WO2005084581A1 - Medical three-dimensional structure, process for producing the same and production apparatus - Google Patents

Medical three-dimensional structure, process for producing the same and production apparatus Download PDF

Info

Publication number
WO2005084581A1
WO2005084581A1 PCT/JP2004/013096 JP2004013096W WO2005084581A1 WO 2005084581 A1 WO2005084581 A1 WO 2005084581A1 JP 2004013096 W JP2004013096 W JP 2004013096W WO 2005084581 A1 WO2005084581 A1 WO 2005084581A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional structure
medical
dimensional
syringe
discharge
Prior art date
Application number
PCT/JP2004/013096
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Ikuta
Akira Yamada
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2006510610A priority Critical patent/JPWO2005084581A1/en
Publication of WO2005084581A1 publication Critical patent/WO2005084581A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00

Definitions

  • the present invention relates to a medical three-dimensional structure, and a method and apparatus for manufacturing the same. More specifically, the present invention relates to a fine medical three-dimensional structure made of a biodegradable resin having biocompatibility and having an arbitrary complex shape as an implantable treatment tool or treatment aid.
  • TECHNICAL FIELD The present invention relates to a manufacturing method capable of accurately manufacturing a medical three-dimensional structure without admixing harmful substances, and a manufacturing apparatus capable of performing such a manufacturing method. Background art
  • biodegradable resins those that are polymers of biocompatible monomers, such as lactic acid and glycolic acid, are completely degraded in the body over time, and degradation products are harmful to living organisms. Is discharged without any effect.
  • biocompatible biodegradable resins have long been used as sutures that do not need to be removed after surgery, or as temporary implantable treatment tools or treatment aids after surgery. Recently, it has also been used as a scaffold for tissue regeneration in the field of regenerative medical engineering, and as a material for skeletal construction.
  • the form of this type of conventional member is limited to a simple form such as a thread, a sheet, a sponge, and the like, and it is not required that the form be precisely finished.
  • a technology to accurately process extremely fine and three-dimensionally complex members that is, a three-dimensional microfabrication technology, will be used. Required.
  • heat-melt additive manufacturing 3 ⁇ 4 generally refers to a method in which a resin melted by heating is supplied in the form of a fine rod by any method, and the resin is run through a fine rod-like forming section or stage to form a two-dimensional slice layer. This is a method of obtaining a three-dimensional structure by forming a three-dimensional structure, and this is disclosed in the following document 2, for example.
  • Synthetic bioabsorbable polymers for implants STP 1396, American
  • the “ink-jet binder method” is a two-dimensional slice for the purpose of forming a binder (adhesive) on a thin layer formed by fine powder. This is a method of producing a three-dimensional structure by spraying according to the layers and repeating this process.
  • the “sheet-to-layer method” is a method in which an arbitrary three-dimensional shape is produced by laminating one sheet at a time according to the cross-sectional shape (two-dimensional slice layer).
  • micro-stereolithography described in the above reference 1 is an excellent processing technique, it is not biodegradable and cannot be expected to be biocompatible because the target material is a photocurable polymer. Therefore, it is suitable for manufacturing implantable treatment tools and treatment aids.
  • the heat-melt additive manufacturing method described in the above-mentioned reference 2 the other ink-jet binder method, the sheet laminating method, and the like have insufficient processing resolution or manufacturing efficiency. It is difficult to accurately and quickly form fine three-dimensional structures due to insufficient ratio.
  • the solvent (having biotoxicity) used in the preprocessing of the timber remains in the material of the three-dimensional structure. Therefore, even if a biocompatible biodegradable resin such as polylactic acid is used, there is a problem that the obtained product has low biocompatibility. Disclosure of the invention
  • the material itself is an extremely fine structure made of a biodegradable resin that is biocompatible in the sense that no toxic substance is mixed, It is an object of the present invention to provide a three-dimensional structure having a complicated shape as a treatment aid, and to provide an effective method and apparatus for manufacturing such a three-dimensional structure.
  • the first invention of the present application is a three-dimensional structure made of a biodegradable resin having biocompatibility and having an arbitrary shape as an implantable treatment tool or treatment assisting tool. This is a medical three-dimensional structure that requires a resolution of less than m.
  • the medical three-dimensional structure according to the first invention is a structure having an arbitrary shape as an implantable treatment tool or a treatment auxiliary tool, for example, a surgical treatment tool temporarily required during surgery, a scaffold for tissue regeneration And materials for constituting the skeleton. In other words, it is a very useful structural material in the medical field.
  • the medical three-dimensional structure is made of a biocompatible biodegradable resin. Therefore, after it has been buried in the body to perform its intended function, it is completely degraded over time in the body, and the degradation products are excreted without harmful effects on the living body. Therefore, there is no need to remove the structure after surgery. It is not necessary to perform an extirpative surgery after a certain period, even if the structure is expected to be buried for a certain period of time. In addition, since the constituent materials of the three-dimensional structure do not contain substances harmful to living organisms, biocompatibility is high in this sense.
  • this medical three-dimensional structure requires extremely fine processing, and its forming requires a resolution of 50 ⁇ m or less.
  • three-dimensional medical structures are 50 Even if the size is less than W 200 ⁇ or larger, it is necessary to process the structure with a resolution of 50 or less to form all or a part of the structure. Therefore, the possibility of providing a new category of fine treatment tools or treatment aids that were difficult to conceive and provide with conventional manufacturing techniques has been opened.
  • the biodegradable resin having biocompatibility according to the first invention is a homopolymer composed of any one of lactic acid, glycolic acid, and ⁇ prolatatone, or two or more of these homopolymers. It is a medical three-dimensional structure that is a copolymer composed of monomers.
  • biocompatible biodegradable resin examples include well-known homopolymers of lactic acid and dalicholic acid, homopolymers of force prolactone, and any two or more of the above. Preferable examples include copolymers composed of monomers.
  • the implantable treatment tool or treatment aid according to the first invention or the second invention is a surgical or medical tool, a scaffold for tissue regeneration, a material for skeleton, a drug It is a medical 3D structure that is a delivery system (DDS) or a device for gene transfer.
  • DDS drug delivery system
  • the drug delivery system refers to an entire device constituting a so-called drug delivery system, or an individual member constituting a drug delivery system.
  • Examples of the ⁇ implantable treatment tool or treatment aid '' in the first invention or the second invention include surgical treatment tools, scaffolds for tissue regeneration, constituent materials for skeleton, Drug delivery devices (DDS) and devices for gene transfer can be mentioned.
  • DDS Drug delivery devices
  • a fourth invention of the present application is the medical three-dimensional structure, wherein the scaffold for tissue regeneration according to the third invention is a hollow tubular body having a branch portion as a scaffold for blood vessel regeneration or capillary regeneration. Things.
  • the scaffold for regenerating blood vessels or regenerating capillaries according to the fourth invention is very useful in the field of regenerative medicine.
  • the tube is closed at each end of the hollow tubular body.
  • the fifth invention of the present application is a method for manufacturing a medical three-dimensional structure, including the following processes (1) to (3).
  • a nozzle at the lower end of a small syringe provided with a heating means is brought close to and opposed to a modeling stage, and the syringe is filled with fine particles of a biodegradable resin having biocompatibility, and the heating means is used. Heat melt.
  • the biodegradable resin that is melted by heat is discharged from the nozzle in the form of a thin line, and the syringe or the molding stage is discharged.
  • the plane direction X-Y direction
  • one of a number of two-dimensional slice layers X-Y slice layers
  • the second step is repeated after moving the syringe or the molding stage in the vertical direction (Z direction) by the thickness of one layer of the two-dimensional slice layer, and repeating the three-dimensional process. It forms all of the many 2D slice layers that make up the structure.
  • W The syringe is filled with fine particles of a biodegradable resin, melted by heat, and discharged as it is from the nozzle into a fine I shape, thereby providing a medical three-dimensional structure. That is, since the raw material is filled into a syringe in a batch system, and then heated and melted for use in molding, a biotoxic solvent such as a conventional heat-melt additive manufacturing method, an ink-jet binder method, a sheet laminating method, etc. No need to preprocess biodegradable resin. That is, there is no possibility that the toxic solvent remains in the constituent material of the structure.
  • a biotoxic solvent such as a conventional heat-melt additive manufacturing method, an ink-jet binder method, a sheet laminating method, etc.
  • the biodegradable resin melted by heat is discharged from a fine nozzle in the form of a fine line.
  • a sixth invention of the present application is the medical three-dimensional structure, wherein each of the processes (1) to (3) in the fifth invention is performed according to at least one of the following conditions (4) to (6). It is a method of manufacturing a product.
  • the diameter of the fine linear discharge from the nozzle is 200 ⁇ or less.
  • the discharge amount of the fine linear discharge material from the nozzle is 1.5 ⁇ L / min or less.
  • the temperature on the modeling stage is 30 ° C. or lower than the thermal melting point temperature of the biodegradable resin.
  • the method itself of molding a target object by melting the resin by heat and discharging it from a nozzle is a general method.
  • resin molding is performed in combination with a molding die.
  • micro-stereolithography is intended for photocurable polymers, it cannot be applied to the manufacture of bio-implantable treatment tools or treatment aids using biodegradable polymers. Therefore, the inventor of the present application paid attention to the fact that the ejected matter from the nozzle is in a fine line shape.
  • the manufacturing method of the fifth invention by setting certain conditions for rapidly cooling and solidifying the discharged material, the molded body can be rapidly cooled and solidified without using a molding die. We have determined that a high-precision compact can be obtained.
  • the condition is at least one or more of the conditions (4) to (6) of the sixth invention, specifically the conditions of (4) and / or (5).
  • the three-dimensional structure according to the fifth or sixth aspect is a hollow tubular body having a branch portion
  • a plurality of two-dimensional structures corresponding to the branch portion are provided.
  • An eighth invention of the present application is a medical three-dimensional structure manufacturing apparatus including the following elements (a) to (e).
  • a discharge unit composed of a small syringe with a lip at the lower end and heating means provided on the outer periphery of the syringe.
  • Discharge control means for controlling discharge of syringe contents from the nozzle.
  • Movement control means for controlling the movement of the discharge section and / or the molding stage in a plane direction (X-Y direction) and a vertical direction (Z direction).
  • a controller to which planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure is input, and which operates the movement control means and the discharge control means in cooperation based on the data.
  • the medical three-dimensional structure manufacturing apparatus includes the elements (a) to (e) necessary to execute the manufacturing method according to the fifth to seventh inventions, the first The medical three-dimensional structures according to the inventions to the fourth invention can be effectively manufactured.
  • each of the elements (a) to (e) may be determined arbitrarily, but the invention of the present application already has a plane size of 30 cm or less in the vertical direction of the entire device. We are prototyping an effective device that is less than 50 cm in width and less than 50 cm in height. Also, the size of the syringe and nozzle, which directly affects the size setting of the medical three-dimensional structure, can be designed extremely fine as needed.
  • the control method by the movement control means according to the eighth aspect is such that a control method is performed in a plane direction (X-Y direction) and a vertical direction (Z direction) of one of the discharge unit and the molding stage. Either the movement is controlled, or the movement of one of the discharge unit and the molding stage in the plane direction (X-Y direction) is controlled and the movement of the other in the vertical direction (Z direction) is controlled. This is a system for manufacturing medical three-dimensional structures.
  • the control method of the discharge unit and the Z or the molding stage by the movement control means can be arbitrarily selected.
  • a method of controlling the movement of either the discharge part or the molding stage in the plane direction (X-Y direction) and the vertical direction (Z direction) is used.
  • a typical second control method is to control the movement of either the discharge section or the molding stage in the plane direction (X-Y direction) and the movement of the other in the vertical direction (Z direction).
  • FIG. 1 is a simplified view of a medical three-dimensional structure manufacturing apparatus.
  • FIG. 2 is a diagram showing a process of acquiring slice data of a medical three-dimensional structure.
  • FIG. 3 is a diagram showing a manufacturing process of a medical three-dimensional structure.
  • 4 to 7 are diagrams each showing an example of manufacturing a three-dimensional structure.
  • FIG. 8 is a graph showing the biocompatibility of the medical three-dimensional structure.
  • FIG. 9 is a view for explaining a production example of a hollow tubular body having a branch portion. BEST MODE FOR CARRYING OUT THE INVENTION
  • the material used in the present invention is a biocompatible biodegradable resin. Doctor In industrial fields other than medical treatment, biodegradable resins composed of non-biocompatible monomers are often used, but such non-biocompatible biodegradable resins are not used in the present invention.
  • biocompatibility means that the biodegradable resin itself has biocompatibility as a characteristic, and that the biodegradable resin does not include additives or inclusions that are toxic to living organisms. It also means that.
  • a typical example of a biodegradable resin having biocompatibility is polylactic acid, which is a polyester polymer (homopolymer) of lactic acid. Further, polyglyconic acid, which is a polyester polymer (homopolymer) of glycolic acid, is also included. Other examples include homopolymers of force prolactone. The degree of polymerization or molecular weight of these homopolymers is not particularly limited.
  • copolymers obtained by polymerizing any two or more of the above monomers can also be exemplified.
  • the molar ratio of two or more monomers is not limited, and not only those in which two or more monomers are polymerized exactly alternately, but also so-called block copolymers and random copolymers can be used.
  • the degree of polymerization or molecular weight of these copolymers is not particularly limited.
  • the “medical three-dimensional structure” is a three-dimensional structure made of the above-mentioned biodegradable resin and having an arbitrary shape as an implantable treatment tool or treatment aid. It refers to one that requires a resolution of 50 ⁇ or less for its forming. That is, a structure with a size of 50 im or less, or at least a part of a three-dimensional structure having a part to be accurately formed with a size of 50 or less even when the overall size exceeds 50 m. Things.
