シクロヘ
キセン 810mg(9.88ミリモル)、バナジウム
シリカゲル 40mg及び80%TBHP 1.41g
(12.5ミリモル)を反応に供した。下記の結果が得
られた。                          
                   転化率   
   選択率    25℃にて18時間後:  シク
ロヘキセン       4.1%      100
%                        
TBHP                13.3%
       24%    60℃にて18時間後:
  シクロヘキセン      44.1%     
 100%                    
    TBHP                5
2.0%       68%    85℃にて18
時間後:  シクロヘキセン      57.0% 
     100%                
        TBHP             
   65.3%       68%実施例15b 1−オクテンのエポキシ化   実施例14aと同様の操作法を使用して、バナジウ
ムシリカゲル 40mg、1−オクテン 730mg(
6.51ミリモル)及び80%濃度のTBHP 90m
g(0.8ミリモル)を反応に供した。100ないし1
10℃にて1時間反応を行った後、TBHPの転化率は
36%、選択率は86%であった。 実施例15c フェノールのヒドロキシル化   フェノール 25g、H2O 2.5ml及び触媒
0.3gをフラスコに供給した。懸濁液を撹拌しながら
100℃に加熱した。次いで、33%(w/v)H2O
2 6mlをゆっくりと滴加した。反応の終了時、触媒
を分離し、10%SP2250を充填したカラム(長さ
1.8m)を使用するガスクロマトグラフィーによって
分析した。この温度にて150分後、H2O2の転化率
は11%、ピロカテコール+ヒドロキノンの収率は20
%であった。 実施例15d TBHPによるシクロヘキシルアミンの酸化  シクロ
ヘキシルアミン 860mg(8.24ミリモル)、触
媒40mg及び80%濃度のTBHP 1.07g(9
.52ミリモル)をフラスコに供給した。80℃にて2
時間後、TBHPの転化率は78%、シクロヘキシルア
ミンの転化率は16%、オキシムの収率は2%であった
Example 15 Catalytic Activity of Vanadium Silica Gel The catalytic activity of vanadium silica gel prepared as described in Example 4 was tested for the epoxidation of various olefins and the hydroxylation of phenols. Example 15a Epoxidation of Cyclohexene Using a procedure similar to Example 14a, 810 mg (9.88 mmol) of cyclohexene, 40 mg of vanadium silica gel and 1.41 g of 80% TBHP
(12.5 mmol) was used for the reaction. The following results were obtained.
Conversion rate
Selectivity After 18 hours at 25°C: Cyclohexene 4.1% 100
%
TBHP 13.3%
24% After 18 hours at 60°C:
Cyclohexene 44.1%
100%
TBHP 5
2.0% 68% 18 at 85℃
After hours: Cyclohexene 57.0%
100%
TBHP
65.3% 68% Example 15b Epoxidation of 1-octene Using a procedure similar to Example 14a, 40 mg vanadium silica gel, 730 mg 1-octene (
6.51 mmol) and 80% concentration of TBHP 90m
g (0.8 mmol) was subjected to the reaction. 100 to 1
After carrying out the reaction at 10° C. for 1 hour, the conversion rate of TBHP was 36% and the selectivity was 86%. Example 15c Hydroxylation of Phenol 25 g of phenol, 2.5 ml of H2O and 0.3 g of catalyst were charged to a flask. The suspension was heated to 100° C. with stirring. Then 33% (w/v) H2O
26 ml was slowly added dropwise. At the end of the reaction, the catalyst was separated and analyzed by gas chromatography using a column (length 1.8 m) packed with 10% SP2250. After 150 minutes at this temperature, the conversion of H2O2 was 11% and the yield of pyrocatechol + hydroquinone was 20%.
%Met. Example 15d Oxidation of cyclohexylamine with TBHP 860 mg (8.24 mmol) cyclohexylamine, 40 mg catalyst and 1.07 g (9
.. 52 mmol) was fed to the flask. 2 at 80℃
After hours, the conversion of TBHP was 78%, the conversion of cyclohexylamine was 16%, and the yield of oxime was 2%.

