JPS62255124A - Method and device for manufacturing three-dimensional formation by robot - Google Patents
Method and device for manufacturing three-dimensional formation by robotInfo
- Publication number
- JPS62255124A JPS62255124A JP61100469A JP10046986A JPS62255124A JP S62255124 A JPS62255124 A JP S62255124A JP 61100469 A JP61100469 A JP 61100469A JP 10046986 A JP10046986 A JP 10046986A JP S62255124 A JPS62255124 A JP S62255124A
- Authority
- JP
- Japan
- Prior art keywords
- robot
- injection nozzle
- control device
- formation
- operating end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title abstract 6
- 230000033001 locomotion Effects 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims abstract description 24
- 239000011347 resin Substances 0.000 claims abstract description 24
- 238000002347 injection Methods 0.000 claims abstract description 20
- 239000007924 injection Substances 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 description 12
- 238000000465 moulding Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49015—Wire, strang laying, deposit fluid, welding, adhesive, hardening, solidification, fuse
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は複雑な形成物の製造方法及び製造装置に関し、
例えば形状検討用の試作品の製造や人工の臓器、血管、
関節等の生体構成部分のように殆ど一定の形状であるが
微妙な個人差のあるもの及び複雑形状で従来の方法では
一体成形出来ないもの等の三次元形成物の製造方法及び
製造装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method and apparatus for manufacturing a complex formed product,
For example, manufacturing prototypes for shape examination, artificial organs, blood vessels, etc.
The present invention relates to a method and apparatus for manufacturing three-dimensional objects, such as biological components such as joints, which have almost constant shapes but have subtle individual differences, and objects with complex shapes that cannot be integrally molded using conventional methods.
(従来の技術)
従来三次元形成物の製造方法には次の三つの方法が行わ
れていた。(Prior Art) Conventionally, the following three methods have been used for manufacturing three-dimensional objects.
1)金型等の型を使用して射出成形その他の方法で成形
する。1) Molding by injection molding or other methods using a mold such as a metal mold.
2)繊維強化プラスチック(F RP)の場合等、三次
元を各層に分割して、それぞれの層の形状にFRP板を
切削し、積層して接着成形する。2) In the case of fiber-reinforced plastic (FRP), etc., the three-dimensional structure is divided into layers, the FRP plates are cut into the shape of each layer, and then laminated and adhesively molded.
3)水分を含んでいる粘土や可塑性の残っている未硬化
のプラスチックのようなもので、手で成形する。3) It is molded by hand using something like clay that contains moisture or uncured plastic that still has plasticity.
(発明が解決しようとする問題点) 」−述の従来の技術には次のような問題がある。(Problem to be solved by the invention) The conventional technology described above has the following problems.
1)型を使用する場合は、量産の場合は好ましいが、少
数の製品を製造する場合は非常に高価なものとなる。1) When using a mold, it is preferable for mass production, but it becomes very expensive when manufacturing a small number of products.
2)積層接着する場合は切削し士捨てる材料が多く、材
料の無駄が多い。2) When laminating and bonding, a lot of material is cut and discarded, resulting in a lot of material waste.
3)手で成形する場合は高度の熟練が必要で、製造コス
トが極めて高くなる。3) When molding by hand, a high degree of skill is required and the manufacturing cost becomes extremely high.
4)複雑な多層構造の場合は一体成形出来ない場合があ
る。4) In the case of complex multi-layer structures, integral molding may not be possible.
(問題を解決するだめの手段)
本発明は」二連の問題を解決して安価に、しかも正確に
所要の形成物を製造する方法及び製造装置を提供するこ
とを目的とする。(Means for Solving the Problems) An object of the present invention is to provide a method and a manufacturing apparatus for solving the two problems and manufacturing a desired product at low cost and accurately.