  • the medical three-dimensional structure of the present invention should have a resolution of 50 or less for its molding, and there is no inevitable force.
  • Such an implantable treatment tool or treatment aid has a fine three-dimensional structure.
  • the feature of the present invention that a complicated shape is accurately formed is best exhibited.
  • the type and content of the implantable treatment tool or treatment aid are not limited. Preferred examples include surgical treatment tools, scaffolds for tissue regeneration, skeletal components, drug delivery devices (DDS), and gene transfer devices.
  • a particularly preferred example of the scaffold for tissue regeneration is a hollow tubular body having a branch portion, as a scaffold for revascularization or capillary regeneration.
  • These hollow tubular bodies may have a shape in which each terminal of the tubular body is open, or a shape in which each terminal of the tubular body is closed. In the latter case, tissue cells grow on the outer periphery of the tubular body but do not grow on the inner periphery.
  • This hollow tubular body is used not only for regenerating blood vessels and knitted blood vessels, but also as a scaffold for regenerating other luminal organs, particularly fine luminal organs such as tubules. can do.
  • the method for producing a medical three-dimensional structure according to the present invention is a method including at least the following processes (1) to (3).
  • the nozzle at the lower end of the small syringe provided with the heating means is brought close to and opposed to the modeling stage, and the biodegradable fine particles (micropellet) that are biocompatible with the small syringe. ) And thermally fused by the heating means.
  • the hot-melt raw material angle ⁇ 'I' green resin is discharged from the nozzle in a fine line shape, and a syringe or modeling stage is used. Is moved in the plane direction (X-Y direction) to form one of a number of two-dimensional slice layers (X-Y direction slice layers).
  • the second step After moving the syringe or the molding stage in the vertical direction (Z direction) by the thickness of one layer of the two-dimensional slice layer, the second step is repeated, and this step is repeated. It forms all of the many 2D slice layers that make up the 3D structure.
  • the two-dimensional slice layers formed using the hot-melt resin are fused and integrated with each other, and then cooled and solidified, so that the desired three-dimensional structure can be accurately formed. It is formed. [Rapid solidification by controlling the discharge amount]
  • Each of the processes (1) to (3) is particularly preferably performed according to at least one of the following conditions (4) to (6).
  • a minute medical three-dimensional structure can be rapidly cooled and solidified, effectively preventing “deformation” after discharging hot-melt resin without using a molding die, and achieving a very accurate purpose.
  • a three-dimensional structure having the following shape can be manufactured.
  • the diameter of the fine linear discharge from the nozzle is 200 ⁇ m or less, more preferably 20 ⁇ or less, and particularly preferably 5 ⁇ or less.
  • the discharge amount of the fine linear discharge material from the nozzle is 1.5 ⁇ L / min or less, more preferably 0.1 ⁇ LZmin or less, and particularly preferably 3.8 nL / min. It is as follows.
  • the temperature on the molding stage is 30 ° C. or more lower than the thermal melting point temperature of the biodegradable resin. More preferably, the temperature is 20 ° C. or less on the modeling stage. If necessary, appropriate cooling devices are used.
  • the three-dimensional structure is a hollow tubular body having a branch
  • a hollow tubular body having a branch as a scaffold for a blood vessel or a capillary tube
  • a plurality of two-dimensional slice layers corresponding to the branch are provided.
  • An apparatus for manufacturing a medical three-dimensional structure according to the present invention is an apparatus including at least the following elements (a) to (e).
  • a discharge section comprising a small syringe having a lip at the lower end and a heating means provided on the outer periphery of the syringe.
  • the size of the syringe or nozzle can be appropriately set according to the purpose, but the inner diameter of the nozzle is set, for example, to 200 ⁇ or less, more preferably 20 ⁇ or less, and particularly preferably 5 ⁇ or less. It is preferable to do so.
  • the lower limit of the inner diameter of the nozzle is not limited, as long as the manufacturing technology allows For example, the inner diameter may be set to 1 ⁇ or less.
  • the configuration of the heating means is not limited, for example, a method of heating with a heating wire such as a -chrome wire through a metal block such as an aluminum alloy surrounding the outer periphery of the syringe is exemplified.
  • the temperature range of the heating by the heating means is appropriately set in consideration of the glass transition point and the melting point of the biodegradable resin. It is more preferable that the heating means be cooperatively controlled by a controller described later together with the movement control means and the discharge control means. This makes it possible to automatically control the entire medical three-dimensional structure manufacturing equipment.
  • Discharge control means for controlling discharge of syringe contents from the nozzle.
  • the discharge control means controls the ON / OFF of discharge of the thermally degradable biodegradable resin from the nozzle and the discharge amount at the time of discharge.
  • the configuration of the discharge control means is not particularly limited, for example, a method in which the operation of a resin extruding biston rod reciprocating in the syringe is controlled by a stepping motor via a feed screw can be used. In this case, the discharge or stop of the biodegradable resin from the nozzle or the control of the discharge amount is performed according to the rotation of the stepping motor or its rotation speed.
  • a molding stage located opposite the nozzle at the lower end of the syringe is located opposite the shaping stage located opposite the nozzle at the lower end of the syringe. It is preferable that the shaping stage be capable of controlling movement in, for example, a three-dimensional direction (X-Y-Z direction). However, a part or all of such a movement control mechanism is set on the discharge unit side. In that case, part or all of the movement control mechanism of the modeling stage can be dispensed with as long as it is performed.
  • the discharge section and the noss molding stage are provided on any of them, a means for controlling movement in a plane direction (X-Y direction) and a means for controlling movement in a vertical direction (Z direction). Therefore, it is necessary to control the relative movement in the three-dimensional directions (X-Y-Z directions). Therefore, if one of the discharge unit and the modeling stage can be controlled to move in a three-dimensional direction (X, Y, and Z directions), the other may be a fixed type.
  • Planar shape data of a number of two-dimensional slice layers constituting a three-dimensional structure is input, and the movement control means and the discharge control means cooperate based on this data.
  • planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure is obtained using three-dimensional CAD or CT (Computer Tomography; MR I (Magnetic Resonance Imaging), etc.) Is the shape data of a “ring slice” of a three-dimensional structure.
  • the “cooperative operation of the movement control means and the discharge control means” means, for example, discharge of biodegradable resin from the discharge control means when the discharge part or the molding stage is moving in a plane direction. And that the discharge of the biodegradable resin from the discharge control means is stopped when the discharge section or the molding stage is moving in the vertical direction.
  • the molding stage is maintained in a low temperature range by using appropriate cooling means to quickly solidify the hot-melt biodegradable resin discharged from the nozzle. Therefore, it is also preferable to ensure the accuracy of forming the three-dimensional structure.
  • the molding stage should be cooled to a temperature lower than the hot melting point temperature of the biodegradable resin by 30 ° C or more, and more preferably to room temperature (20 ° C) or less, by means such as circulation of cold air. Can be.
  • FIG. 1 schematically shows a medical three-dimensional structure manufacturing apparatus 1 according to an embodiment of the present invention.
  • a very thin syringe 2 is provided with a fine nos and a hole 3 at its lower end.
  • the nozzle 3 has a hole diameter of about 50 / m.
  • the diameter of the fine linear discharge from Nozore 3 is about 45 ⁇ .
  • the outer circumference of the syringe 2 is surrounded by a spirally wound nichrome wire 5 through a cylindrical body 4 made of aluminum.
  • the heating control section 6 controls the ONZO FFF and the heating temperature of the dichrome wire 5.
  • a piston rod 7 can be inserted from the upper end opening of the syringe 2, and the piston rod 7 is driven up and down inside the syringe 2 by a stepping motor 8. And the stepping motor 8 is sent to the controller 9 which is the central control unit. Therefore, the operation is controlled.
  • the controller 9 may be configured to control the heating control unit 6 as well.
  • a molding stage 10 is provided immediately below the nose 3 of the syringe 2.
  • the molding stage 10 is capable of performing arbitrary parallel movements in a plane direction (X-Y direction) and a vertical direction (Z direction) with an arbitrary force, and the operation thereof is controlled by the controller 9. .
  • the controller 9 receives the planar shape data of a large number of two-dimensional slice layers in a state in which the three-dimensional structure, which is the object of modeling, is sliced (round sliced) into a number of layers along the plane direction. 9 operates the stepping motor 8 and the molding stage 10 in cooperation with each other based on the data.
  • a method for acquiring planar shape data of a large number of two-dimensional slice layers of a three-dimensional structure is as shown in FIG. That is, for example, the three-dimensional structure 11 assumed to have the shape shown in FIG. 2 (a) is changed to the second shape according to the principle of a tomographic imaging method such as three-dimensional CAD or CT or MRI. As shown in Fig. 2 (b), processing is performed on data sliced into a number of layers along the plane, and planar shape data of each 2D slice layer is obtained as shown in Fig. 2 (c). These data are input to the controller 9 described above.
  • a micro-pellet of a biodegradable resin such as polylactic acid is filled in the syringe 2 and the nichrome wire 5 is melted by heating. While maintaining such a heat-melted state, the biodegradable resin is ejected from the nozzle 3 in a fine / linear manner, and the molding stage 10 is moved in the plane direction (X-Y direction) as shown in FIG. 3 (a). To the specified point. At this time, the discharge of biodegradability from the horn 3 and the movement of the molding stage 10 are controlled by the controller 9, so that the discharged fine-line-shaped biodegradable resins are fused to each other. Then, a two-dimensional slice layer 12 is formed accurately as a whole.
  • a biodegradable resin such as polylactic acid
  • the first stage (lowest layer) of the two-dimensional slice layer 12 is formed, Controlled by the roller 9, the discharge of the biodegradable resin from the blade 3 is temporarily stopped, and the molding stage 10 moves down by one layer of the two-dimensional slice layer 12, and then moves as described above.
  • two-dimensional slice layers 12 of the second and subsequent stages are sequentially laminated and formed as shown in FIG. 3 (b). By this repetition, the three-dimensional structure 11 as originally assumed is formed.
  • a micropipe (outside diameter: 500 ⁇ , inside diameter: 400 ⁇ m) whose SEM image is shown in FIG. m, height 1.5 mm), micro-bend pipe (outer diameter 1.5 mm, height 4 mm) shown in Fig. 5, coil spring shown in Fig. 6 (representative diameter 0.5 mm, pitch 0.5) 8 mm), and the like.
  • a box (4.5 mm square and 5 mm deep) with an open top as shown in FIG. 7 can be exemplified.
  • Each of the three-dimensional structures shown in FIGS. 4 to 7 was prepared using polylactic acid as a biodegradable resin, and the biodegradable resin from the nozzle 3 during the production thereof was used. The discharge rate was 0.1 ⁇ L / min or less.
  • the biocompatibility was evaluated by using the box shown in FIG. 7 as a container for cell culture.
  • a container for the comparative experiment a commercially available 96-hole microphone port and a 7-layer plate for ellipse were used.
  • the cells subjected to the culture are PC12 cells derived from rat pheochromocytoma. These cells have been used for studies of nerve function because they exert nerve growth factor NGF as a helping factor. If the cells can grow, it is confirmed that the box shown in FIG. 7 has sufficient biocompatibility.
  • PC12 cells were used so that the number of cells per unit area of the bottom was the same as that of the box of the example and the microwell plate of the comparative example. seeded, same general environment (3 7 ° C, 5% C 0 2) was cultured in, KoTsuta observed and populations of force Unto cells until after sowing 8 9 hours passed.
  • FIG. Fig. 8 shows cells on the vertical axis.
  • the change in the number of cells (Time [hour]) is plotted on the horizontal axis, and the average force in the above several examples is shown in a graph labeled “3D niicrofabricated PLA vessel”.
  • the graph “Non-biodegradable well plate for comparison” shows the average value in the comparative example of the above number ⁇ ].
  • the scaffold 13 shown in FIG. 9 (a) for regenerating the blood vessels of the knitting field is made of polylactic acid which is a biodegradable resin, and the production apparatus of the first embodiment is used to produce the scaffold 13 of the second embodiment. It is manufactured by the manufacturing method.
  • the scaffold 13 is a hollow tubular body whose tube wall 15 has a substantially circular cross-sectional shape with a diameter of 50 ⁇ m or less, but has a branch portion 14.
  • these branch portions 14 are formed by changing the shape of each layer of the above-described two-dimensional slice layer into one circle with respect to the tube wall portion 15 corresponding to the branch portion 14. It is formed by sequentially changing the shape from an ellipse, an ellipse with a constriction in the center, an “8” shape, and two circles.
  • the heat-melted polylactic acid was discharged from the nozzle 3 having a pore diameter of 20 m at a discharge rate of 1.5 ⁇ L / min or less.
  • the temperature on the molding stage 10 was cooled to a temperature of 20 ° C. or less using a cooling device.
  • polylactic acid is a biodegradable resin
  • a scaffold for capillary regeneration of the same shape as that in the example 4 a very fine hollow say tube wall is less than the diameter 5 ⁇ ⁇ I made a tubular body.
  • the manufacturing method was the same as in Example 4, except that the diameter of the nozzle for discharging the hot-melted polylactic acid was 2 m, and the discharge rate was 0.15 L / min.
  • the temperature on the molding stage 10 was cooled to 20 ° C. or lower using a cooling device.
  • a scaffold for regenerating capillary blood vessels having a size almost the same as that shown in FIG. 9 (a) could be produced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Dermatology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Prostheses (AREA)

Abstract

A medical three-dimensional structure comprised of a biocompatible biodegradable resin, which requires a resolution of 50 μm or less in molding. There is provided a process comprising filling a minute syringe with fine granules of a biocompatible biodegradable resin and melting the resin; forming one of two-dimensional slice layers by controlling the discharge of molten biodegradable resin through a nozzle and the plane-direction move of molding stage disposed opposite to the nozzle in accordance with the plane configuration data of a multiplicity of two-dimensional slice layers constituting a three-dimensional structure; effecting spacing movement of the molding stage in the longitudinal direction as much as the thickness of one of the two-dimensional slice layers; and thereafter repeating similar operations, thereby forming a three-dimensional structure. By this process, there can be provided an extremely fine medical three-dimensional structure comprised of a biocompatible biodegradable resin, which can be used as a body implant type therapeutic tool or therapeutic auxiliary tool.