【0023】実施例16 チタンシリカゲルの触媒活性       実施例16a 1−オクテンのエポキシ化   実施例15aと同様の操作法を使用して、1−オク
テン 15.2ミリモル、実施例3に記載の如くして調
製したチタンシリカゲル 50mg、及び80%TBH
P 2.5ミリモルを反応に供した。110℃にて1時
間後、1−オクテンの転化率は3.9%、TBHPの転
化率27%、TBHPの選択率は87%であった。 上述の代わりに、1−オクテン 33ミリモル、80%
TBHP 5モル及び触媒15mgを反応に供した場合
、110℃にて240分後、1−オクテンの転化率は2
.4%、TBHPの転化率は26%、TBHPの選択率
は60%であった。
Example 16 Catalytic Activity of Titanium Silica Gel Example 16a Epoxidation of 1-Octene Using a procedure similar to Example 15a, 15.2 mmol of 1-octene was prepared as described in Example 3. Prepared titanium silica gel 50mg and 80% TBH
2.5 mmol of P was used in the reaction. After 1 hour at 110°C, the conversion of 1-octene was 3.9%, the conversion of TBHP was 27%, and the selectivity of TBHP was 87%. Instead of the above, 1-octene 33 mmol, 80%
When 5 moles of TBHP and 15 mg of catalyst were subjected to the reaction, the conversion rate of 1-octene was 2 after 240 minutes at 110°C.
.. 4%, TBHP conversion rate was 26%, and TBHP selectivity was 60%.

【0024】実施例17 チタン/モリブデンシリカゲルの活性       実施例17a シクロヘキセンのエポキシ化   実施例15aと同様の操作法を使用して、シクロヘ
キセン 9.88ミリモル、実施例11に記載の如くし
て調製したチタン/モリブデンシリカゲル 40mg、
及び80%TBHP 12.5ミリモルを反応に供した
。85℃にて18時間後、シクロヘキセンの転化率は5
8%、その選択率は100%、TBHPの転化率は61
%、その選択率は95%であった。 実施例17b 1−オクテンのエポキシ化   実施例15aと同様の操作法を使用して、1−オク
テン 6.5ミリモル、80%TBHP 0.8ミリモ
ル及びチタン/モリブデンシリカゲル 40mgを反応
に供した。110℃にて1時間後、1−オクテンの転化
率は39.9%、TBHPの転化率は47.6%、TB
HPの選択率は83.8%であった。
Example 17 Activity of Titanium/Molybdenum Silica Gel Example 17a Epoxidation of Cyclohexene Using a procedure similar to Example 15a, 9.88 mmol of cyclohexene, titanium prepared as described in Example 11. /Molybdenum silica gel 40mg,
and 12.5 mmol of 80% TBHP were subjected to the reaction. After 18 hours at 85°C, the conversion of cyclohexene was 5.
8%, its selectivity is 100%, and the conversion rate of TBHP is 61
%, and the selectivity was 95%. Example 17b Epoxidation of 1-Octene Using a procedure similar to Example 15a, 6.5 mmol of 1-octene, 0.8 mmol of 80% TBHP and 40 mg of titanium/molybdenum silica gel were subjected to the reaction. After 1 hour at 110°C, the conversion rate of 1-octene was 39.9%, the conversion rate of TBHP was 47.6%, and the conversion rate of TBHP was 47.6%.
The selectivity of HP was 83.8%.