即ちロボットの移動制御装置はコンピュータの指示乙こ
よりロボットの操作端で保持した液杖樹脂インジヱクシ
ョンノズルを断続して所定の三次元移動させ、前記移動
制御装置からの指示により吐出制御装置は前記インジェ
クションノズルから液状樹脂を吐出させて三次元形成物
を成形する製造方法である。That is, the movement control device of the robot intermittently moves the liquid resin injection nozzle held at the operating end of the robot in a predetermined three-dimensional direction based on instructions from the computer, and the discharge control device moves the liquid resin injection nozzle held at the operating end of the robot in a predetermined three-dimensional manner based on instructions from the movement control device. This is a manufacturing method in which a three-dimensional object is formed by discharging liquid resin from an injection nozzle.
またロボットにはコンピュータにより指示される移動制
御装置と、この移動制御装置により三次元動作を制御さ
れる操作端とを設け、ディスベンザ−には前記移動制御
装置により制御される吐出制御装置と、液状樹脂供給部
と、前記操作端で保持されたインジェクションノズルと
を設けた製造装置である。The robot is also equipped with a movement control device that is instructed by a computer and an operating end whose three-dimensional movement is controlled by this movement control device, and the dispenser is equipped with a discharge control device that is controlled by the movement control device and a liquid This manufacturing device includes a resin supply section and an injection nozzle held at the operating end.
(実施例) 以下、図面を用いて本発明を説明する。(Example) The present invention will be explained below using the drawings.
第1図は本発明のロボソHこよる三次元形成物の製造装
置のブロック図である。装置は大別してマイクロコンピ
ュータ1、ロボット2、ディスペンサー3から構成しで
ある。FIG. 1 is a block diagram of an apparatus for manufacturing a three-dimensional object using Roboso H according to the present invention. The device is roughly divided into a microcomputer 1, a robot 2, and a dispenser 3.
ロボット2は第1.2図示のように移動制御装置4及び
x、y、zの3軸方向にそれぞれ移動可能なX軸アーム
11、Y軸アームI2、Z軸アーム13で保持された操
作端5が設けである。As shown in Figure 1.2, the robot 2 has an operating end held by a movement control device 4 and an X-axis arm 11, a Y-axis arm I2, and a Z-axis arm 13 that are movable in three axes of x, y, and z, respectively. 5 is a provision.
ディスペンサー3には吐出制御装置6、コンプレッサー
7、?&、状樹脂タンク8及びインジェクションノズル
9が設けてあり、此のうちコンプレッサー7とタンク8
とで液状樹脂供給部を構成している。The dispenser 3 has a discharge control device 6, a compressor 7, ? &, a resin tank 8 and an injection nozzle 9 are provided, among which a compressor 7 and a tank 8 are provided.
and constitute a liquid resin supply section.
インジェクションノズル9はロボット2の操作端5に固
定してあり、第3図(断面図)示のような構造をしてい
る。胴体9−1内には吐出制御装置6で制御されたコン
プレッサー7からのエアーで動作するニードルバルブ9
−2があり、上端にエアー供給孔9−3、側面に液状樹
脂供給孔9−4、下端にノズル9−5が設けである。The injection nozzle 9 is fixed to the operating end 5 of the robot 2, and has a structure as shown in FIG. 3 (cross-sectional view). Inside the body 9-1 is a needle valve 9 that operates with air from a compressor 7 controlled by a discharge control device 6.
-2, with an air supply hole 9-3 at the upper end, a liquid resin supply hole 9-4 at the side, and a nozzle 9-5 at the lower end.
マイクロコンピュータ1は形成物の形状を記憶し、操作
物5の移動軌跡をプログラム化したソフトの指示により
ロボット2の移動制御装置4に動作指示をする。The microcomputer 1 memorizes the shape of the formed object and instructs the movement control device 4 of the robot 2 to operate based on instructions from software in which the movement locus of the operating object 5 is programmed.
ロボット2は移動制in ’BB4O制御により、X。Robot 2 moves in 'X' under BB4O control.