Description

明 細 書 発明の名称 医療用 3次元構造物、 その製造方法及び製造装置 技術分野  Description Title of the invention Medical three-dimensional structure, manufacturing method and manufacturing apparatus
本発明は医療用 3次元構造物と、 その製造方法及び製造装置に関する。 更に 詳しくは、 本発明は、 生体適合性を有する生分解性樹脂からなり、 体内埋設型の 治療具又は治療補助具としての任意の複雑形状を有する微細な医療用 3次元構造 物と、 このような医療用 3次元構造物を正確に、 かつ有害物質の混入を許さずに 製造することができる製造方法と、 このような製造方法を実行可能とする製造装 置に関する。 背景技術  The present invention relates to a medical three-dimensional structure, and a method and apparatus for manufacturing the same. More specifically, the present invention relates to a fine medical three-dimensional structure made of a biodegradable resin having biocompatibility and having an arbitrary complex shape as an implantable treatment tool or treatment aid. TECHNICAL FIELD The present invention relates to a manufacturing method capable of accurately manufacturing a medical three-dimensional structure without admixing harmful substances, and a manufacturing apparatus capable of performing such a manufacturing method. Background art
いわゆる生分解性樹脂のうち、 例えば乳酸やグリコール酸のような生体適合 性を有するモノマーの重合体であるものは、 体内で経時的に完全に分解され、 し かも分解産物が生体に有害な作用を及ぼすことなく排出される。  Of the so-called biodegradable resins, those that are polymers of biocompatible monomers, such as lactic acid and glycolic acid, are completely degraded in the body over time, and degradation products are harmful to living organisms. Is discharged without any effect.
このため以前から、 生体適合性を有する生分解性樹脂は、 手術後に除去不要 な縫合糸や、 一時的に必要な生体埋設型の治療具又は治療補助具として使用され ている。 最近では、 再生医工学分野における組織再生の足場材ゃ、 骨格の構成用 材料としても使用されている。  For this reason, biocompatible biodegradable resins have long been used as sutures that do not need to be removed after surgery, or as temporary implantable treatment tools or treatment aids after surgery. Recently, it has also been used as a scaffold for tissue regeneration in the field of regenerative medical engineering, and as a material for skeletal construction.
但し、 従来のこの種の部材の形態としては、 例えば糸状、 シート状、 スポン ジ状等の簡単な形状のものに限られ、 その形状を精密に仕上げることも余り要求 されていなかった。 今後、 上記材料の医療応用の拡大や革新的な医療デバイス群 を実現するためには、 非常に微細で 3次元の複雑形状を有する部材を正確に加工 する技術、 即ち 3次元マイクロフアブリケーション技術が要求される。  However, the form of this type of conventional member is limited to a simple form such as a thread, a sheet, a sponge, and the like, and it is not required that the form be precisely finished. In the future, in order to expand the medical applications of the above materials and to realize innovative medical devices, a technology to accurately process extremely fine and three-dimensionally complex members, that is, a three-dimensional microfabrication technology, will be used. Required.
これまでの代表的な 3次元マイクロフアブリケーション技術として、 マイク 口光造形法を挙げることができる。 現在の 2光子マイク口光造形法では、 数ミク ロンのギアやピンセットまで開発されている。 下記の文献 1にはこのようなマイ W ク口光造形法が開示されている。 One of the typical three-dimensional microfabrication technologies up to now is Mike Mouth Stereolithography. With the current two-photon microphone stereolithography, several micron gears and tweezers have been developed. Reference 1 below shows such a A W stereolithography method is disclosed.
文献 1 : K. Ikuta & K. Hirowatari: Real Three Dimensional Micro Fabrication Using Stereo Lithography and Metal Molding. Proc. of IEEE Internationa丄 Workshop on Micro Electro Mechanical System (MEMS - 93 ), 42/47 (1993)  Reference 1: K. Ikuta & K. Hirowatari: Real Three Dimensional Micro Fabrication Using Stereo Lithography and Metal Molding. Proc. Of IEEE International Workshop on Micro Electro Mechanical System (MEMS-93), 42/47 (1993)
—方、 従来の一般的な生分解性樹脂の 3次元加工法としては、 加熱溶融積層 造形法、 インクジェグ トバインダ法、 シート積層法等が開発されている。 この内、 「加熱溶融積層造形 ¾」 とは、 概略、 加熱して溶融した樹脂を何らかの方法によ り細線棒状にして供給し、 細線棒状作成部もしくはステージを走查して 2次元ス ライス層を形成し、 これを繰り返すことにより 3次元構造物を得ると言う方法で あって、 例えば下記の文献 2にその開示がある。  —On the other hand, as conventional three-dimensional processing methods for biodegradable resins, a heat-melt lamination molding method, an ink-jet binder method, a sheet lamination method, etc. have been developed. Of these, “heat-melt additive manufacturing ¾” generally refers to a method in which a resin melted by heating is supplied in the form of a fine rod by any method, and the resin is run through a fine rod-like forming section or stage to form a two-dimensional slice layer. This is a method of obtaining a three-dimensional structure by forming a three-dimensional structure, and this is disclosed in the following document 2, for example.
文献 2 : D. W. Hutmacher, S. H. Teoh, I. Zein, K. W. Ng, J. T.  Reference 2: D. W. Hutmacher, S. H. Teoh, I. Zein, K. W. Ng, J. T.
S chant z & J. C. Leahy : Design and fabrication of a 3D scafold for tissue engineering bone, In: Agra al CM, Parr JE, Lin ST. Editors. S chant z & J. C. Leahy: Design and fabrication of a 3D scafold for tissue engineering bone, In: Agra al CM, Parr JE, Lin ST.Editors.
Synthetic bioabsorbable polymers for implants, STP 1396, American Synthetic bioabsorbable polymers for implants, STP 1396, American
Society for Testing and Materials, West Conshohocken, PA, 152/167 (2000) 又、 「インクジェットバインダ法」 とは、 概略、 微細な粉末により形成した 薄い層にバインダ(接着剤) を目的とする 2次元スライス層に合わせて吹き付け、 これを繰り返して積層していくことにより 3次元構造物を作製すると言う方法で ある。 更に、 「シート賴層法」 とは、 概略、 断面形状 (2次元スライス層) に合 わせて切断したシートを一層ずつ積層して任意の 3次元形状を作製すると言う方 法である。 Society for Testing and Materials, West Conshohocken, PA, 152/167 (2000) Also, the “ink-jet binder method” is a two-dimensional slice for the purpose of forming a binder (adhesive) on a thin layer formed by fine powder. This is a method of producing a three-dimensional structure by spraying according to the layers and repeating this process. Further, the “sheet-to-layer method” is a method in which an arbitrary three-dimensional shape is produced by laminating one sheet at a time according to the cross-sectional shape (two-dimensional slice layer).
しかし、 上記の文献 1に記載されたマイクロ光造形法は優れた加工技術では あるが、 対象材料が光顿化性ポリマーであるため、 生分解性ではないし、 生体適 合性も期待できない。 従って生体埋設型の治療具や治療補助具の製造には適しな レ、。  However, although the micro-stereolithography described in the above reference 1 is an excellent processing technique, it is not biodegradable and cannot be expected to be biocompatible because the target material is a photocurable polymer. Therefore, it is suitable for manufacturing implantable treatment tools and treatment aids.
一方、 上記の文献 2に記載された加熱溶融積層造形法や、 その他のインクジ エツトバインダ法、 シート積層法等は、 加工分解能が不十分であったり、 製造効 率が不十分であったりするため、 微細な 3次元構造物を正確にかつ迅速に形成す ることが困難である。 し力も、 材科の前加工に用いる溶媒 (生体毒性がある) が 3次元構造物の材料中に残留すると言う不具合がある。 そのため、 仮にポリ乳酸 等の生体適合性の生分解性樹脂を用いた場合でも、 得られた製品は生体適合性が 低いと言う問題があった。 発明の開示 On the other hand, the heat-melt additive manufacturing method described in the above-mentioned reference 2, the other ink-jet binder method, the sheet laminating method, and the like have insufficient processing resolution or manufacturing efficiency. It is difficult to accurately and quickly form fine three-dimensional structures due to insufficient ratio. In addition, there is a problem that the solvent (having biotoxicity) used in the preprocessing of the timber remains in the material of the three-dimensional structure. Therefore, even if a biocompatible biodegradable resin such as polylactic acid is used, there is a problem that the obtained product has low biocompatibility. Disclosure of the invention
本発明の目的ま、 材料自体の特性としても毒性物質の混入がないと言う意味 でも生体適合性を有する生分解性樹脂からなる極めて微細な構造物であって、 体 内埋設型の治療具又は治療補助具として複雑形状を有する 3次元構造物を提供し、 更には、 そのような 3次元構造物の有効な製造方法及び製造装置を提供すること である。  For the purpose of the present invention, the material itself is an extremely fine structure made of a biodegradable resin that is biocompatible in the sense that no toxic substance is mixed, It is an object of the present invention to provide a three-dimensional structure having a complicated shape as a treatment aid, and to provide an effective method and apparatus for manufacturing such a three-dimensional structure.
本願の第 1発明は、 生体適合性を有する生分解性樹脂からなり、 体内埋設型 の治療具又は治療補助具としての任意の形状を有する 3次元構造物であって、 そ の成形に 5 0 m以下の分解能を要する医療用 3次元構造物である。  The first invention of the present application is a three-dimensional structure made of a biodegradable resin having biocompatibility and having an arbitrary shape as an implantable treatment tool or treatment assisting tool. This is a medical three-dimensional structure that requires a resolution of less than m.
第 1発明に係る医療用 3次元構造物は、 体内埋設型の治療具又は治療補助具 としての任意形状を有する構造物、例えば手術時に一時的に必要な外科的治療具、 組織再生の足場材、 骨格の構成用材料等である。 即ち医療の現場において非常に 有用な構造材料である。  The medical three-dimensional structure according to the first invention is a structure having an arbitrary shape as an implantable treatment tool or a treatment auxiliary tool, for example, a surgical treatment tool temporarily required during surgery, a scaffold for tissue regeneration And materials for constituting the skeleton. In other words, it is a very useful structural material in the medical field.
次に、 この医療用 3次元構造物は生体適合性を有する生分解性樹脂からなる。 従って、 体内に埋設して所期の機能を果たした後に、 体内で経時的に完全に分解 され、 しかも分解産物が生体に有害な作用を及ぼすことなく排出される。 このた め、 手術後等におレヽて構造物を除去する必要がない。 ある程度以上の期間にわた り埋設効果を期待するタイプの構造物であっても、 その期間の経過後に摘出手術 を行う必要がない。 なお、 この 3次元構造物の構成材料には生体に有害な物質は 混入していないため、 この意味でも生体適合性が高レ、。  Next, the medical three-dimensional structure is made of a biocompatible biodegradable resin. Therefore, after it has been buried in the body to perform its intended function, it is completely degraded over time in the body, and the degradation products are excreted without harmful effects on the living body. Therefore, there is no need to remove the structure after surgery. It is not necessary to perform an extirpative surgery after a certain period, even if the structure is expected to be buried for a certain period of time. In addition, since the constituent materials of the three-dimensional structure do not contain substances harmful to living organisms, biocompatibility is high in this sense.
更に、 この医療用 3次元構造物は、 非常に微細な加工を要するものであって、 その成形に 5 0 μ m以下の分解能を要する。 即ち、 医療用 3次元構造物が 5 0 W 200 μ πι以下のサイズであるか、 あるいはそれ以上のサイズであっても構造物の全部 又は一部を成形するに当たり 5 0 以下の分解能を以て加工する必要のあるも のである。 そのため、 従来の製造技術では着想することも提供することも困難で あった新規なカテゴリ一の微細な治療具又は治療補助具を提供できる可能性が開 カゝれた。 Furthermore, this medical three-dimensional structure requires extremely fine processing, and its forming requires a resolution of 50 μm or less. In other words, three-dimensional medical structures are 50 Even if the size is less than W 200 μπι or larger, it is necessary to process the structure with a resolution of 50 or less to form all or a part of the structure. Therefore, the possibility of providing a new category of fine treatment tools or treatment aids that were difficult to conceive and provide with conventional manufacturing techniques has been opened.
本願の第 2発明は、 前記第 1発明に係る生体適合性を有する生分解性樹脂が、 乳酸、 グリコール酸、 ^プロラタトンのいずれか 1種のモノマーからなるホモポ リマー、 あるいはこれらの 2種以上のモノマーからなるコポリマーである、 医療 用 3次元構造物である。  In the second invention of the present application, the biodegradable resin having biocompatibility according to the first invention is a homopolymer composed of any one of lactic acid, glycolic acid, and ^ prolatatone, or two or more of these homopolymers. It is a medical three-dimensional structure that is a copolymer composed of monomers.
上記の第 1発明における 「生体適合性を有する生分解性樹脂」 としては、 良 く知られた乳酸やダリコール酸のホモポリマーの他、 力プロラクトンのホモポリ マーや、 以上のいずれ 2種以上のモノマーからなるコポリマーを好ましく例示 することができる。  Examples of the “biocompatible biodegradable resin” in the first invention include well-known homopolymers of lactic acid and dalicholic acid, homopolymers of force prolactone, and any two or more of the above. Preferable examples include copolymers composed of monomers.
本願の第 3発明は、 前記第 1発明又は第 2発明に係る体内埋設型の治療具又 は治療補助具が、 外科的、冶療具、 組織再生の足場材、 骨格の構成用材料、 薬物送 達システム (D D S ) 又は遺伝子導入用デバイスである、 医療用 3次元構造物で ある。 ここに薬物送達システム (D D S : ドラッグデリバリーシステム) とは、 いわゆるドラッグデリバリーシステムを構成するデバイスの全体、 又は薬物送達 システムを構成する個々の部材を言う。  In the third invention of the present application, the implantable treatment tool or treatment aid according to the first invention or the second invention is a surgical or medical tool, a scaffold for tissue regeneration, a material for skeleton, a drug It is a medical 3D structure that is a delivery system (DDS) or a device for gene transfer. Here, the drug delivery system (DDS: drug delivery system) refers to an entire device constituting a so-called drug delivery system, or an individual member constituting a drug delivery system.
上記の第 1発明又は第 2発明における 「体内埋設型の治療具又は治療補助具」 としては、 そのごく一部の例示として、 外科的治療具、 組織再生の足場材、 骨格 の構成用材料、 薬物送達デバイス (D D S ) 、 遺伝子導入用デバイスを挙げるこ とができる。  Examples of the `` implantable treatment tool or treatment aid '' in the first invention or the second invention include surgical treatment tools, scaffolds for tissue regeneration, constituent materials for skeleton, Drug delivery devices (DDS) and devices for gene transfer can be mentioned.