【0025】実施例18 ガリウムシリカゲルの活性       実施例18a 1−オクテンのオリゴマー化   無水1−オクテン 6ml及び前もって400℃に
て3時間乾燥させておいた(実施例1に記載の如くして
調製した)触媒0.4gを熱電対を具備した約30ml
容量のガラス製圧力容器に供給した。懸濁液を温度15
0℃に3時間加熱した。冷却した後、触媒を分離し、反
応生成物を、3%SP2100を充填したカラム(長さ
1.2m)を使用してガスクロマトグラフィーにて分析
した(100℃まで5分間、次いで25℃/分の割合で
280℃まで)。オクテンは57.1%(ガスクロマト
グラフィー面積の百分率)、二量体は33.4%、三量
体は6.9%、四量体は2.6%であった。 実施例18b ベンゼンのアルキル化   実施例18aに記載の如く操作を行って、1−オク
テン 1.45g、ベンゼン 10cc及びn−デカン
(ガスクロマトグラフィー内標準として)0.0378
gを反応に供した。150℃にて3時間後、残ったオク
テンは9.69ミリモル、アルキレートは3.20ミリ
モルであった。
Example 18 Activity of gallium silica gel Example 18a Oligomerization of 1-octene 6 ml of anhydrous 1-octene and previously dried at 400° C. for 3 hours (prepared as described in Example 1) Approximately 30ml containing 0.4g of catalyst and thermocouple
volume glass pressure vessel. Temperature 15 of the suspension
Heated to 0°C for 3 hours. After cooling, the catalyst was separated and the reaction products were analyzed by gas chromatography using a column (length 1.2 m) packed with 3% SP2100 (up to 100°C for 5 min, then at 25°C/ up to 280°C). Octene was 57.1% (percentage of gas chromatography area), dimer was 33.4%, trimer was 6.9%, and tetramer was 2.6%. Example 18b Alkylation of Benzene Working as described in Example 18a, 1.45 g of 1-octene, 10 cc of benzene and 0.0378 g of n-decane (as gas chromatography internal standard)
g was subjected to the reaction. After 3 hours at 150°C, 9.69 mmol of octene and 3.20 mmol of alkylate remained.