Y、Z軸の動作で操作端5とこれにより保持されている
インジェクションノズル9を形成物の形状に応じて移動
させる。The operating end 5 and the injection nozzle 9 held thereby are moved according to the shape of the object to be formed by the motions along the Y and Z axes.
なお、位置制御方法は、第10図に示すようにロータリ
ーエンコーダのパルスをカランタムこ取りこみ、偏差カ
ウンタを常に零とするようにモータドライブパルス幅に
フィードバックすることによる。As shown in FIG. 10, the position control method is to take in the pulses of the rotary encoder in batches and feed them back to the motor drive pulse width so that the deviation counter is always zero.
ディスペンサー3は前記移動制御装置4の制御によって
動作する吐出制御装置6によりコンプレッサー7からの
高圧エアーをインジェクションノズル9に間歇供給し、
タンク8から供給される液状樹脂をニードルバルブ9−
2で制御してノズル9−5から間歇吐出して形成物10
を成形する。The dispenser 3 intermittently supplies high-pressure air from the compressor 7 to the injection nozzle 9 by a discharge control device 6 operated under the control of the movement control device 4,
The liquid resin supplied from the tank 8 is transferred to the needle valve 9-
2 and intermittently discharges the formed material 10 from the nozzle 9-5.
to form.
次に形成物の形状について説明する。Next, the shape of the formed product will be explained.
第4図は分岐管の例で、複雑に分岐している構造を持つ
人工直管の一部と考えられる形状である。Figure 4 shows an example of a branched pipe, which is considered to be part of an artificial straight pipe with a complex branching structure.
更にスケールを縮小したものを重ねた多分岐構造も可能
である。Furthermore, a multi-branched structure in which smaller-scale structures are stacked is also possible.
第5図はらせん形状の管で、薄肉でかつ滑らかな曲線形
状を従来の金型等を使用して作ることは容易でないが、
本発明の方法で作ることは容易である。Figure 5 shows a spiral-shaped tube, and it is not easy to make a thin wall with a smooth curved shape using conventional molds.
It is easy to make using the method of the present invention.
第6図は多重構造(断面)のもので、例えば人工心臓の
ように弁と心室9心房を含めた形状のもの等がある。FIG. 6 shows a multi-layered structure (cross-section), such as a structure that includes valves, ventricles, and nine atria, like an artificial heart.
次に使用材料について説明する。木方法では積層させて
成形するので、それに耐えられるだけのチクソトロビソ
ク性が必要になる。本実施例に使用した液状樹脂材料の
常温硬化性シリコーン樹脂の特性は第1表のものである
。Next, the materials used will be explained. In the wood method, the material is laminated and formed, so it needs to have enough thixotrovisometry to withstand it. The properties of the room temperature curable silicone resin used as the liquid resin material in this example are shown in Table 1.
第1表
次に吐出量の設定方法について説明する。積層させて成
形する必要上使用材料の選択と共に、吐出量の設定が重
要である。本発明の吐出方法は間歇吐出で、例えば2秒
おきに1回ずつ吐出する。Table 1 Next, the method of setting the discharge amount will be explained. Due to the necessity of laminating and molding, it is important to select the materials to be used and to set the discharge rate. The ejection method of the present invention is an intermittent ejection, for example, ejecting once every 2 seconds.
この場合、吐出量が少ないと積層が行われず、吐出量が
多いと形が崩れてしまう。このため積層が可能な吐出量
Vdは、材料にかかる圧力P、ノズル径り、ノズルの移
動速度V、?W度T、吐出時間りとすると
Vd=f(P、D、v、T、t)
となる
」−記の関係から、圧力を3 、 L5 、 4 kg
f/c+J、ノズル径を1.25.1.64.2.27
mm、ノズルの移動速度を Xモード設定、温度を20
℃として実験したデータを第7.8.9図に示す。In this case, if the discharge amount is small, lamination will not be performed, and if the discharge amount is large, the shape will collapse. Therefore, the discharge amount Vd that allows lamination is determined by the pressure P applied to the material, the nozzle diameter, the nozzle moving speed V, ? If W degree is T and discharge time is Vd=f(P, D, v, T, t), then from the relationship shown below, the pressure is 3, L5, 4 kg.
f/c+J, nozzle diameter 1.25.1.64.2.27
mm, nozzle movement speed set to X mode, temperature set to 20
Figure 7.8.9 shows the experimental data at ℃.