その他にも、 本願発明に係る医療用 3次元構造物が提供可能になることによ つて、 従来は着想することも提供することも困難であった新規カテゴリ一の多様 な治療具又は治療補助具が着想され、 発明され、 提供される可能性がある。 これ らの治療具、 部材又はデバイスは、 一定期間体内で機能した後、 分解'吸収され るため、 その取り出しのための再手術が不要である。 本願の第 4発明は、 前記第 3発明に係る組織再生の足場材が、 血管再生用な いしは毛細血管再生用の足場材としての分岐部を有する中空管状体である、 医療 用 3次元構造物である。 In addition, since the medical three-dimensional structure according to the invention of the present application can be provided, it is conventionally difficult to conceive and to provide various treatment tools or treatment aids in a new category. Could be conceived, invented, and provided. Since these treatment tools, members or devices function within the body for a certain period of time, they are disassembled and absorbed, so that re-operation for removal is unnecessary. A fourth invention of the present application is the medical three-dimensional structure, wherein the scaffold for tissue regeneration according to the third invention is a hollow tubular body having a branch portion as a scaffold for blood vessel regeneration or capillary regeneration. Things.
血管や毛細血管は、 足場材を用いて再生させたとしても、 その後に足場材が 消失しなければ意味がない。 従って第 4発明に係る血管再生用ないしは毛細血管 再生用の足場材は、 再生医療の分野において非常に有用である。 なお、 この足場 材においては、 中空管状体の各端末部において管が閉止された形状とすることも 好ましい。  Even if the blood vessels and capillaries are regenerated using scaffolds, there is no point unless the scaffolds subsequently disappear. Therefore, the scaffold for regenerating blood vessels or regenerating capillaries according to the fourth invention is very useful in the field of regenerative medicine. In addition, in this scaffold, it is also preferable that the tube is closed at each end of the hollow tubular body.
本願の第 5発明は、 以下の (1 ) 〜 (3 ) のプロセスを含む、 医療用 3次元 構造物の製造方法である。  The fifth invention of the present application is a method for manufacturing a medical three-dimensional structure, including the following processes (1) to (3).
( 1 ) 加熱手段を付設した微小なシリンジの下端のノズルを造形用ステージに接 近して対向させ、 前記シリンジに生体適合性を有する生分解性樹脂の細粒を充填 して前記加熱手段により熱溶融させる。  (1) A nozzle at the lower end of a small syringe provided with a heating means is brought close to and opposed to a modeling stage, and the syringe is filled with fine particles of a biodegradable resin having biocompatibility, and the heating means is used. Heat melt.
( 2 ) 3次元構造物を構成する多数の 2次元スライス層の平面形状データに基づ き、 熱溶融した生分解生樹脂を前記ノズルから細線状に吐出させると共に前記シ リンジ又は造形用ステージを平面方向 (X—Y方向) へ移動させることにより、 多数の 2次元スライス層 (X— Y方向スライス層) の内の 1層を形成する。  (2) Based on the planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure, the biodegradable resin that is melted by heat is discharged from the nozzle in the form of a thin line, and the syringe or the molding stage is discharged. By moving in the plane direction (X-Y direction), one of a number of two-dimensional slice layers (X-Y slice layers) is formed.
( 3 ) 前記シリンジ又は造形用ステージを前記 2次元スライス層の 1層分の厚さ だけ縦方向 (Z方向) へ離隔移動させた後に前記第 2工程を反復し、 この繰り返 しにより 3次元構造物を構成する多数の 2次元スライス層の全てを形成する。  (3) The second step is repeated after moving the syringe or the molding stage in the vertical direction (Z direction) by the thickness of one layer of the two-dimensional slice layer, and repeating the three-dimensional process. It forms all of the many 2D slice layers that make up the structure.
第 5発明において W;、 シリンジに生分解性樹脂の細粒を充填して熱溶融させ、 そのままノズルから細 «I状に吐出させることにより、 医療用 3次元構造物の製造 に供する。 即ち、 原料をバッチ式でシリンジに充填し、 次いで熱溶融させて成形 に使用するため、 従来技術である加熱溶融積層造形法、 インクジェットバインダ 法、 シート積層法等のように、 生体毒性がある溶媒で生分解性樹脂を前加工する 必要がない。 つまり毒性溶媒が構造物の構成材料中に残留する恐れがない。  In the fifth invention, W: The syringe is filled with fine particles of a biodegradable resin, melted by heat, and discharged as it is from the nozzle into a fine I shape, thereby providing a medical three-dimensional structure. That is, since the raw material is filled into a syringe in a batch system, and then heated and melted for use in molding, a biotoxic solvent such as a conventional heat-melt additive manufacturing method, an ink-jet binder method, a sheet laminating method, etc. No need to preprocess biodegradable resin. That is, there is no possibility that the toxic solvent remains in the constituent material of the structure.
又、 3次元構造物を構成する多数の 2次元スライス層の平面形状データに基 づき、 微細なノズルから熱溶融した生分解性樹脂を細線状に吐出させると共に、 シリンジ又は造形用ステージを平面方向へ移動させて、 多数の 2次元スライス層 を順次形成するので、 これらの動作を精密に協調して行わせる公知のメカニズム を応用することで、 非常に微細で複雑形状を持つ 3次元構造物を正確に製造する ことができる。 In addition, based on the planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure, the biodegradable resin melted by heat is discharged from a fine nozzle in the form of a fine line. By moving the syringe or modeling stage in the plane direction to form a large number of two-dimensional slice layers sequentially, applying a well-known mechanism to perform these operations precisely and cooperatively, it is very fine and complicated 3D structures with shapes can be manufactured accurately.
本願の第 6発明は、 前記第 5発明における (1 ) 〜 (3 ) の各プロセスを、 以下の (4 ) 〜 (6 ) の内の少なくとも 1以上の条件に従って行う、 医療用 3次 元構造物の製造方法である。  A sixth invention of the present application is the medical three-dimensional structure, wherein each of the processes (1) to (3) in the fifth invention is performed according to at least one of the following conditions (4) to (6). It is a method of manufacturing a product.
( 4 ) 前記ノズルからの細線状吐出物の直径が 2 0 0 μ πι以下である。  (4) The diameter of the fine linear discharge from the nozzle is 200 μππ or less.
( 5 ) 前記ノズルからの細線状吐出物の吐出量が 1 . 5 μ L /min.以下である。 (5) The discharge amount of the fine linear discharge material from the nozzle is 1.5 μL / min or less.
( 6 ) 前記造形用ステージ上が生分解性樹脂の熱溶融点温度よりも 3 0 ° C以上 低い温度である。 (6) The temperature on the modeling stage is 30 ° C. or lower than the thermal melting point temperature of the biodegradable resin.
樹脂を熱溶融させてノズルから吐出させ、 目的物を成形すると言う方法自体 は一般的なものであるが、 通常、 このような樹脂成形は成形型との組み合わせで 行う。 しかし、 5 以下の分解能を要する医療用 3次元構造物を型成形する ことは、 成形型の製造が困難である点から、 事実上不可能である。 このため従来 は、 極めて微細な対象物を熱溶融による吐出成形で製造すると言う提案は行なわ れていない。  The method itself of molding a target object by melting the resin by heat and discharging it from a nozzle is a general method. Usually, such resin molding is performed in combination with a molding die. However, it is virtually impossible to mold a medical three-dimensional structure that requires a resolution of 5 or less, because it is difficult to manufacture a mold. For this reason, there has been no proposal to manufacture an extremely fine object by discharge molding by thermal melting.
本願発明者は、 前記した文献 1に係るマイクロ光造形法によって、 そのため の一つの解決策を既に提示している。 しかしながら、 マイクロ光造形法は光硬化 性ポリマーを対象とするので、 生分解性ポリマーを用いる生体埋設型の治療具や 治療補助具の製造には適用できない。 そこで本願発明者は、 ノズルからの吐出物 が細線状であることに着目した。 そして前記第 5発明の製造方法を利用する場合 において、 吐出物を迅速に冷却固化させ得る一定の条件を設定すれば、 成形型を 用いることなく成形体を迅速に冷却固化させることができ、 従って高精度の成形 体が得られることを突き止めた。 その条件が、 第 6発明の (4 ) 〜 (6 ) の内の 少なくとも 1以上の条件、 と りわけ ( 4 ) 及び/又は ( 5 ) の条件である。  The inventor of the present application has already presented one solution for that by the micro stereolithography method according to the above-mentioned Document 1. However, since micro-stereolithography is intended for photocurable polymers, it cannot be applied to the manufacture of bio-implantable treatment tools or treatment aids using biodegradable polymers. Therefore, the inventor of the present application paid attention to the fact that the ejected matter from the nozzle is in a fine line shape. In the case where the manufacturing method of the fifth invention is used, by setting certain conditions for rapidly cooling and solidifying the discharged material, the molded body can be rapidly cooled and solidified without using a molding die. We have determined that a high-precision compact can be obtained. The condition is at least one or more of the conditions (4) to (6) of the sixth invention, specifically the conditions of (4) and / or (5).
本願の第 7発明は、 前記第 5発明又は第 6発明に係る 3次元構造物が分岐部 を有する中空管状体である場合において、 当該分岐部に相当する複数の 2次元ス ライス層の各層の形状を、 1個の円形から、 順次、 楕円形、 中央に括れを持つ楕 円形、 「8」 の字状、 2個の円形に変化させて行くことにより、 中空管状体の分 岐部を形成する、 医療用 3次元構造物の製造方法である。 According to a seventh aspect of the present invention, in the case where the three-dimensional structure according to the fifth or sixth aspect is a hollow tubular body having a branch portion, a plurality of two-dimensional structures corresponding to the branch portion are provided. By changing the shape of each layer of the rice layer from one circular shape to an elliptical shape, an oval shape with a constriction at the center, an “8” shape, and two circular shapes, This is a method for manufacturing a medical three-dimensional structure that forms a branch.
血管再生用ないしは毛細血管再生用の足場材等のように、 極めて微細でしか も分岐部を有する中空管状体を成形できる効率的な方法は、 未だ提案されていな レ、。 本願発明者は、 前記第 5癸明の製造方法を利用することを前提として、 第 7 発明の製造方法によれば、 極めて微細でしかも分岐部を有する中空管状体を効率 良く成形できることを見出した。  An efficient method of forming a hollow tubular body having a very small branching portion, such as a scaffold for revascularization or capillary regeneration, has not yet been proposed. The inventor of the present application has found that, based on the premise that the fifth production method is used, the production method of the seventh invention enables an extremely fine hollow tubular body having a branch portion to be efficiently formed. .
本願の第 8発明は、 以下の (a ) 〜 (e ) の要素を含む、 医療用 3次元構造 物の製造装置である。  An eighth invention of the present application is a medical three-dimensional structure manufacturing apparatus including the following elements (a) to (e).
( a ) 下端にノズノレを備えた微小なシリンジと、 このシリンジの外周に設けた加 熱手段からなる吐出部。  (a) A discharge unit composed of a small syringe with a lip at the lower end and heating means provided on the outer periphery of the syringe.
( b ) 前記ノズルからのシリンジ内容物の吐出を制御する吐出制御手段。  (b) Discharge control means for controlling discharge of syringe contents from the nozzle.
( c ) 前記シリンジの下端のノズルに対向して位置する造形用ステージ。  (c) a molding stage located opposite the nozzle at the lower end of the syringe;
( d ) 前記吐出部及び/又は造形用ステージの平面方向 (X— Y方向) 及び縦方 向 (Z方向) への移動を制御する移動制御手段。  (d) Movement control means for controlling the movement of the discharge section and / or the molding stage in a plane direction (X-Y direction) and a vertical direction (Z direction).
( e ) 3次元構造物を構成する多数の 2次元スライス層の平面形状データが入力 されており、 このデータに基づいて前記移動制御手段と吐出制御手段とを協調し て作動させるコントローラ。  (e) A controller to which planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure is input, and which operates the movement control means and the discharge control means in cooperation based on the data.
第 8発明に係る医療用 3次元構造物の製造装置は、 第 5発明〜第 7発明の製 造方法を実行するに必要な前言己 ( a ) 〜 (e ) の要素を含むので、 第 1発明〜第 4発明に係る医療用 3次元構造物を有効に製造することができる。  Since the medical three-dimensional structure manufacturing apparatus according to the eighth invention includes the elements (a) to (e) necessary to execute the manufacturing method according to the fifth to seventh inventions, the first The medical three-dimensional structures according to the inventions to the fourth invention can be effectively manufactured.
なお、 (a ) 〜 (e ) の各要素をどの程度のサイズに構成するかは任意であ るが、 本願発明物は、 既に、 装置全体の平面サイズが縦方向に 3 0 c m以下であ り、 横方向に 5 0 c m以下であり、 装置全体の高さが 5 0 c m以下である有効に 作動する装置を試作している。 又、 医療用 3次元構造物のサイズ設定に直接に影 響するシリンジ及ぴノズルのサイズも、 必要に応じて極めて微細に設計すること ができる。 本願の第 9発明は、 前記第 8発明に係る移動制御手段による制御方式が、 吐 出部及び造形用ステージのいずれか一方の平面方向(X— Y方向)及び縦方向(Z 方向) への移動を制御する方式であるか、 あるいは吐出部及び造形用ステージの いずれか一方の平面方向 (X— Y方向) への移動を制御すると共に他方の縦方向 ( Z方向) への移動を制御する方式である、 医療用 3次元構造物の製造装置であ る。 The size of each of the elements (a) to (e) may be determined arbitrarily, but the invention of the present application already has a plane size of 30 cm or less in the vertical direction of the entire device. We are prototyping an effective device that is less than 50 cm in width and less than 50 cm in height. Also, the size of the syringe and nozzle, which directly affects the size setting of the medical three-dimensional structure, can be designed extremely fine as needed. According to a ninth aspect of the present invention, the control method by the movement control means according to the eighth aspect is such that a control method is performed in a plane direction (X-Y direction) and a vertical direction (Z direction) of one of the discharge unit and the molding stage. Either the movement is controlled, or the movement of one of the discharge unit and the molding stage in the plane direction (X-Y direction) is controlled and the movement of the other in the vertical direction (Z direction) is controlled. This is a system for manufacturing medical three-dimensional structures.