【0026】実施例19 鉄シリカゲルの活性       実施例19a 1−オクテンのオリゴマー化   実施例18aに記載の如く操作を行って、無水1−
オクテン 6ml及び実施例6に記載の如くして調製し
た触媒0.4gを反応に供した。200℃にて3時間後
、オクテンは91.0%(ガスクロマトグラフィー面積
の百分率)、二量体は9.0%であった。 実施例19b ベンゼンのアルキル化   実施例18aに記載の如く操作を行って、1−オク
テン 1.45g、ベンゼン10cc及びn−デカン(
ガスクロマトグラフィー内標準として)0.0370g
を反応に供した。150℃にて3時間後、残ったオクテ
ンは12.54ミリモル、アルキレートは0.41ミリ
モルであった。 実施例20 フェノールのヒドロキシル化におけるジルコニウムシリ
カゲルの活性   実施例15cに記載の如く操作を行い、実施例7の
如くして調製した触媒を使用し、100℃にて3時間後
、H2O2の転化率は66%、ピロカテコール+ヒドロ
キノンの収率は19%であった。 実施例21 クロムシリカゲルの活性   実施例15cに記載の如く操作を行い、実施例5の
如くして調製した触媒を使用し、100℃にて2時間後
、H2O2の転化率は100%、ピロカテコール+ヒド
ロキノンの収率は25%であった。
Example 19 Activity of iron silica gel Example 19a Oligomerization of 1-octene The anhydrous 1-octene was prepared as described in Example 18a.
6 ml of octene and 0.4 g of catalyst prepared as described in Example 6 were subjected to the reaction. After 3 hours at 200°C, octene was 91.0% (percentage of gas chromatography area) and dimer was 9.0%. Example 19b Alkylation of Benzene Working as described in Example 18a, 1.45 g of 1-octene, 10 cc of benzene and n-decane (
(as gas chromatography internal standard) 0.0370g
was subjected to the reaction. After 3 hours at 150°C, 12.54 mmol of octene and 0.41 mmol of alkylate remained. Example 20 Activity of Zirconium Silica Gel in the Hydroxylation of Phenol Working as described in Example 15c and using the catalyst prepared as in Example 7, after 3 hours at 100°C, the conversion of H2O2 was The yield of pyrocatechol + hydroquinone was 19%. Example 21 Activity of chromium silica gel Working as described in Example 15c and using catalyst prepared as in Example 5, after 2 hours at 100°C, conversion of H2O2 was 100%, pyrocatechol The yield of +hydroquinone was 25%.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】酸触媒反応又は酸化反応において触媒活性
を有し;チタン、ガリウム、クロム、鉄、ジルコニウム
、バナジウム、モリブデン、亜鉛、コバルト、リン及び
スズの中から選ばれる触媒活性を有する1以上の金属の
酸化物が均一に分散されたシリカマトリックスでなり;
微孔性領域内に単一様式の孔及び大きい表面積を有し;
SiO2/金属酸化物のモル比が5/1ないし300/
1であるX線分析上無定形のゲルにおいて、該ゲルが、
(a) (1)アルキル基がエチル基、n−プロピル基
及びn−ブチル基の中から選ばれるものであるテトラア
ルキルアンモニウムヒドロキシド(TAA−OH);(
2)SiO2に加水分解される可溶性ケイ素化合物;(
3)1以上の金属(その酸化物が触媒活性を発揮する)
の1以上の可溶性塩又は酸を、SiO2/金属酸化物の
モル比が5/1ないし300/1であり、TAA−OH
/SiO2のモル比が0.05/1ないし0.5/1で
あり、H2O/SiO2のモル比が5/1ないし40/
1である量で前記各構成成分を含有する水溶液を調製し
;(b)このようにして得られた溶液を加熱してゲル化
させ;(c)ゲルを乾燥させ;(d)初めに不活性雰囲
気において、ついで酸化雰囲気において乾燥ゲルをか焼
することによって得られたものであることを特徴とする
、触媒活性ゲル。
Claim 1: Having catalytic activity in an acid-catalyzed reaction or oxidation reaction; one or more having catalytic activity selected from titanium, gallium, chromium, iron, zirconium, vanadium, molybdenum, zinc, cobalt, phosphorus, and tin. consisting of a silica matrix in which oxides of metals are uniformly dispersed;
having monomodal pores and large surface area within the microporous region;
The molar ratio of SiO2/metal oxide is 5/1 to 300/
1, which is amorphous on X-ray analysis, the gel having
(a) (1) Tetraalkylammonium hydroxide (TAA-OH) in which the alkyl group is selected from ethyl, n-propyl, and n-butyl;
2) Soluble silicon compound hydrolyzed to SiO2; (
3) One or more metals (its oxide exhibits catalytic activity)
one or more soluble salts or acids with a SiO2/metal oxide molar ratio of 5/1 to 300/1, TAA-OH
/SiO2 molar ratio is 0.05/1 to 0.5/1, and H2O/SiO2 molar ratio is 5/1 to 40/
prepare an aqueous solution containing each of the above components in an amount equal to 1; (b) heat the solution thus obtained to form a gel; (c) dry the gel; (d) first Catalytically active gel, characterized in that it is obtained by calcining the dry gel in an active atmosphere and then in an oxidizing atmosphere.