シリコーン樹脂の他に、ポリウレタン、不飽和ポリエス
テル樹脂、アクリル系樹脂、エポキシ樹脂等の常温硬化
性ないし光硬化性樹脂を用いることができる。In addition to silicone resins, room temperature curable or photocurable resins such as polyurethane, unsaturated polyester resins, acrylic resins, and epoxy resins can be used.
(作 用)
マイクロコンピュータ1に電源を投入し、プログラムを
記録したフロッピィディスクを装入し、Log onを
キイボードでたたくと初期画面がテレビに写し出される
ので、対象製品、例えば7字管(第4図のもの)を指示
し、リタンキイーを押すと、X、Y、Z軸の移動範囲、
操作端の移動軌跡、液状樹脂の射出速度、例えば1滴/
2秒等を指示したプログラムに従ってインジェクション
ノズルを保持したロボットの操作端がモーターにより移
動を開始する。(Operation) When you turn on the power to the microcomputer 1, insert the floppy disk containing the program, and hit Logon on the keyboard, the initial screen will be displayed on the TV. ) and press the return key to change the movement range of the X, Y, and Z axes,
The movement trajectory of the operating end, the injection speed of liquid resin, e.g. 1 drop/
The operation end of the robot holding the injection nozzle starts moving by the motor according to a program that specifies a time period of 2 seconds or the like.
このロボット2の操作端5は移動制舗装W4の制御によ
り、Z軸、Y軸、Z軸を間歇的に移動し、プログラムに
指示された位置にインジェクションノズル9がくると操
作端5の移動を停止させ、ついて移動制御装置4より吐
出制御装置6に吐出開始の指示をする。The operating end 5 of this robot 2 moves intermittently on the Z-axis, Y-axis, and Z-axis under the control of the movement control paving W4, and when the injection nozzle 9 comes to the position instructed by the program, the operating end 5 stops moving. Then, the movement control device 4 instructs the discharge control device 6 to start discharge.
吐出制御装置6の指示によりコンプレッサー7から高圧
エアーが液状樹脂タンク8に間歇的に供給し、液状樹脂
をインジェクションノズル9より1滴/2秒の割合で1
滴吐出させ、樹脂の供給を止める。High-pressure air is intermittently supplied from the compressor 7 to the liquid resin tank 8 according to instructions from the discharge control device 6, and liquid resin is injected from the injection nozzle 9 at a rate of 1 drop/2 seconds.
Dispense a drop and stop supplying the resin.
プログラムの指示により操作端5が次の液状樹脂の吐出
位置に移動され、ついで停止後、吐出制fII装置6の
指示により液状樹脂の吐出を行う。The operation end 5 is moved to the next liquid resin discharge position according to instructions from the program, and after stopping, the liquid resin is discharged according to instructions from the discharge control fII device 6.
以下、この動作をくり返し、目的の形状の物品を製作す
る。Thereafter, this operation is repeated to produce an article of the desired shape.
液状樹脂の硬化は、常温硬化性樹脂であれば室温硬化す
るが、光硬化性樹脂のあきは、紫外線、電子線を照射し
て硬化させる。The liquid resin is cured at room temperature if it is a room-temperature curable resin, but the gaps in the photocurable resin are cured by irradiation with ultraviolet rays or electron beams.