上記した第 8発明に係る医療用 3次元構造物の製造装置において、 移動制御 手段による吐出部及び Z又は造形用ステージの制御方式は任意に選択することが できる。 その内、 代表白勺な第 1の制御方式として、 吐出部及び造形用ステージの いずれか一方の平面方向 (X— Y方向) 及ぴ縦方向 (Z方向) への移動を制御す る方式を例示できる。 代表的な第 2の制御方式として、 吐出部及び造形用ステー ジのいずれか一方の平面方向 (X— Y方向) への移動を制御すると共に他方の縦 方向 (Z方向) への移動を制御する方式を例示できる。 図面の簡単な説明  In the apparatus for manufacturing a medical three-dimensional structure according to the eighth aspect described above, the control method of the discharge unit and the Z or the molding stage by the movement control means can be arbitrarily selected. Among them, as a representative first control method, a method of controlling the movement of either the discharge part or the molding stage in the plane direction (X-Y direction) and the vertical direction (Z direction) is used. Can be illustrated. A typical second control method is to control the movement of either the discharge section or the molding stage in the plane direction (X-Y direction) and the movement of the other in the vertical direction (Z direction). Can be exemplified. Brief Description of Drawings
第 1図は、 医療用 3次元構造物の製造装置を簡略化して示す図である。 第 2 図は、 医療用 3次元構造物のスライスデータ取得プロセスを示す図である。 第 3 図は、 医療用 3次元構造物の製造プロセスを示す図である。 第 4図〜第 7図は、 それぞれ 3次元構造物の作製例を示す図である。 第 8図は、 医療用 3次元構造物 の生体適合性を実証するグラフ図である。 第 9図は、 分岐部を有する中空管状体 の作製例を説明する図である。 発明を実施するための最良の形態  FIG. 1 is a simplified view of a medical three-dimensional structure manufacturing apparatus. FIG. 2 is a diagram showing a process of acquiring slice data of a medical three-dimensional structure. FIG. 3 is a diagram showing a manufacturing process of a medical three-dimensional structure. 4 to 7 are diagrams each showing an example of manufacturing a three-dimensional structure. FIG. 8 is a graph showing the biocompatibility of the medical three-dimensional structure. FIG. 9 is a view for explaining a production example of a hollow tubular body having a branch portion. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本願の第 1発明〜第 9発明を実施するための形態を、 その最良の形態 を含めて説明する。 以下において、 単に 「本発明」 と言う時は、 本願の各発明を —括して指している。  Next, embodiments for carrying out the first to ninth inventions of the present application will be described, including the best mode. In the following, when the present invention is simply referred to, each invention of the present application is referred to collectively.
〔生体適合性を有する生分解性樹脂〕  (Biocompatible biodegradable resin)
本発明において使用する材料は生体適合性を有する生分解性樹脂である。 医 療関連以外の産業分野では、 生体適合性を有しないモノマーからなる生分解性樹 脂がしばしば使用されるが、 このような生体適合性を有しない生分解性樹脂は本 発明では使用しない。 The material used in the present invention is a biocompatible biodegradable resin. Doctor In industrial fields other than medical treatment, biodegradable resins composed of non-biocompatible monomers are often used, but such non-biocompatible biodegradable resins are not used in the present invention.
本発明において 「生体適合性を有する」 とは、 生分解性樹脂自体の特性とし て生体適合性を有する けでなく、 生分解性樹脂が生体に対して有毒な添加物や 含有物を含まないことをも意味する。  In the present invention, “having biocompatibility” means that the biodegradable resin itself has biocompatibility as a characteristic, and that the biodegradable resin does not include additives or inclusions that are toxic to living organisms. It also means that.
生体適合性を有する生分解性樹脂の代表的な例として、 乳酸のポリエステル 重合体 (ホモポリマー) であるポリ乳酸が挙げられる。 又、 グリコール酸のポリ エステル重合体 (ホモポリマー) であるポリグリコーノレ酸も挙げられる。 その他 にも力プロラクトンのホモポリマーも挙げられる。 これらのホモポリマーの重合 度あるいは分子量は別段に限定されなレ、。  A typical example of a biodegradable resin having biocompatibility is polylactic acid, which is a polyester polymer (homopolymer) of lactic acid. Further, polyglyconic acid, which is a polyester polymer (homopolymer) of glycolic acid, is also included. Other examples include homopolymers of force prolactone. The degree of polymerization or molecular weight of these homopolymers is not particularly limited.
更には、上記のいずれか 2種以上のモノマーが重合した各種のコポリマー(共 重合体) も例示することができる。 コポリマーにおいては、 2種以上のモノマー のモル比は限定されなレ、し、 2種以上のモノマーが正確に交互に重合したもので けでなく、 いわゆるブロックコポリマーやランダムコポリマーも使用することが できる。 これらのコポリマーにおいても、 その重合度あるいは分子量は別段に限 定されなレ、。  Furthermore, various copolymers (copolymers) obtained by polymerizing any two or more of the above monomers can also be exemplified. In copolymers, the molar ratio of two or more monomers is not limited, and not only those in which two or more monomers are polymerized exactly alternately, but also so-called block copolymers and random copolymers can be used. . The degree of polymerization or molecular weight of these copolymers is not particularly limited.
〔医療用 3次元構造物〕  (Medical 3D structures)
本発明において、 「医療用 3次元構造物」 とは、 上記の生分解性樹脂からな り、 体内埋設型の治療具又は治療補助具としての任意の形状を有する 3次元構造 物であって、 その成形に 5 0 μ πι以下の分解能を要するものを言う。 即ち、 5 0 i m以下のサイズであり、 又は、 全体のサイズが 5 0 mを超える場合でも 3次 元構造物の少なくとも一部には 5 0 以下のサイズで正確に成形すべき部分を 有する構造物である。  In the present invention, the “medical three-dimensional structure” is a three-dimensional structure made of the above-mentioned biodegradable resin and having an arbitrary shape as an implantable treatment tool or treatment aid. It refers to one that requires a resolution of 50 μπι or less for its forming. That is, a structure with a size of 50 im or less, or at least a part of a three-dimensional structure having a part to be accurately formed with a size of 50 or less even when the overall size exceeds 50 m. Things.
本発明の医療用 3次元構造物が、 その成形に 5 0 以下の分解能を要すべ き必然的な理由はない力 このような体内埋設型の治療具又は治療補助具におい て、 微細な 3次元複雑形状を正確に形成すると言う、 本発明の特徴が最も良好に 発現される。 体内埋設型の治療具又は治療補助具の種類及び内容は限定されない。 好まし い具体例として、 外科的治療具、 組織再生の足場材、 骨格の構成用材料、 薬物送 達デバイス (D D S ) 、 遺伝子導入用デバイス等が例示される。 The medical three-dimensional structure of the present invention should have a resolution of 50 or less for its molding, and there is no inevitable force. Such an implantable treatment tool or treatment aid has a fine three-dimensional structure. The feature of the present invention that a complicated shape is accurately formed is best exhibited. The type and content of the implantable treatment tool or treatment aid are not limited. Preferred examples include surgical treatment tools, scaffolds for tissue regeneration, skeletal components, drug delivery devices (DDS), and gene transfer devices.
上記の組織再生の足場材として、 例えば、 血管再生用ないしは毛細血管再生 用の足場材としての、 分岐部を有する中空管状体を特に好ましく例示することが できる。 これらの中空管状体は、 その管状体の各端末部が開放された形状とする こともできるし、 管状体の各端末部が閉止された形状とすることもできる。 後者 の場合、 管状体の外周部には組織細胞が着生するが内周部には着生しない。 この 中空管状体は、 血管や毛糸田血管の再生用のものだけでなく、 他の管腔状の器管、 とりわけ尿細管等の微細な管腔状器管の再生用の足場材としても提供することが できる。  A particularly preferred example of the scaffold for tissue regeneration is a hollow tubular body having a branch portion, as a scaffold for revascularization or capillary regeneration. These hollow tubular bodies may have a shape in which each terminal of the tubular body is open, or a shape in which each terminal of the tubular body is closed. In the latter case, tissue cells grow on the outer periphery of the tubular body but do not grow on the inner periphery. This hollow tubular body is used not only for regenerating blood vessels and knitted blood vessels, but also as a scaffold for regenerating other luminal organs, particularly fine luminal organs such as tubules. can do.
〔医療用 3次元構造物の製造方法〕  [Method of manufacturing medical three-dimensional structures]
本発明に係る医療用 3次元構造物の製造方法は、 以下の (1 ) 〜 (3 ) のプ 口セスを少なくとも含む方法である。  The method for producing a medical three-dimensional structure according to the present invention is a method including at least the following processes (1) to (3).
( 1 ) 加熱手段を付設した微小なシリンジの下端のノズルを造形用ステージ に接近して対向させ、 前記の微小なシリンジに生体適合性を有する生分解性樹月旨 の細粒 (マイクロペレッ ト) を充填して、 前記加熱手段により熱溶融させる。  (1) The nozzle at the lower end of the small syringe provided with the heating means is brought close to and opposed to the modeling stage, and the biodegradable fine particles (micropellet) that are biocompatible with the small syringe. ) And thermally fused by the heating means.
( 2 ) 3次元構造物を構成する多数の 2次元スライス層の平面形状データに 基づき、 熱溶融した生分角军' I '生樹脂をノズルから細線状に吐出させると共にシリン ジ又は造形用ステージを平面方向 (X— Y方向) へ移動させることにより、 多数 の 2次元スライス層 (X— Y方向スライス層) の内の 1層を形成する。  (2) Based on the planar shape data of a large number of two-dimensional slice layers that make up a three-dimensional structure, the hot-melt raw material angle 军 'I' green resin is discharged from the nozzle in a fine line shape, and a syringe or modeling stage is used. Is moved in the plane direction (X-Y direction) to form one of a number of two-dimensional slice layers (X-Y direction slice layers).
( 3 ) シリンジ又は造形用ステージを、 前記した 2次元スライス層の 1層分 の厚さだけ縦方向 (Z方向) へ離隔移動させた後に、 前記第 2工程を反復し、 こ の繰り返しによって 3次元構造物を構成する多数の 2次元スライス層の全てを形 成する。  (3) After moving the syringe or the molding stage in the vertical direction (Z direction) by the thickness of one layer of the two-dimensional slice layer, the second step is repeated, and this step is repeated. It forms all of the many 2D slice layers that make up the 3D structure.
以上のプロセスの結果、 熱溶融樹脂を以て形成されるそれぞれの 2次元スラ イス層は互いに融着して一体化し、 次いで冷却 '固化されるため、 目的とする形 状の 3次元構造物が正確に形成されるのである。 〔吐出量制御による迅速固化〕 As a result of the above process, the two-dimensional slice layers formed using the hot-melt resin are fused and integrated with each other, and then cooled and solidified, so that the desired three-dimensional structure can be accurately formed. It is formed. [Rapid solidification by controlling the discharge amount]
上記の (1) 〜 (3) の各プロセスは、 以下の (4) 〜 (6) の内の少なく とも 1以上の条件に従って行うこと力 特に好ましい。 これらの条件に従うこと により、 微小な医療用 3次元構造物を迅速に冷却固化させ、 成形型を用いること なく、 熱溶融樹脂吐出後の 「形崩れ」 を有効に防止して、 極めて正確に目的とす る形状の 3次元構造物を製造することができる。  Each of the processes (1) to (3) is particularly preferably performed according to at least one of the following conditions (4) to (6). By complying with these conditions, a minute medical three-dimensional structure can be rapidly cooled and solidified, effectively preventing “deformation” after discharging hot-melt resin without using a molding die, and achieving a very accurate purpose. A three-dimensional structure having the following shape can be manufactured.
(4) 前記ノズルからの細線状吐出物の直径が 200 μ m以下であり、 より好ま しくは 20 μπι以下であり、 特に好ましくは 5 μπι以下である。  (4) The diameter of the fine linear discharge from the nozzle is 200 μm or less, more preferably 20 μπι or less, and particularly preferably 5 μπι or less.
(5) 前記ノズルからの細線状吐出物の吐出量が 1. 5 μ L/min.以下であり、 より好ましくは 0. 1 μ LZmin.以下であり、 特に好ましくは 3. 8 n L/min. 以下である。  (5) The discharge amount of the fine linear discharge material from the nozzle is 1.5 μL / min or less, more preferably 0.1 μLZmin or less, and particularly preferably 3.8 nL / min. It is as follows.
(6) 前記造形用ステージ上が生分解性樹脂の熱溶融点温度よりも 30° C以上 低い温度である。 より好ましくは造形用ステージ上は 20° C以下である。 必要 な場合には、 適宜な冷却装置が使用される。  (6) The temperature on the molding stage is 30 ° C. or more lower than the thermal melting point temperature of the biodegradable resin. More preferably, the temperature is 20 ° C. or less on the modeling stage. If necessary, appropriate cooling devices are used.
〔分岐管の製法〕  (Branch pipe manufacturing method)
3次元構造物が分岐部を有する中空管状体である場合、 例えば血管や毛細血 管の足場材として分岐部を有する中空管状体である場合、 当該分岐部に相当する 複数の 2次元スライス層の各層の形状を、 1個の円形から、 順次、 楕円形、 中央 に括れを持つ楕円形、 「8」 の字状、 2個の円形に変化させて行くことにより、 中空管状体の分岐部を自由に开成することができる。 、  When the three-dimensional structure is a hollow tubular body having a branch, for example, a hollow tubular body having a branch as a scaffold for a blood vessel or a capillary tube, a plurality of two-dimensional slice layers corresponding to the branch are provided. By changing the shape of each layer from one circular shape to an elliptical shape, an elliptical shape with a constriction at the center, an “8” shape, and two circular shapes, the branch part of the hollow tubular body is changed. Can be freely configured. ,
〔医療用 3次元構造物の製造装置〕  [Medical 3D structure manufacturing equipment]
本発明に係る医療用 3次元構造物の製造装置は、 以下の (a) 〜 (e) の要 素を少なくとも含む装置である。  An apparatus for manufacturing a medical three-dimensional structure according to the present invention is an apparatus including at least the following elements (a) to (e).
(a) 下端にノズノレを備えた微小なシリンジと、 このシリンジの外周に設け た加熱手段からなる吐出部。 このシリンジやノズルのサイズは目的に合わせて適 宜に設定することができるが、 ノズルの内径については、例えば 200 μπι以下、 より好ましくは 20 μπι以下、 特に好ましくは 5 μπι以下の範囲内に設定するこ とが好ましい。 ノズルの内径の下限値は限定されず、 製造技術的に可能であれ ば、 1 μ πιあるいはそれ以下の内径に設定しても良い。 (a) A discharge section comprising a small syringe having a lip at the lower end and a heating means provided on the outer periphery of the syringe. The size of the syringe or nozzle can be appropriately set according to the purpose, but the inner diameter of the nozzle is set, for example, to 200 μπι or less, more preferably 20 μπι or less, and particularly preferably 5 μπι or less. It is preferable to do so. The lower limit of the inner diameter of the nozzle is not limited, as long as the manufacturing technology allows For example, the inner diameter may be set to 1 μπι or less.