【請求項2】請求項1記載のものにおいて、前記工程(
a)における可溶性ケイ素化合物がテトラアルキルシリ
ケートであり、その酸化物がとくに酸形及び酸化触媒形
の触媒活性を発揮する1以上の金属の水溶性塩又は酸が
、金属の水溶性又は加水分解性塩及び酸の中から選ばれ
るものである、触媒活性ゲル。
2. The method according to claim 1, wherein the step (
The soluble silicon compound in a) is a tetraalkyl silicate, and the water-soluble salt or acid of one or more metals whose oxide exhibits catalytic activity, especially in the acid form and oxidation catalyst form, is a water-soluble or hydrolyzable metal. Catalytically active gels selected from salts and acids.
【請求項3】請求項2記載のものにおいて、可溶性ケイ
素化合物がテトラエチルシリケートである、触媒活性ゲ
ル。
3. A catalytically active gel according to claim 2, wherein the soluble silicon compound is tetraethyl silicate.
【請求項4】請求項1記載のものにおいて、前記工程(
a)に当たり、前記水溶液構成成分が、SiO2/金属
酸化物のモル比が10/1ないし200/1であり、T
AA−OH/SiO2のモル比が0.1/1ないし0.
3/1であり、H2O/SiO2のモル比が10/1な
いし25/1である量で存在する、触媒活性ゲル。
4. The method according to claim 1, wherein the step (
For a), the aqueous solution components have a SiO2/metal oxide molar ratio of 10/1 to 200/1, and T
The molar ratio of AA-OH/SiO2 is 0.1/1 to 0.
3/1 and the catalytically active gel is present in an amount in which the H2O/SiO2 molar ratio is between 10/1 and 25/1.
【請求項5】請求項1記載のものにおいて、前記工程(
a)の操作を、室温(20−25℃)又は室温以上、ゲ
ル開始温度(約50℃)以下の温度で行う、触媒活性ゲ
ル。
5. The method according to claim 1, wherein the step (
A catalytically active gel in which the operation a) is carried out at room temperature (20-25°C) or at a temperature above room temperature and below the gel initiation temperature (about 50°C).
【請求項6】請求項1記載のものにおいて、前記工程(
b)に当たり、ゲル化を行う50ないし70℃、処理時
間15分ないし5時間で行う、触媒活性ゲル。
6. The method according to claim 1, wherein the step (
For b), a catalytically active gel is gelled at 50 to 70°C for a treatment time of 15 minutes to 5 hours.
【請求項7】請求項6記載のものにおいて、ゲル化を温
度60℃、処理時間25ないし60分で行う、触媒活性
ゲル。
7. A catalytically active gel according to claim 6, wherein gelation is carried out at a temperature of 60° C. and a treatment time of 25 to 60 minutes.
【請求項8】請求項1記載のものにおいて、前記工程(
c)の乾燥を150℃以下の温度で行う、触媒活性ゲル
8. The method according to claim 1, wherein the step (
Catalytically active gel, wherein drying of c) is carried out at a temperature below 150°C.
【請求項9】請求項8記載のものにおいて、乾燥を温度
約90ないし100℃で行う、触媒活性ゲル。
9. A catalytically active gel according to claim 8, wherein drying is carried out at a temperature of about 90 to 100°C.
【請求項10】請求項1記載のものにおいて、前記工程
(c)の乾燥をスプレー乾燥法によって行う、触媒活性
ゲル。
10. The catalytically active gel according to claim 1, wherein the drying in step (c) is carried out by a spray drying method.
【請求項11】請求項1記載のものにおいて、前記工程
(d)のか焼を、温度500ないし700℃、処理時間
4ないし20時間で行う、触媒活性ゲル。
11. A catalytically active gel according to claim 1, wherein the calcination in step (d) is carried out at a temperature of 500 to 700° C. and a treatment time of 4 to 20 hours.
【請求項12】請求項11記載のものにおいて、前記工
程(d)のか焼を約550−600℃において約6−1
6時間行う、触媒活性ゲル。
12. The method of claim 11, wherein the calcination of step (d) is carried out at about 550-600°C.
Catalytically active gel, run for 6 hours.
【請求項13】触媒反応法、特にオレフィン及びシクロ
オレフィンのエポキシ化、アミンの酸化、オレフィンの
オリゴメリゼーション及びフェノールのヒドロキシル化
における請求項1−12記載のゲルの使用法。
13. Use of gels according to claims 1-12 in catalytic reaction processes, in particular in the epoxidation of olefins and cycloolefins, in the oxidation of amines, in the oligomerization of olefins and in the hydroxylation of phenols.
JP3355266A 1990-12-21 1991-12-20 Catalytic activity gel Withdrawn JPH04354539A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT22477A/90 1990-12-21
IT02247790A IT1244478B (en) 1990-12-21 1990-12-21 CATALYTICALLY ACTIVE GEL AND PROCEDURE FOR ITS PREPARATION