物品製作後は、物品10を台より取り除いた後、再び製
品の製造を繰り返すときは、リビイートとキイボードを
打ち、リタンキイを押して生産を操り返す(勿論、予め
プログラム中に生産個数を指示しておくことも可能であ
る)。製造を終結するときは、エンドとキイボードを打
ち、リタンキイーを押し、ついでLogoffとキイボ
ードを打ち、電源を消去させる。After the product is manufactured, after removing the product 10 from the stand, if you want to repeat the product manufacturing again, type "Revii Eat" on the keyboard and press the return key to return to production (of course, the number of products to be produced must be specified in advance in the program). ). To terminate production, press END on the keyboard, press the return key, and then press LOGOFF on the keyboard to turn off the power.
上述のように本発明の成形方法乙こよれば前記の金型等
の型が不要であるほか、積層接着のような材料の無駄が
なく、また高度な熱線も必要でないし、一体成形困難な
多層構造の場合でも容易に成形できる。As mentioned above, the molding method of the present invention does not require molds such as the above-mentioned molds, there is no waste of materials such as laminated adhesives, there is no need for sophisticated hot wires, and there is no need for one-piece molding. Even multilayer structures can be easily molded.
更にコンピュータのプログラムの変更だけで形成物の形
状変更や数量指定を容易に行うことかできる。Furthermore, it is possible to easily change the shape and specify the quantity of the formed object simply by changing the computer program.
(発明の効果) 上述のように本発明によれば ■)形状の設定、変更が容易である。(Effect of the invention) According to the present invention as described above, ■) It is easy to set and change the shape.
ソフトウェアの開発により、形状の設定、変更が金型を
用いる場合に比べるとはるかに便利であるし、複雑な形
状の製作も可能である。By developing software, it is much more convenient to set and change the shape than using a mold, and it is also possible to manufacture complex shapes.
2)一体成形品の製作が容易である。2) It is easy to manufacture an integrally molded product.
接合させる工程を減少することにより、効率が良くなる
。Efficiency is improved by reducing the number of bonding steps.
3)多種少量生産が可能である。3) It is possible to produce a wide variety of products in small quantities.
ソフトをモジュール化し、その組み合わせによって簡単
形状から大型、複雑形状まで多種類の製作が可能である
。また、成形時間はかかるが、並列に同一システムを配
置して生産することにより大量生産も可能である。By modularizing the software and combining them, it is possible to manufacture a wide variety of shapes, from simple to large and complex shapes. Also, although the molding time is longer, mass production is also possible by arranging and producing the same system in parallel.
4)材料の無駄がない。4) No wastage of materials.
必要量の材料しか使わないので、材料を切削して捨てる
などの無駄がない。Since only the required amount of material is used, there is no waste such as cutting and throwing away material.
5)非接触成形が可能である。5) Non-contact molding is possible.
非接触で光硬化成形方法もこのシステムの応用により可
能である。A non-contact photocuring molding method is also possible by applying this system.