加熱手段の構成は限定されなレ、が、 例えば、 シリンジの外周を包囲したアル ミニゥム製等の金属製のプロックを介して-クロム線等の電熱線で加熱する方式 が例示される。 加熱手段による加熱の温度域は、 生分解性樹脂のガラス転移点や 融点を考慮して、 適宜に設定される。 なお、 この加熱手段も、 後述するコント口 ーラによって移動制御手段と吐出制御手段と共に協調制御される方式が、 一層好 ましい。 そのことにより、 医療用 3次元構造物の製造装置全体を自動制御するこ とが可能となる。  Although the configuration of the heating means is not limited, for example, a method of heating with a heating wire such as a -chrome wire through a metal block such as an aluminum alloy surrounding the outer periphery of the syringe is exemplified. The temperature range of the heating by the heating means is appropriately set in consideration of the glass transition point and the melting point of the biodegradable resin. It is more preferable that the heating means be cooperatively controlled by a controller described later together with the movement control means and the discharge control means. This makes it possible to automatically control the entire medical three-dimensional structure manufacturing equipment.
( b ) ノズルからのシリンジ内容物の吐出を制御する吐出制御手段。 この吐 出制御手段は、 熱溶融した生分解性樹脂のノズルからの吐出の O N/O F Fや、 吐出時における吐出量を制御するものである。 吐出制御手段の構成も別段に限定 されないが、 例えば、 シリンジ内を往復動する樹脂押出し用のビストンロッドの 動作を、 送りネジを介するステツピングモータにより制御する方式とすることが できる。 この場合、 ステッピングモータの回転又はその回転速度により、 生分解 性樹脂のノズルからの吐出やその停止、 あるいは吐出量の制御が行われる。  (b) Discharge control means for controlling discharge of syringe contents from the nozzle. The discharge control means controls the ON / OFF of discharge of the thermally degradable biodegradable resin from the nozzle and the discharge amount at the time of discharge. Although the configuration of the discharge control means is not particularly limited, for example, a method in which the operation of a resin extruding biston rod reciprocating in the syringe is controlled by a stepping motor via a feed screw can be used. In this case, the discharge or stop of the biodegradable resin from the nozzle or the control of the discharge amount is performed according to the rotation of the stepping motor or its rotation speed.
( c ) シリンジの下端のノズルに対向して位置する造形用ステージ。 この造 形用ステージは、 例えば、 3次元方向 (X— Y— Z方向) への移動を制御できる ものが好ましいが、 上記の吐出部側にこのような移動制御機構の一部又は全部を 設定した場合には、 その限りにおいて造形用ステージの移動制御機構の一部又は 全部を不要とすることができる。  (c) A molding stage located opposite the nozzle at the lower end of the syringe. It is preferable that the shaping stage be capable of controlling movement in, for example, a three-dimensional direction (X-Y-Z direction). However, a part or all of such a movement control mechanism is set on the discharge unit side. In that case, part or all of the movement control mechanism of the modeling stage can be dispensed with as long as it is performed.
( d ) 前記吐出部及びノスは造形用ステージは、 それらのいずれかに設けた 平面方向 (X— Y方向) への移動を制御する手段と縦方向 (Z方向) への移動を 制御する手段とによって、 3次元方向 (X— Y— Z方向) への相対的な移動を制 御できるようになつている必要がある。 よって、 吐出部及び造形用ステージのい ずれか一方が 3次元方向 (X— Y— Z方向) への制御された移動が可能である場 合、 他方は固定式であっても構わない。  (d) The discharge section and the noss molding stage are provided on any of them, a means for controlling movement in a plane direction (X-Y direction) and a means for controlling movement in a vertical direction (Z direction). Therefore, it is necessary to control the relative movement in the three-dimensional directions (X-Y-Z directions). Therefore, if one of the discharge unit and the modeling stage can be controlled to move in a three-dimensional direction (X, Y, and Z directions), the other may be a fixed type.
( e ) 3次元構造物を構成する多数の 2次元スライス層の平面形状データが 入力されており、 このデータに基づいて前記移動制御手段と吐出制御手段とを協 調して作動させるコントローラ。 ここに、 「3次元構造物を構成する多数の 2次 元スライス層の平面形状データ」 とは、 3次元 C ADもしくは C T ( Computer Tomography; や MR I (Magnetic Resonance Imaging) 等を用いて得られるよう な、 3次元構造物の 「輪切り」 の形状データを言う。 (e) Planar shape data of a number of two-dimensional slice layers constituting a three-dimensional structure is input, and the movement control means and the discharge control means cooperate based on this data. A controller that operates in tune. Here, “planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure” is obtained using three-dimensional CAD or CT (Computer Tomography; MR I (Magnetic Resonance Imaging), etc.) Is the shape data of a “ring slice” of a three-dimensional structure.
又、 「移動制御手段と吐出制御手段との協調した作動」 とは、 例えば、 吐出 部又は造形用ステージが平面方向へ移動している際には吐出制御手段からの生分 解性樹脂の吐出を継続させ、 吐出部又は造形用ステージが縦方向へ移動している 際には吐出制御手段からの生分解性樹脂の吐出を停止させる、 と言った作動内容 を言う。  The “cooperative operation of the movement control means and the discharge control means” means, for example, discharge of biodegradable resin from the discharge control means when the discharge part or the molding stage is moving in a plane direction. And that the discharge of the biodegradable resin from the discharge control means is stopped when the discharge section or the molding stage is moving in the vertical direction.
なお、 上記の 3次元構造物の製造装置において、 造形用ステージ上を適当な 冷却手段で低レ、温度域に維持し、 ノズルから吐出された熱溶融状態の生分解性樹 脂の迅速な固化により、 3次元構造物の成形の精度を確保することも好ましい。 例えば冷風の流通等の手段により、 造形用ステージ上を生分解性樹脂の熱溶融点 温度よりも 3 0 ° C以上低い温度、 より好ましくは室温 (2 0 ° C ) 以下に冷却 しておくことができる。 実施例  In the above three-dimensional structure manufacturing equipment, the molding stage is maintained in a low temperature range by using appropriate cooling means to quickly solidify the hot-melt biodegradable resin discharged from the nozzle. Therefore, it is also preferable to ensure the accuracy of forming the three-dimensional structure. For example, the molding stage should be cooled to a temperature lower than the hot melting point temperature of the biodegradable resin by 30 ° C or more, and more preferably to room temperature (20 ° C) or less, by means such as circulation of cold air. Can be. Example
(実施例 1 :医療用 3次元構造物の製造装置)  (Example 1: Medical three-dimensional structure manufacturing apparatus)
第 1図に本発明の一実施例である医療用 3次元構造物の製造装置 1を簡略化 して示す。 この製造装置 1において、 非常に細いシリンジ 2は、 その下端に微小 なノス、ノレ 3を備えている。 上記のノズル 3の孔径は約 5 0 / mである。 ノズノレ 3 からの細線状吐出物の直径は約 4 5 μ ιηである。 シリンジ 2の外周は、 アルミ二 ゥム製の筒状体 4を介して、 スパイラルに巻かれたニクロム線 5により包囲され ている。 二クロム線 5は加熱制御部 6により加熱の O NZO F F及び加熱温度を 制御される。  FIG. 1 schematically shows a medical three-dimensional structure manufacturing apparatus 1 according to an embodiment of the present invention. In this manufacturing apparatus 1, a very thin syringe 2 is provided with a fine nos and a hole 3 at its lower end. The nozzle 3 has a hole diameter of about 50 / m. The diameter of the fine linear discharge from Nozore 3 is about 45 μιη. The outer circumference of the syringe 2 is surrounded by a spirally wound nichrome wire 5 through a cylindrical body 4 made of aluminum. The heating control section 6 controls the ONZO FFF and the heating temperature of the dichrome wire 5.
シリンジ 2の上端開口部からはピストンロッド 7が挿入可能とされ、 このピ ストンロッド 7は、 ステッビングモータ 8によりシリンジ 2内部を上下方向へ駆 動される。 そしてステッピングモータ 8は中央制御装置であるコントローラ 9に よって動作を制御されるようになっている。 コントローラ 9は、 前記の加熱制御 部 6もコントロールするように構成しても良い。 A piston rod 7 can be inserted from the upper end opening of the syringe 2, and the piston rod 7 is driven up and down inside the syringe 2 by a stepping motor 8. And the stepping motor 8 is sent to the controller 9 which is the central control unit. Therefore, the operation is controlled. The controller 9 may be configured to control the heating control unit 6 as well.
一方、 前記シリンジ 2のノス 'ノレ 3の直下には、 造形用ステージ 1 0が設置さ れている。 この造形用ステージ 1 0は、 平面方向 (X— Y方向) 及び縦方向 (Z 方向) への任意力つ精密な平行移動が可能であって、 それらの動作を前記コント ローラ 9により制御される。  On the other hand, a molding stage 10 is provided immediately below the nose 3 of the syringe 2. The molding stage 10 is capable of performing arbitrary parallel movements in a plane direction (X-Y direction) and a vertical direction (Z direction) with an arbitrary force, and the operation thereof is controlled by the controller 9. .
コントローラ 9には、 造形の目的物である 3次元構造物を平面方向沿いに多 数の層にスライス (輪切り) した状態における多数の 2次元スライス層の平面形 状データが入力されており、 コントローラ 9はこのデータに基づいて、 前記ステ ッビングモータ 8と造形用ステージ 1 0とを協調して作動させる。  The controller 9 receives the planar shape data of a large number of two-dimensional slice layers in a state in which the three-dimensional structure, which is the object of modeling, is sliced (round sliced) into a number of layers along the plane direction. 9 operates the stepping motor 8 and the molding stage 10 in cooperation with each other based on the data.
(実施例 2 :医療用 3次元構造物の製造方法)  (Example 2: Manufacturing method of medical three-dimensional structure)
上記の製造装置 1を用いて医療用 3次元構造物を製造する方法を、 第 2図及 ぴ第 3図に基づいて説明する。  A method for manufacturing a medical three-dimensional structure using the above-described manufacturing apparatus 1 will be described with reference to FIGS. 2 and 3.
まず、 3次元構造物の多数の 2次元スラィス層の平面形状データを取得する 方法は、 第 2図の通りである。 即ち、 例えば第 2図 (a ) の形状であると想定さ れた 3次元構造物 1 1について、 3次元 C ADもしくは C Tや MR I等の断層撮 像法の原理により、 その形状を第 2図 (b ) のように平面方向沿いに多数の層に スライスするデータ上の処理を行い、 第 2図 ( c ) のように個々の 2次元スライ ス層の平面形状データを取得する。 これらのデータは、 前記のコントローラ 9に 入力される。  First, a method for acquiring planar shape data of a large number of two-dimensional slice layers of a three-dimensional structure is as shown in FIG. That is, for example, the three-dimensional structure 11 assumed to have the shape shown in FIG. 2 (a) is changed to the second shape according to the principle of a tomographic imaging method such as three-dimensional CAD or CT or MRI. As shown in Fig. 2 (b), processing is performed on data sliced into a number of layers along the plane, and planar shape data of each 2D slice layer is obtained as shown in Fig. 2 (c). These data are input to the controller 9 described above.
次に、 ポリ乳酸等の生分解†生樹脂のマイクロペレツトをシリンジ 2に適当量 充填し、 ニクロム線 5の加熱により溶融させる。 このような熱溶融状態を保って、 生分解性樹脂をノズル 3から細/線状に吐出させると共に、 造形用ステージ 1 0を 第 3図 (a ) のように平面方向 (X— Y方向) へ所定の要領で移動させる。 この 際のノズノレ 3からの生分解性榭月旨の吐出と造形用ステージ 1 0の移動はコント口 ーラ 9により制御されているため、 吐出された細線状の生分解性樹脂は互いに融 着して、 全体として正確に 2次元スライス層 1 2を形成する。  Next, an appropriate amount of a micro-pellet of a biodegradable resin such as polylactic acid is filled in the syringe 2 and the nichrome wire 5 is melted by heating. While maintaining such a heat-melted state, the biodegradable resin is ejected from the nozzle 3 in a fine / linear manner, and the molding stage 10 is moved in the plane direction (X-Y direction) as shown in FIG. 3 (a). To the specified point. At this time, the discharge of biodegradability from the horn 3 and the movement of the molding stage 10 are controlled by the controller 9, so that the discharged fine-line-shaped biodegradable resins are fused to each other. Then, a two-dimensional slice layer 12 is formed accurately as a whole.
最初に第 1段目 (最下層) の 2次元スライス層 1 2を形成した後、 コント口 ーラ 9に制御されて、 ノズノレ 3からの生分解性樹脂の吐出が一時的に停止される と共に造形用ステージ 1 0が 2次元スライス層 1 2の一層分だけ下降移動し、 次 いで上記と同じ要領により、 第 3図 (b ) のように第 2段目以降の 2次元スライ ス層 1 2を順次積層して形成して行く。 この繰り返しにより、 最初に想定された 通りの 3次元構造物 1 1が形成されるのである。 First, the first stage (lowest layer) of the two-dimensional slice layer 12 is formed, Controlled by the roller 9, the discharge of the biodegradable resin from the blade 3 is temporarily stopped, and the molding stage 10 moves down by one layer of the two-dimensional slice layer 12, and then moves as described above. In the same manner, two-dimensional slice layers 12 of the second and subsequent stages are sequentially laminated and formed as shown in FIG. 3 (b). By this repetition, the three-dimensional structure 11 as originally assumed is formed.
なお、 本願発明者が実際に作製した 3次元構造物 1 1の 2 , 3の具体例とし て、 第 4図に S EM画像を示すマイクロパイプ (外径 5 0 0 μ ιη、 内径 4 0 0 m、 高さ 1 . 5 mm) 、 第 5図に示すマイクロ屈曲パイプ (外径 1 . 5 mm, 高 さ 4 mm) 、 第 6図に示すコイルスプリング (代表径 0 . 5 mm、 ピッチ 0 . 8 mm) 、 等を挙げることができる。 第 7図に示す上部が開口した箱体 (4 . 5 m m平方で、 深さが 5 mm) 等を例示することができる。 これらの第 4図〜第 7図 に示す 3次元構造物は、 いずれも生分解性樹脂としてポリ乳酸を用いて作製した ものであり、 それらの製造時における前記ノズル 3からの生分解性樹脂の吐出量 は 0 . 1 μ L/min.以下とした。  As specific examples of 2 and 3 of the three-dimensional structure 11 actually manufactured by the inventor of the present invention, a micropipe (outside diameter: 500 μιη, inside diameter: 400 μm) whose SEM image is shown in FIG. m, height 1.5 mm), micro-bend pipe (outer diameter 1.5 mm, height 4 mm) shown in Fig. 5, coil spring shown in Fig. 6 (representative diameter 0.5 mm, pitch 0.5) 8 mm), and the like. For example, a box (4.5 mm square and 5 mm deep) with an open top as shown in FIG. 7 can be exemplified. Each of the three-dimensional structures shown in FIGS. 4 to 7 was prepared using polylactic acid as a biodegradable resin, and the biodegradable resin from the nozzle 3 during the production thereof was used. The discharge rate was 0.1 μL / min or less.
(実施例 3 :生体適合性の評価)  (Example 3: Evaluation of biocompatibility)
上記の第 7図に示す箱体を細胞培養の容器として使用することにより、 その 生体適合性を評価した。 比較実験の容器として、 市販の 9 6穴マイク口ゥエルプ レー卜 用レヽ 7こ。  The biocompatibility was evaluated by using the box shown in FIG. 7 as a container for cell culture. As a container for the comparative experiment, a commercially available 96-hole microphone port and a 7-layer plate for ellipse were used.