Publications (1)

Publication Number Publication Date
JPH04354539A true JPH04354539A (en) 1992-12-08

Family

ID=11196801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355266A Withdrawn JPH04354539A (en) 1990-12-21 1991-12-20 Catalytic activity gel

Country Status (8)

Country Link
US (2) US5434118A (en)
EP (1) EP0492697B1 (en)
JP (1) JPH04354539A (en)
AT (1) ATE103841T1 (en)
DE (1) DE69101628T2 (en)
DK (1) DK0492697T3 (en)
ES (1) ES2052329T3 (en)
IT (1) IT1244478B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015381A (en) * 2003-06-26 2005-01-20 Asahi Kasei Chemicals Corp Method for producing alicyclic oxime
JP2014140827A (en) * 2013-01-25 2014-08-07 Univ Of Tokushima Method for producing oxidative dehydrogenation catalyst and alkene

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1244478B (en) * 1990-12-21 1994-07-15 Eniricerche Spa CATALYTICALLY ACTIVE GEL AND PROCEDURE FOR ITS PREPARATION
US5871646A (en) * 1992-06-02 1999-02-16 British Gas Plc Porous amorphous silica-alumina refractory oxides, their preparation and use as separation membranes
GB2287459B (en) * 1992-06-02 1996-02-14 British Gas Plc Porous amorphous silica-alumina refractory oxides,their preparation and use as separation membranes
DE4218765A1 (en) * 1992-06-06 1993-12-09 Basf Ag Process for the preparation of oxiranes
DE4309660A1 (en) * 1993-03-25 1994-09-29 Studiengesellschaft Kohle Mbh Selective inorganic catalysts in the form of molecular impressions in cavities
DE4319909C2 (en) * 1993-06-16 1996-11-07 Solvay Deutschland Airgel supported catalyst comprising palladium, platinum, nickel, cobalt and / or copper, process for its production and use of a palladium airgel supported catalyst
IT1270069B (en) * 1994-07-06 1997-04-28 Eniricerche Spa MICRO-MESOPOROUS GEL AND PROCEDURE FOR ITS PREPARATION
US5935895A (en) * 1994-09-22 1999-08-10 Roche Vitamins Inc. Heterogeneous catalysts
DE19506843A1 (en) * 1995-02-28 1996-08-29 Studiengesellschaft Kohle Mbh Microporous amorphous mixed metal oxides for shape-selective catalysis
IT1273514B (en) 1995-04-07 1997-07-08 Eniricerche Spa PROCEDURE FOR THE PREPARATION OF A MICRO-MESOPOROUS GEL
IT1276726B1 (en) 1995-06-15 1997-11-03 Eniricerche Spa MESOPOROUS ALUMINUM GEL AND PROCEDURE FOR ITS PREPARATION
IT1277442B1 (en) * 1995-08-04 1997-11-10 Enichem Spa PROCEDURE FOR THE PREPARATION OF MIXED SILICA-ZIRCONIA SOL AND MIXED OXIDES OBTAINED IN SPHERICAL FORM
DE69715505T2 (en) * 1996-05-01 2003-01-16 Ineos Silicas Ltd Porous, inorganic catalyst carrier
IT1284007B1 (en) * 1996-06-13 1998-05-08 Eniricerche Spa PROCEDURE FOR THE PREPARATION OF A POROUS MICRO-MONTH MATERIAL WITH A HIGH SURFACE AREA WITH CONTROLLED DISTRIBUTION OF THE
US5744619A (en) * 1997-03-17 1998-04-28 Uop Llc Titanovanadosilicalites as epoxidation catalysts for olefins
ITMI981633A1 (en) * 1998-07-16 2000-01-16 Enitecnologie Spa MOLYBDENUM-BASED CATALYST AND ITS USE IN THE ISOMERIZATION OF N-PARAFFINS
IT1312337B1 (en) * 1999-05-07 2002-04-15 Agip Petroli CATALYTIC COMPOSITION FOR UPGRADING OF HYDROCARBONS WITH BOILING POINTS IN THE NAFTA INTERVAL
US6318003B1 (en) * 1999-08-12 2001-11-20 Murray, Inc. Snow thrower
DE19954827A1 (en) * 1999-11-13 2001-06-07 Alfred Heidekum Microcomposite solid, used as catalyst or catalyst support in heterogeneous catalysis, contains highly disperse microwave-sensitive particles uniformly distributed in inorganic amorphous metal oxide matrix
US6521808B1 (en) 2000-02-17 2003-02-18 The Ohio State University Preparation and use of a catalyst for the oxidative dehydrogenation of lower alkanes
IT1318528B1 (en) * 2000-05-19 2003-08-27 Enichem Spa BASIC SOLID CATALYSTS.