第1図は本発明の装置の制御系統のブロック図、第2図
はロボットの構成図、第3図はインジェクションノズル
の断面図、第4図は多分岐形状の製品の外形図、第5図
はらせん形状の製品の外形間、第6図は多重構造の製品
の外形図、第7.8.9図は各ノズル径の場合で吐出圧
力をパラメータとした吐出量と時間との関係データであ
り、第10図はロボットの位置制御システム図である。
1:マイクロコンピュータ、 2:ロボット、3:ディ
スペンサー、 4:移動制御装置、5:操作端、 6:
吐出制御装置、 7:コンプレツサー、 8:タンク、
9:インジェクションノズル、 10:形成物。
喜2目
箋30
i
ニードル
算9目Fig. 1 is a block diagram of the control system of the device of the present invention, Fig. 2 is a configuration diagram of the robot, Fig. 3 is a sectional view of the injection nozzle, Fig. 4 is an external view of the multi-branched product, and Fig. 5 Figure 6 shows the outline of a product with a multi-layered structure, Figure 7.8.9 shows the relationship data between discharge amount and time using discharge pressure as a parameter for each nozzle diameter. 10 is a diagram of the robot position control system. 1: Microcomputer, 2: Robot, 3: Dispenser, 4: Movement control device, 5: Operation end, 6:
Discharge control device, 7: Compressor, 8: Tank,
9: Injection nozzle, 10: Formed product. Ki 2 memo 30 i needle arithmetic 9th
Claims (1)
りロボットの操作端で保持した液状樹脂インジェクショ
ンノズルを断続して所定の三次元移動させ、前記移動制
御装置からの指示により吐出制御装置は前記インジェク
ションノズルから液状樹脂を吐出させて三次元形成物を
成形することを特徴とするロボットによる三次元形成物
の製造方法。 2)ロボットにはコンピュータにより指示される移動制
御装置と、この移動制御装置により三次元動作を制御さ
れる操作端とを設け、ディスペンサーには前記移動制御
装置により制御される吐出制御装置と、液状樹脂供給部
と、前記操作端で保持されたインジェクションノズルと
を設けてなるロボットによる三次元形成物の製造装置。[Claims] 1) A robot movement control device intermittently moves a liquid resin injection nozzle held at the operation end of the robot in a predetermined three-dimensional manner according to instructions from a computer, and controls discharge according to instructions from the movement control device. A method for manufacturing a three-dimensional object using a robot, characterized in that the apparatus discharges liquid resin from the injection nozzle to mold the three-dimensional object. 2) The robot is equipped with a movement control device that is instructed by a computer, and an operating end whose three-dimensional movement is controlled by this movement control device, and the dispenser is equipped with a discharge control device that is controlled by the movement control device, and a liquid A three-dimensional product manufacturing device using a robot, which includes a resin supply section and an injection nozzle held by the operating end.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61100469A JPS62255124A (en) | 1986-04-28 | 1986-04-28 | Method and device for manufacturing three-dimensional formation by robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61100469A JPS62255124A (en) | 1986-04-28 | 1986-04-28 | Method and device for manufacturing three-dimensional formation by robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62255124A true JPS62255124A (en) | 1987-11-06 |
Family
ID=14274768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61100469A Pending JPS62255124A (en) | 1986-04-28 | 1986-04-28 | Method and device for manufacturing three-dimensional formation by robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62255124A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6478822A (en) * | 1987-09-21 | 1989-03-24 | Yamanashi Pref Gov | Three-dimensional body molding equipment |
JPH02307729A (en) * | 1989-05-23 | 1990-12-20 | Brother Ind Ltd | Three-dimensional molding apparatus |
JPH02307728A (en) * | 1989-05-23 | 1990-12-20 | Brother Ind Ltd | Three-dimensional molding apparatus |
JPH02310025A (en) * | 1989-05-25 | 1990-12-25 | Brother Ind Ltd | Three dimensional forming device |
JPH03158228A (en) * | 1989-10-30 | 1991-07-08 | Stratasys Inc | Device and method for creating three-dimensional object |