培養に供した細胞は、 ラット褐色細胞腫由来の P C 1 2細胞である。 この細 胞は神経成長因子 N G Fを添力 [すると神経様の振るまいをすることから、 神経機 能の研究に用いられている。 そしてこの細胞を生育可能であれば、 上記の第 7図 に示す箱体は十分な生体適合性を有することが確認される。  The cells subjected to the culture are PC12 cells derived from rat pheochromocytoma. These cells have been used for studies of nerve function because they exert nerve growth factor NGF as a helping factor. If the cells can grow, it is confirmed that the box shown in FIG. 7 has sufficient biocompatibility.
評価実験の詳細は記載を省略するが、 実施例の箱体と比較例のマイクロウェ ルプレートそれぞれ数例にっレ、て、 底面の単位面積当たり同一細胞数となるよう に P C 1 2細胞を播種し、 同一の一般的な環境下 (3 7 ° C、 5 % C 02 ) で培 養して、 播種後 8 9時間経過までの細胞の観察と個体数の力ゥントを行つた。 Although the details of the evaluation experiment are omitted, PC12 cells were used so that the number of cells per unit area of the bottom was the same as that of the box of the example and the microwell plate of the comparative example. seeded, same general environment (3 7 ° C, 5% C 0 2) was cultured in, KoTsuta observed and populations of force Unto cells until after sowing 8 9 hours passed.
その結果、 実施例と比較例において細胞の形状等には顕著な差異を認めず、 個体数のカウント結果については第 8図の通りであった。 第 8図は縦軸に細胞個 体数 (Number of cell) の推移を、 横軸に播種後の経過時間 (Time [hour] ) を示 し、 「 3D niicrofabricated PLA vessel] と表記したグラフに上記数例の実施例 における平均値力、示され、 「Non - biodegradable well plate for comparison」 と表記したグラフに上記数^]の比較例における平均値が示されている。 As a result, no remarkable difference was observed in the shape of cells between the example and the comparative example, and the results of counting the number of individuals were as shown in FIG. Fig. 8 shows cells on the vertical axis. The change in the number of cells (Time [hour]) is plotted on the horizontal axis, and the average force in the above several examples is shown in a graph labeled “3D niicrofabricated PLA vessel”. , And the graph “Non-biodegradable well plate for comparison” shows the average value in the comparative example of the above number ^].
第 8図の結果より、 本実施例に係る医療用 3次元構造物たる箱体は、 十分な 生体適合性を有することが実証された。  From the results shown in FIG. 8, it was proved that the box as the medical three-dimensional structure according to the present example had sufficient biocompatibility.
(実施例 4 :分岐部を有する中空管状体の作製)  (Example 4: Production of hollow tubular body having branch portion)
第 9図 (a ) に示す毛糸田血管再生用の足場材 1 3は、 生分解性樹脂であるポ リ乳酸からなり、 前記の実施例 1の製造装置を用いて、 前記の実施例 2の製造方 法により製造されたものである。 この足場材 1 3は、 管壁部 1 5が直径 5 0 μ m 以下のほぼ円形の断面形状を呈する中空の管状体であるが、 分岐部 1 4を伴って いる。  The scaffold 13 shown in FIG. 9 (a) for regenerating the blood vessels of the knitting field is made of polylactic acid which is a biodegradable resin, and the production apparatus of the first embodiment is used to produce the scaffold 13 of the second embodiment. It is manufactured by the manufacturing method. The scaffold 13 is a hollow tubular body whose tube wall 15 has a substantially circular cross-sectional shape with a diameter of 50 μm or less, but has a branch portion 14.
これらの分岐部 1 4は、 第 9図 ( b ) に示すように、 当該分岐部 1 4に相当 する管壁部 1 5について、 前記した 2次元スライス層の各層の形状を、 1個の円 形から、 順次、 楕円形、 中央に括れを持つ楕円形、 「8」 の字状、 2個の円形と 変化させて行くことにより、 形成したものである。 この足場材 1 3の製造に当た り、 熱溶融させたポリ乳酸を孔径 2 0 mのノズル 3から 1 . 5 μ L/min.以下 の吐出量で吐出させた。 又、 吐出されたポリ乳酸を迅速に固化させるため、 冷却 装置を用いて造形用ステージ 1 0上を 2 0 ° C以下の温度に冷却した。  As shown in FIG. 9 (b), these branch portions 14 are formed by changing the shape of each layer of the above-described two-dimensional slice layer into one circle with respect to the tube wall portion 15 corresponding to the branch portion 14. It is formed by sequentially changing the shape from an ellipse, an ellipse with a constriction in the center, an “8” shape, and two circles. In the production of the scaffold 13, the heat-melted polylactic acid was discharged from the nozzle 3 having a pore diameter of 20 m at a discharge rate of 1.5 μL / min or less. In addition, in order to rapidly solidify the discharged polylactic acid, the temperature on the molding stage 10 was cooled to a temperature of 20 ° C. or less using a cooling device.
(実施例 5 :分岐部を有する極めて微細な中空管状体の作製)  (Example 5: Production of an extremely fine hollow tubular body having a branch portion)
生分解性樹脂であるポリ乳酸からなり、 上記の実施例 4の場合と同一形状の 毛細血管再生用の足場材であって、 管壁部が直径 5 μ πι以下であると言う極めて 微細な中空管状体を作製しだ。 作製方法は実施例 4の場合と同様であるが、 熱溶 融させたポリ乳酸を吐出するノズルの直径は 2 mとし、 吐出量を 0 . 1 5 L /min.とした。 又、 吐出されたポリ乳酸を迅速に固化させるため、 冷却装置を用 いて造形用ステージ 1 0上を 2 0 ° C以下の温度に冷却した。 その結果、 第 9図 ( a ) に示すものと同様で、 サイズがほぼーケタ小さい毛細血管再生用の足場材 を作製することができた。 産業上の利用分野 It consists polylactic acid is a biodegradable resin, a scaffold for capillary regeneration of the same shape as that in the example 4, a very fine hollow say tube wall is less than the diameter 5 μ πι I made a tubular body. The manufacturing method was the same as in Example 4, except that the diameter of the nozzle for discharging the hot-melted polylactic acid was 2 m, and the discharge rate was 0.15 L / min. In addition, in order to rapidly solidify the discharged polylactic acid, the temperature on the molding stage 10 was cooled to 20 ° C. or lower using a cooling device. As a result, a scaffold for regenerating capillary blood vessels having a size almost the same as that shown in FIG. 9 (a) could be produced. Industrial applications
以上のように、 本発明によれば、 生体適合性を有する生分解性榭脂からなり、 体内埋設型の治療具又は治療補助具としての任意の複雑形状を有する微細な医療 用 3次元構造物が提供される。 又、 その有利な製造方法と、 このような製造方法 を実行可能とする »造装置が提供される。  INDUSTRIAL APPLICABILITY As described above, according to the present invention, a fine medical three-dimensional structure made of a biodegradable resin having biocompatibility and having an arbitrary complex shape as an implantable treatment tool or treatment aid Is provided. Further, an advantageous manufacturing method and a manufacturing apparatus capable of executing such a manufacturing method are provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 生体適合性を有する生分解性樹脂からなり、 体内埋設型の治療具又は治 療捕助具としての任意の形状を有する 3次元構造物であって、 その成形に 5 0 μ m以下の分解能を要する医療用 3次元構造物。 1. A three-dimensional structure made of a biodegradable resin having biocompatibility and having an arbitrary shape as an implantable treatment tool or treatment / capture aid, and having a shape of 50 μm or less Medical three-dimensional structure requiring resolution.
2 . 前記生体適合性を有する生分解性樹脂が、 乳酸、 グリコール酸、 力プロ ラクトンのいずれか 1種のモノマーからなるホモポリマー、 あるいはこれらの 2 種以上のモノマーからなるコポリマーである請求の範囲 1項に記載の医療用 3次 元構造物。  2. The biodegradable resin having biocompatibility is a homopolymer composed of any one of lactic acid, glycolic acid, and force prolactone, or a copolymer composed of two or more of these monomers. The medical three-dimensional structure according to item 1.
3 . 前記体内埋設型の治療具又は治療補助具が、 外科的治療具、 組織再生の 足場材、 骨格の構成用材料、 薬物送達システム又は遺伝子導入用デバイスである 請求の範囲 1項又は 2項に記載の医療用 3次元構造物。  3. The implantable treatment tool or treatment aid is a surgical treatment tool, a scaffold for tissue regeneration, a material for a skeleton, a drug delivery system, or a gene transfer device. The medical three-dimensional structure according to 1.
4 . 前記組織再生の足場材が、 血管再生用ないしは毛細血管再生用の足場材 としての、 分岐部を有する中空管状体である請求の範囲 3項に記載の医療用 3次 元構造物。  4. The medical three-dimensional structure according to claim 3, wherein the scaffold for tissue regeneration is a hollow tubular body having a branch portion as a scaffold for blood vessel regeneration or capillary vessel regeneration.
5 . 以下の (1 ) 〜 (3 ) の各プロセスを含む医療用 3次元構造物の製造方 法。  5. A method for manufacturing a medical three-dimensional structure including the following processes (1) to (3).
( 1 ) 加熱手段を付設した微小なシリンジの下端のノズルを造形用ステージに接 近して対向させ、 前記シリンジに生体適合性を有する生分解性樹脂の細粒を充填 して前記加熱手段により熱溶融させる。  (1) A nozzle at the lower end of a small syringe provided with a heating means is brought close to and opposed to a modeling stage, and the syringe is filled with fine particles of a biodegradable resin having biocompatibility, and the heating means is used. Heat melt.
( 2 ) 3次元構造物を構成する多数の 2次元スライス層の平面形状データに基づ き、 熱溶融した生分解性樹脂を前記ノズルから細線状に吐出させると共に前記シ リンジ又ま造形用ステージを平面方向 (X— Y方向) へ移動させることにより、 多数の 2次元スライス層 (X— Y方向スライス層) の内の 1層を形成する。  (2) Based on the planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure, the biodegradable resin that has been melted is discharged from the nozzle in a thin line shape, and the syringe or molding stage is discharged. Is moved in the plane direction (X-Y direction) to form one of a number of two-dimensional slice layers (X-Y direction slice layers).
( 3 ) 前記シリンジ又は造形用ステージを前記 2次元スライス層の 1層分の厚さ だけ縦方向 (Z方向) へ離隔移動させた後に前記第 2工程を反復し、 この繰り返 しにより 3次元構造物を構成する多数の 2次元スライス層の全てを形成する。  (3) The second step is repeated after moving the syringe or the molding stage in the vertical direction (Z direction) by the thickness of one layer of the two-dimensional slice layer, and repeating the three-dimensional process. It forms all of the many 2D slice layers that make up the structure.
6 . 前記 (1 ) 〜 (3 ) の各プロセスを、 以下の (4 ) 〜 (6 ) の内の少な くとも 1以上の条件に従って行う請求の範囲 5項に記載の医療用 3次元構造物の 製造方法。 6. Each of the above processes (1) to (3) is performed in a few of the following (4) to (6). 6. The method for producing a medical three-dimensional structure according to claim 5, wherein the method is performed according to at least one or more conditions.
( 4 ) 前記ノズルからの細線状吐出物の直径が 2 0 0 m以下である。  (4) The diameter of the fine linear discharge from the nozzle is 200 m or less.
( 5 ) 前記ノズルからの細線状吐出物の吐出量が 1 . 5 μ L/min.以下である。  (5) The discharge amount of the fine linear discharge material from the nozzle is 1.5 μL / min or less.
( 6 ) 前記造形用ステージ上が生分解性樹脂の熱溶融点温度よりも 3 0 ° C以上 低い温度である。  (6) The temperature on the modeling stage is 30 ° C. or lower than the thermal melting point temperature of the biodegradable resin.
7 . 前記 3次元構造物が分岐部を有する中空管状体である場合において、 当 該分岐 ^に相当する複数の 2次元スライス層の各層の形状を、 1個の円形から、 順次、 楕円形、 中央に括れを持つ楕円形、 「8」 の字状、 2個の円形に変化させ て行くことにより、 中空管状体の分岐部を形成する請求の範囲 5項又は 6項に記 載の医療用 3次元構造物の製造方法。  7. When the three-dimensional structure is a hollow tubular body having a branch, the shape of each of a plurality of two-dimensional slice layers corresponding to the branch ^ is sequentially changed from one circle to an ellipse, The medical device according to claim 5 or 6, wherein a branch portion of the hollow tubular body is formed by changing the shape into an elliptical shape having a constriction at the center, a figure of "8", and two circular shapes. Manufacturing method for 3D structures.
8 . 以下の (a ) 〜 ( e ) の要素を含む医療用 3次元構造物の製造装置。  8. An apparatus for manufacturing a medical three-dimensional structure including the following elements (a) to (e).
( a ) 下端にノズルを備えた微小なシリンジと、 このシリンジの外周に設けたカロ 熱手段カゝらなる吐出部。  (a) A small syringe having a nozzle at the lower end, and a discharge unit composed of caro heating means provided on the outer periphery of the syringe.
( b ) 前記ノズルからのシリンジ内容物の吐出を制御する吐出制御手段。  (b) Discharge control means for controlling discharge of syringe contents from the nozzle.
( c ) 前記シリンジの下端のノズノレに対向して位置する造形用ステージ。  (c) A modeling stage located opposite the lip of the lower end of the syringe.
( d ) 前記吐出部及びノ又は造形用ステージの平面方向 (X— Y方向) 及び縦方 向 (Z方向) への移動を制御する移動制御手段。  (d) Movement control means for controlling the movement of the discharge unit and the stage or the molding stage in a plane direction (X-Y direction) and a vertical direction (Z direction).
( e ) 3次元構造物を構成する多数の 2次元スライス層の平面形状データが入力 されており、 このデータに基づいて前記移動制御手段と吐出制御手段とを協調し て作動させるコントローラ。  (e) A controller to which planar shape data of a large number of two-dimensional slice layers constituting a three-dimensional structure is input, and which operates the movement control means and the discharge control means in cooperation based on the data.
9 . 前記移動制御手段による制御方式が、 吐出部及び造形用ステージのいず れか一方の平面方向 (X— Y方向) 及び縦方向 (Z方向) への移動を制御する方 式である力 あるいは吐出部及び造形用ステージのいずれか一方の平面方向 (X — Y方向) への移動を制御すると共に他方の縦方向 (Z方向) への移動を制御す る方式である請求の範囲 8項に記載の医療用 3次元構造物の製造装置。  9. The control method by the movement control means is a force that controls the movement of either the discharge unit or the molding stage in the plane direction (X-Y direction) or the vertical direction (Z direction). 9. The method according to claim 8, wherein a movement of one of the discharge unit and the molding stage in a plane direction (X-Y direction) is controlled and a movement of the other in a vertical direction (Z direction) is controlled. 3. The apparatus for manufacturing a medical three-dimensional structure according to claim 1.
PCT/JP2004/013096 2004-03-03 2004-09-02 Medical three-dimensional structure, process for producing the same and production apparatus WO2005084581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510610A JPWO2005084581A1 (en) 2004-03-03 2004-09-02 Medical three-dimensional structure, manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004/58782 2004-03-03
JP2004058782 2004-03-03