DE10054457A1 (en) * 2000-11-03 2002-05-08 Sued Chemie Ag Catalyst for oxidation of methane to formaldehyde and methanol comprises a silica support having a specified iron content
EP1332795A1 (en) * 2002-02-01 2003-08-06 Centre National De La Recherche Scientifique (Cnrs) New porous silicate materials and their uses as catalytic systems for diesel improvement
US6872679B2 (en) 2002-09-20 2005-03-29 Arco Chemical Technology, L.P. Heterogeneous catalyst regeneration
EP1403358A1 (en) * 2002-09-27 2004-03-31 ENI S.p.A. Process and catalysts for deep desulphurization of fuels
US7270742B2 (en) 2003-03-13 2007-09-18 Lyondell Chemical Technology, L.P. Organosulfur oxidation process
US7144499B2 (en) 2003-11-26 2006-12-05 Lyondell Chemical Technology, L.P. Desulfurization process
US7314545B2 (en) 2004-01-09 2008-01-01 Lyondell Chemical Technology, L.P. Desulfurization process
TWI647178B (en) 2013-04-17 2019-01-11 美商巴斯夫公司 Method for preparing Group 4 metal citrate and use thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA560670A (en) * 1958-07-22 S. Corner Eugene Catalysts for the polymerization of olefins
US1577186A (en) * 1920-02-28 1926-03-16 Walter A Patrick Process of producing gels for catalytic and adsorbent purposes
FR658256A (en) * 1926-06-10 1929-06-03 Royal Typewriter Co Inc Improvements to auxiliary counters for typewriters
USRE21690E (en) * 1936-06-03 1941-01-14 Preparation of contact masses from
US2551015A (en) * 1946-05-21 1951-05-01 Standard Oil Dev Co Preparation of catalysts containing silica and a metal oxide and with or without magnesia
US2697066A (en) * 1950-12-28 1954-12-14 California Research Corp Method of producing gel-type inorganic oxide catalysts
US4367342A (en) * 1969-04-02 1983-01-04 Shell Oil Company Olefin epoxidation
US4006175A (en) * 1969-12-18 1977-02-01 Dynamit Nobel Aktiengesellschaft Porous silicic acid and its production
US4064070A (en) * 1974-12-23 1977-12-20 Chevron Research Company Catalyst for producing maleic anhydride
IT1127311B (en) * 1979-12-21 1986-05-21 Anic Spa SYNTHETIC, CRYSTALLINE, POROUS MATERIAL CONSTITUTED BY SILICON AND TITANIUM OXIDES, METHOD FOR ITS PREPARATION AND ITS USES
CA1177811A (en) * 1981-04-13 1984-11-13 Theo G. Spek Process for the preparation of silica particles; silica particles with a narrow pore diameter distribution, catalysts made therefrom and use of these catalysts
JPS58110414A (en) * 1981-12-23 1983-07-01 Tokuyama Soda Co Ltd Inorganic oxide and its manufacture
US4392990A (en) * 1982-01-20 1983-07-12 Phillips Petroleum Company Heating silica gel in inert atmosphere before activation
US4764499A (en) * 1984-08-10 1988-08-16 Exxon Research And Engineering Company Method for producing dual colloid catalyst composition
IT1187661B (en) * 1985-04-23 1987-12-23 Enichem Sintesi HIGH MECHANICAL RESISTANCE SILICON AND TITANIUM BASED CATALYST
US4864497A (en) * 1988-04-13 1989-09-05 Digital Equipment Corporation Method of integrating software application programs using an attributive data model database
IT1219692B (en) * 1988-05-06 1990-05-24 Eniricerche Spa SILICA GEL AND CATALYTICALLY ACTIVE ALUMINUM AND PROCEDURE FOR ITS PREPARATION
US4981831A (en) * 1988-07-25 1991-01-01 Phillips Petroleum Company Twice-aged porous inorganic oxides, catalysts, and polymerization processes
JP2747920B2 (en) * 1989-02-16 1998-05-06 日東化学工業株式会社 Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction
IT1231779B (en) * 1989-08-09 1991-12-21 Eniricerche Spa PROCEDURE FOR OXIDATION OF PARAFFINIC COMPOUNDS.
IT1244478B (en) * 1990-12-21 1994-07-15 Eniricerche Spa CATALYTICALLY ACTIVE GEL AND PROCEDURE FOR ITS PREPARATION

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015381A (en) * 2003-06-26 2005-01-20 Asahi Kasei Chemicals Corp Method for producing alicyclic oxime
JP4522672B2 (en) * 2003-06-26 2010-08-11 旭化成ケミカルズ株式会社 Method for producing cycloaliphatic oximes
JP2014140827A (en) * 2013-01-25 2014-08-07 Univ Of Tokushima Method for producing oxidative dehydrogenation catalyst and alkene

Also Published As

Publication number Publication date
DE69101628D1 (en) 1994-05-11
EP0492697B1 (en) 1994-04-06
US5578744A (en) 1996-11-26
IT9022477A1 (en) 1992-06-22
DK0492697T3 (en) 1994-07-18
US5434118A (en) 1995-07-18
DE69101628T2 (en) 1994-09-01
ATE103841T1 (en) 1994-04-15
ES2052329T3 (en) 1994-07-01
EP0492697A1 (en) 1992-07-01
IT9022477A0 (en) 1990-12-21
IT1244478B (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JPH04354539A (en) Catalytic activity gel
RU1837958C (en) Catalyst for olefin dimerization as amorphous silica- aluminium gel and method for preparation the same
JP3843126B2 (en) Heterogeneous catalyst
US6121187A (en) Amorphous, microporous mixed oxide catalysts with controlled surface polarity for selective heterogeneous catalysis, adsorption and material separation
JP3049086B2 (en) Oxidation of saturated hydrocarbon chains
CN104437616B (en) Stratiform containing mesopore titanium-silicon molecular sieve catalyst and its preparation method and application
CA1131206A (en) Aluminum - modified silica and its uses as catalyst
JPH0278440A (en) Chemical process and catalyst
US5736479A (en) Oxidation catalysts
JPH101309A (en) Spherical silica-zeolite composite material and its production
EP1314475B1 (en) Process for the preparation of MFI-Type zeolitic catalysts
JP2003533348A (en) Solid base catalysts and their use in base catalysis
Parvulescu et al. Reaction of hexane, cyclohexane, and methylcyclopentane over gallium-, indium-, and thallium-promoted sulfated zirconia catalysts
JPS62114656A (en) Catalyst for inverting hydrocarbon, manufacture thereof and inversion reaction method of hydrocarbon
EP1002577B1 (en) Process for the preparation of catalysts based on MFI-type zeolite
US7271116B2 (en) Catalyst
JP4468891B2 (en) Process for the catalytic production of isolongifolene
Murata et al. Direct vapor phase oxidation of propylene by molecular oxygen over MCM-41 or MCM-22 based catalysts
RU2133638C1 (en) Method of skeletal isomerization of straight-chain olefins
EP0885655A2 (en) Catalyst and process for hydrocarbon dehydrogenation
JPH09512246A (en) Zeolite and process using the zeolite
JPS5826889B2 (en) Manufacturing method of resorcinol
RU2160634C1 (en) Paraffin hydrocarbon dehydrogenation catalysts
RU2167709C1 (en) Paraffin hydrocarbon dehydrogenation catalyst
Zheng Synthesis and Characterization of Vanadium-containing Mesoporous Silica and its Application in the Catalysis of Oxidation Reaction

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311