JPH05345359A (en) * | 1991-01-03 | 1993-12-27 | Internatl Business Mach Corp <Ibm> | System for assembling three-dimensional object and assembling method |
JPH09300474A (en) * | 1996-05-15 | 1997-11-25 | Roland D G Kk | Three-dimensional shaping method and device used therein |
WO2005084581A1 (en) * | 2004-03-03 | 2005-09-15 | Japan Science And Technology Agency | Medical three-dimensional structure, process for producing the same and production apparatus |
JP2005261286A (en) * | 2004-03-18 | 2005-09-29 | Chubu Nippon Kogyo Kk | Apparatus for producing food and method for producing food |
WO2005105164A1 (en) * | 2004-04-30 | 2005-11-10 | Sunstar Suisse Sa | Biocompatible membrane and process for producing the same |
JP2011253060A (en) * | 2010-06-02 | 2011-12-15 | Nihon Univ | Manufacturing apparatus for three-dimensional viscoelastic structure and manufacturing method therefor |
JP2012126059A (en) * | 2010-12-16 | 2012-07-05 | Arburg Gmbh & Co Kg | Device for manufacturing three dimensional object |
CN103660299A (en) * | 2013-12-04 | 2014-03-26 | 北京太尔时代科技有限公司 | Multi-sprayer 3D printer |
CN104960204A (en) * | 2015-07-01 | 2015-10-07 | 西北工业大学(张家港)智能装备技术产业化研究院有限公司 | 3D printing device |
JP2016539823A (en) * | 2013-10-30 | 2016-12-22 | ライング オーローク オーストラリア プロプライエタリー リミテッド | Manufacturing method of object |
KR20170082593A (en) * | 2014-11-13 | 2017-07-14 | 록히드 마틴 코포레이션 | Additive manufacturing of pipes |
JP2020192777A (en) * | 2019-05-30 | 2020-12-03 | セイコーエプソン株式会社 | Method for manufacturing three-dimensional molded article and three-dimensional molding apparatus |
-
1986
- 1986-04-28 JP JP61100469A patent/JPS62255124A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6478822A (en) * | 1987-09-21 | 1989-03-24 | Yamanashi Pref Gov | Three-dimensional body molding equipment |
JPH0511751B2 (en) * | 1987-09-21 | 1993-02-16 | Yamanashi Prefecture | |
JPH02307729A (en) * | 1989-05-23 | 1990-12-20 | Brother Ind Ltd | Three-dimensional molding apparatus |
JPH02307728A (en) * | 1989-05-23 | 1990-12-20 | Brother Ind Ltd | Three-dimensional molding apparatus |
JPH02310025A (en) * | 1989-05-25 | 1990-12-25 | Brother Ind Ltd | Three dimensional forming device |
JPH03158228A (en) * | 1989-10-30 | 1991-07-08 | Stratasys Inc | Device and method for creating three-dimensional object |
EP0833237A3 (en) * | 1989-10-30 | 1998-04-22 | Stratasys Inc. | Apparatus and method for creating three-dimensional objects |
JPH05345359A (en) * | 1991-01-03 | 1993-12-27 | Internatl Business Mach Corp <Ibm> | System for assembling three-dimensional object and assembling method |
US5303141A (en) * | 1991-01-03 | 1994-04-12 | International Business Machines Corporation | Model generation system having closed-loop extrusion nozzle positioning |
US5402351A (en) * | 1991-01-03 | 1995-03-28 | International Business Machines Corporation | Model generation system having closed-loop extrusion nozzle positioning |
JPH09300474A (en) * | 1996-05-15 | 1997-11-25 | Roland D G Kk | Three-dimensional shaping method and device used therein |
JPWO2005084581A1 (en) * | 2004-03-03 | 2008-01-17 | 独立行政法人科学技術振興機構 | Medical three-dimensional structure, manufacturing method and manufacturing apparatus thereof |
JP2010099494A (en) * | 2004-03-03 | 2010-05-06 | Japan Science & Technology Agency | Manufacturing method of three-dimensional medical structure |
WO2005084581A1 (en) * | 2004-03-03 | 2005-09-15 | Japan Science And Technology Agency | Medical three-dimensional structure, process for producing the same and production apparatus |
JP4641047B2 (en) * | 2004-03-03 | 2011-03-02 | 独立行政法人科学技術振興機構 | Manufacturing method of medical three-dimensional structure |
JP2005261286A (en) * | 2004-03-18 | 2005-09-29 | Chubu Nippon Kogyo Kk | Apparatus for producing food and method for producing food |
JP5008396B2 (en) * | 2004-04-30 | 2012-08-22 | サンスター スイス エスエー | Biocompatible membrane and method for producing the same |
JPWO2005105164A1 (en) * | 2004-04-30 | 2008-03-13 | サンスター スイス エスエー | Biocompatible membrane and method for producing the same |
WO2005105164A1 (en) * | 2004-04-30 | 2005-11-10 | Sunstar Suisse Sa | Biocompatible membrane and process for producing the same |
JP2011253060A (en) * | 2010-06-02 | 2011-12-15 | Nihon Univ | Manufacturing apparatus for three-dimensional viscoelastic structure and manufacturing method therefor |
JP2012126059A (en) * | 2010-12-16 | 2012-07-05 | Arburg Gmbh & Co Kg | Device for manufacturing three dimensional object |
JP2016539823A (en) * | 2013-10-30 | 2016-12-22 | ライング オーローク オーストラリア プロプライエタリー リミテッド | Manufacturing method of object |
AU2014344811B2 (en) * | 2013-10-30 | 2019-03-21 | Laing O'rourke Australia Pty Limited | Method for fabricating an object |
US10343320B2 (en) | 2013-10-30 | 2019-07-09 | Laing O'rourke Australia Pty Limited | Method for fabricating an object |
CN103660299A (en) * | 2013-12-04 | 2014-03-26 | 北京太尔时代科技有限公司 | Multi-sprayer 3D printer |
KR20170082593A (en) * | 2014-11-13 | 2017-07-14 | 록히드 마틴 코포레이션 | Additive manufacturing of pipes |
JP2017535471A (en) * | 2014-11-13 | 2017-11-30 | ロッキード・マーチン・コーポレイションLockheed Martin Corporation | Additional production of pipes |
CN104960204A (en) * | 2015-07-01 | 2015-10-07 | 西北工业大学(张家港)智能装备技术产业化研究院有限公司 | 3D printing device |
JP2020192777A (en) * | 2019-05-30 | 2020-12-03 | セイコーエプソン株式会社 | Method for manufacturing three-dimensional molded article and three-dimensional molding apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62255124A (en) | Method and device for manufacturing three-dimensional formation by robot | |
JP6625717B2 (en) | Device for manufacturing 3D components | |
JP2738017B2 (en) | 3D molding equipment | |
US5216616A (en) | System and method for computer automated manufacture with reduced object shape distortion | |
US20120211919A1 (en) | Thermoplastic Molding Process and Apparatus | |
JP6567001B2 (en) | Three-dimensional structure manufacturing method and three-dimensional structure apparatus | |
WO1997024217A1 (en) | Moldless molding method using no mold and apparatus therefor | |
KR100837109B1 (en) | Hollow three-dimensional manufacturing method of a casting pattern model and the apparatus thereof | |
JPH03158228A (en) | Device and method for creating three-dimensional object | |
CN107984749A (en) | Produce the method and three-dimensional device of 3D shape object | |
US3412431A (en) | Deposition molding apparatus and method | |
JP6926820B2 (en) | 3D modeling device and 3D modeling method | |
JP2022007276A (en) | Three-dimensional molding apparatus | |
KR100880593B1 (en) | A layer manufacturing apparatus | |
JP2018079652A (en) | Resin molding apparatus and resin molding method | |
CN106313565B (en) | Multi-functional composite printing device | |
JP2015221511A (en) | Method and system for molding composite molding and composite molding | |
JP3442620B2 (en) | Three-dimensional molding apparatus and three-dimensional molding method | |
JP2699563B2 (en) | 3D molding equipment | |
WO1996016785A1 (en) | Injection compression molding method and apparatus | |
JPS5917931B2 (en) | Method and device for molding plastic materials | |
JP2738016B2 (en) | 3D molding equipment | |
JPS58211413A (en) | Device for solid model production | |
CN106313567A (en) | Multifunctional combined printing device | |
KR102139726B1 (en) | 3d printer having adhesive coating function and operating method thereof |