Publications (1)

Publication Number Publication Date
WO2005084581A1 true WO2005084581A1 (en) 2005-09-15

Family

ID=34917946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013096 WO2005084581A1 (en) 2004-03-03 2004-09-02 Medical three-dimensional structure, process for producing the same and production apparatus

Country Status (2)

Country Link
JP (2) JPWO2005084581A1 (en)
WO (1) WO2005084581A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006017595A1 (en) * 2006-04-13 2007-10-18 Friedrich-Baur Gmbh Method for producing a biocompatible scaffold, in particular for producing an implant
JP2011253060A (en) * 2010-06-02 2011-12-15 Nihon Univ Manufacturing apparatus for three-dimensional viscoelastic structure and manufacturing method therefor
CN103302859A (en) * 2013-05-21 2013-09-18 黄辉 Color three-dimensional printer and printing method
CN104210108A (en) * 2014-09-15 2014-12-17 王跃宣 Printing defect remedying method of 3D printer and system thereof
EP3064193A1 (en) * 2015-03-06 2016-09-07 Coltène/Whaledent AG Cartridge with composite material
WO2019077144A1 (en) * 2017-10-19 2019-04-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for manufacturing a microstructured device and associated implementation devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002954B2 (en) * 2012-01-20 2016-10-05 兵神装備株式会社 3D structure modeling equipment
PL3636435T3 (en) 2014-02-25 2022-03-14 Seiichi YUYAMA Method of operating a 3d printer
EP3189959B1 (en) * 2014-09-05 2019-05-01 MCPP Innovation LLC Filament for 3d printing and method for producing crystalline soft resin molded article
KR101697556B1 (en) * 2016-08-05 2017-01-18 이상혁 Apparatus and method for manufacturing microstructures and microstructures prepared by the same
KR102026635B1 (en) * 2017-09-19 2019-09-30 원광대학교산학협력단 Scaffold and fabrication method by dragging technique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255124A (en) * 1986-04-28 1987-11-06 Tatsuo Togawa Method and device for manufacturing three-dimensional formation by robot
JPH06501045A (en) * 1990-09-10 1994-01-27 リュークスニベルシテイト テ グロニンゲン Method for producing articles with medical applications from a copolymer of lactide and ε-caprolactone
JP2000296561A (en) * 1999-03-15 2000-10-24 Korea Advanced Inst Of Sci Technol Variable weld lamination type rapid shaping method and apparatus
JP2003534159A (en) * 2000-05-19 2003-11-18 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー Improved FDM products, methods and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
JP2597778B2 (en) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド Three-dimensional object assembling system and assembling method
GB9403135D0 (en) * 1994-02-18 1994-04-06 Univ Glasgow Wound healing device
US5764521A (en) * 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
WO1997033532A2 (en) * 1996-03-13 1997-09-18 Medtronic, Inc. Endoluminal prostheses and therapies for multiple-branch body lumen systems
JPH10298435A (en) * 1997-04-24 1998-11-10 Dainippon Ink & Chem Inc Biodegradable molding, biodegradable material and their production
DE10018987A1 (en) * 2000-04-17 2001-10-31 Envision Technologies Gmbh Device and method for producing three-dimensional objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255124A (en) * 1986-04-28 1987-11-06 Tatsuo Togawa Method and device for manufacturing three-dimensional formation by robot
JPH06501045A (en) * 1990-09-10 1994-01-27 リュークスニベルシテイト テ グロニンゲン Method for producing articles with medical applications from a copolymer of lactide and ε-caprolactone
JP2000296561A (en) * 1999-03-15 2000-10-24 Korea Advanced Inst Of Sci Technol Variable weld lamination type rapid shaping method and apparatus
JP2003534159A (en) * 2000-05-19 2003-11-18 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー Improved FDM products, methods and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006017595A1 (en) * 2006-04-13 2007-10-18 Friedrich-Baur Gmbh Method for producing a biocompatible scaffold, in particular for producing an implant
JP2011253060A (en) * 2010-06-02 2011-12-15 Nihon Univ Manufacturing apparatus for three-dimensional viscoelastic structure and manufacturing method therefor
CN103302859A (en) * 2013-05-21 2013-09-18 黄辉 Color three-dimensional printer and printing method
CN104210108A (en) * 2014-09-15 2014-12-17 王跃宣 Printing defect remedying method of 3D printer and system thereof
CN104210108B (en) * 2014-09-15 2017-11-28 宁波高新区乐轩锐蓝智能科技有限公司 The print defect of 3D printer makes up method and system
EP3064193A1 (en) * 2015-03-06 2016-09-07 Coltène/Whaledent AG Cartridge with composite material
WO2016142323A1 (en) 2015-03-06 2016-09-15 Coltène/Whaledent Ag Cartridge having composite material
US20180111316A1 (en) * 2015-03-06 2018-04-26 Coltène/Whaledent Ag Cartridge having composite material
EP3800051A1 (en) * 2015-03-06 2021-04-07 Coltène/Whaledent AG Cartridge with composite material
US11305479B2 (en) 2015-03-06 2022-04-19 Coltène/Whaledent Ag Cartridge having composite material
WO2019077144A1 (en) * 2017-10-19 2019-04-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for manufacturing a microstructured device and associated implementation devices

Also Published As

Publication number Publication date
JPWO2005084581A1 (en) 2008-01-17
JP2010099494A (en) 2010-05-06
JP4641047B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4641047B2 (en) Manufacturing method of medical three-dimensional structure
Touri et al. Additive manufacturing of biomaterials− the evolution of rapid prototyping
Eshkalak et al. The role of three-dimensional printing in healthcare and medicine
Mazzoli Selective laser sintering in biomedical engineering
JP4972725B2 (en) Direct modeling method and apparatus for polymer materials
Chia et al. Recent advances in 3D printing of biomaterials
An et al. Design and 3D printing of scaffolds and tissues
Ouhsti et al. Effect of printing parameters on the mechanical properties of parts fabricated with open-source 3D printers in PLA by fused deposition modeling
US9168328B2 (en) Layered manufacturing utilizing foam as a support and multifunctional material for the creation of parts and for tissue engineering
US8463418B2 (en) Methods and apparatus for fabricating porous 3-dimensional cell culture construct for cell culture and other biomedical applications
Yamada et al. A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility
Lee et al. Bioprinting of multimaterials with computer-aided design/computer-aided manufacturing
Awad et al. A review of state-of-the-art on enabling additive manufacturing processes for precision medicine
Cardon et al. Design and fabrication methods for biocomposites
Pollack et al. Polymer-Based additive manufacturing: historical developments, process types and material considerations
Provaggi et al. 3D printing families: Laser, powder, nozzle based techniques
Dhavalikar et al. Biomedical applications of additive manufacturing
Oderinde et al. Multifaceted polymeric materials in three‐dimensional processing (3DP) technologies: Current progress and prospects
Yeong et al. Bioprinting: principles and applications
Chimate et al. Pressure assisted multi-syringe single nozzle deposition system for manufacturing of heterogeneous tissue scaffolds
Subramaniyan et al. A survey on applications of additive manufacturing techniques in tissue engineering
Mishinov et al. Methods for three-dimensional prototyping and printing in reconstructive neurosurgery
Al-Gawhari et al. Types of 3D Printers Applied in Industrial Pharmacy and Drug Delivery
Gutiérrez 3D Printing of Biopolymers: Trends and Opportunities for Medical Applications
Angappan et al. Recent Developments in Additive Manufacturing Equipment's and Its Processes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase