JPS62254525A - Galois field multiplication circuit - Google Patents

Galois field multiplication circuit

Info

Publication number
JPS62254525A
JPS62254525A JP61099110A JP9911086A JPS62254525A JP S62254525 A JPS62254525 A JP S62254525A JP 61099110 A JP61099110 A JP 61099110A JP 9911086 A JP9911086 A JP 9911086A JP S62254525 A JPS62254525 A JP S62254525A
Authority
JP
Japan
Prior art keywords
multiplication
digit
register
result
term
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099110A
Other languages
Japanese (ja)
Inventor
Koji Asaba
浅場 康次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP61099110A priority Critical patent/JPS62254525A/en
Publication of JPS62254525A publication Critical patent/JPS62254525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Correction Of Errors (AREA)
  • Error Detection And Correction (AREA)

Abstract

PURPOSE:To attain the multiplication of an optional element at a high speed by applying the expression of polynomial to the multiplication of elements of a Galois field and converting a term of overflow into a loworder digit and adding the result to each digit. CONSTITUTION:The titled circuit consists of the 1st register 10 set with a multiplier alpha<i>, the 2nd register 12 set with a multiplicand alpha<j>, and a gate group applying polynomial expression to the multiplier alpha<i> and the multiplicand alpha<j>, multiplying them in the form of polynomial, arranging terms of overflow to low-order corresponding digits and outputting each term as the result of multiplication obtained in this way, operation circuits 27, 26 for each term (X<7>, X<6>-X<0>) as the result of multiplication receiving the data of each digit of the multipliers and the multilicands of the 1st and 2nd registers and the 3rd register 14 having each digit location set with the outputs of the operation circuits and outputting the result of multiplication Thus, the result of multiplication is obtained by having only to input each digit of the multipliers and multiplicands to the corresponding operation circuit and the very high speed multiplication is attained.

Description

【発明の詳細な説明】 〔概 要〕 ガロア体の元の乗算を多項式表現で行ない、桁あふれの
項を下位桁に換算して各桁に加算することにより、任意
の元の乗算を高速で行なう回路。
[Detailed Description of the Invention] [Summary] Multiplication of elements in a Galois field is performed using polynomial expression, and by converting overflow terms to lower digits and adding them to each digit, multiplication of arbitrary elements can be performed at high speed. circuit to perform.

〔産業上の利用分野〕[Industrial application field]

本発明はディジタル通信、ディジタル信号処理などで用
いられる誤り訂正符号のガロア体の元の乗算回路に関す
るものであり、この乗算を高速で実行可能にして信号処
理の高速化、ひいては高性能化及び多1131能化を図
ろうとするものである。
The present invention relates to a multiplication circuit for Galois field elements of error correction codes used in digital communication, digital signal processing, etc., and enables high-speed multiplication to speed up signal processing, thereby increasing performance and multiplicity. This is an attempt to make 1131 more efficient.

〔従来の技術〕[Conventional technology]

ガロア体例えばCF(2’)の元はα(原始光でooo
oootoと定義)のべき乗の形をしており、α0〜α
254で1廻りしてα255=α0 となる巡回符号で
ある。か\る数(元)の乗算にはROM方式が多く使わ
れている。即ち、乗数をαl 、被乗数をαj として
、まず元をアドレス、指数を記憶データとする対数変換
ROMを用い、元αi 、αjにより該ROMを読出し
て指数j、jを(q、加算回路によってi十jを得、最
後に指数をアドレス、元を記憶データとする逆対数(指
数)変換ROMを用い、該ROMを指数i+jで読出し
て元αi + jを得る。第4図にこのROM方式の乗
算装置のブロック図を、また第5図に演算フローチャー
トを示す。
For example, the element of the Galois field CF (2') is α (ooo in primitive light
It has the form of a power of α0~α
It is a cyclic code that goes around once at 254 and becomes α255=α0. The ROM method is often used for multiplication of numbers (elements). That is, with αl as the multiplier and αj as the multiplicand, first use a logarithmic conversion ROM in which the element is the address and the exponent is the stored data, read out the ROM using the elements αi and αj, and convert the exponents j and j to (q, i by the adder circuit). Finally, an inverse logarithm (exponential) conversion ROM with the exponent as the address and the element as the stored data is used, and the ROM is read out with the index i + j to obtain the element αi + j. Fig. 4 shows the diagram of this ROM system. A block diagram of the multiplication device and a calculation flowchart are shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来方式ではα” 、αjを取り込む、対数変換R
OMをアクセスする、i+jの演算を行なう、逆対数変
換ROMをアクセスする、等、1回の乗算に10ステッ
プ程度のデータ操作が必要になり、多数の元の乗算を高
速で行なうには不向きである。
In this conventional method, α'', αj are taken in, and the logarithmic transformation R
One multiplication requires about 10 steps of data manipulation, such as accessing the OM, performing the i+j operation, and accessing the anti-logarithm conversion ROM, making it unsuitable for high-speed multiplication of a large number of elements. be.

ハードウェア(演算回路)を組んで直接乗算できるよう
にすれば、演算を高速化することができる。そして、ガ
ロア体の元を多項式で扱えば乗算の計算式の形を容易に
一般化でき、巡回性のため纏めて簡潔化することもでき
る。ガロア体の元をベクトル表現で扱うとαのべき乗が
一見ランダムに現われ(ガロア体であるから演算結果も
成る範囲の元内に入るが)、計算式の形を一般化するこ
とが困難である。本発明はか\る点に着目するもので、
ガロア体の元の乗算を高速処理できる演算回路を提供し
ようとするものである。
By building hardware (arithmetic circuits) to enable direct multiplication, calculations can be made faster. Furthermore, if the elements of the Galois field are treated as polynomials, the form of the calculation formula for multiplication can be easily generalized, and due to cyclicity, it can be simplified all at once. When the elements of the Galois field are treated as vector representations, the powers of α appear seemingly randomly (although since it is a Galois field, the calculation results are within the range of elements), making it difficult to generalize the form of the calculation formula. . The present invention focuses on this point,
The objective is to provide an arithmetic circuit that can perform multiplication of Galois field elements at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

ガロア体の元としてCF(2)の元を例にとり、その2
つの元α′ 、αj の乗算を考える。αlαj はベ
クトル表現では(1)式に、多項式表現では(2)式に
なる。
Taking the element of CF(2) as an example of the Galois field element, Part 2
Consider multiplication of two elements α′ and αj. αlαj is represented by equation (1) in vector representation, and equation (2) in polynomial representation.

こ\でx=α、a、 bはO又は1である。Here, x=α, a, and b are O or 1.

次に多項式表現を用いて、α3とαコの積をδを算しよ
う、なお以下の計算式の+は2を法とする加算(Exc
lusive Oのを表わす。
Next, using polynomial expression, let's calculate δ by the product of α3 and αko. In the calculation formula below, + is addition modulo 2 (Exc
Represents lusive O.

αi.αjセa 7b ? K” +(a7bv+avb7)xl3 + (a−、bz+abbb+astz)x12+ (
a7b++abbs+asb6+aat++)x”+ 
(a7bx+aaba+a5bs+a4b6+a3bt
)x”+ (aib2+aSb3+aSba+a4b5
+a3b6+a2b7)X’+ (a tb !+a 
Cb2+a 5 b3+a a ba+a 3b5+a
 2bt+a l bt)X8+ (atbo+a t
b 1+a5b2+a a bz+a 3ba +a 
2b5+a l ba+a obt)x’+ (acb
a+a5b1+a4b=+a:+b3+a2ba+a+
t+s+a*b6)x’+ (asbn+aaffi+
asb2+a2bp+a+ ba+aobs)x’+ 
(aabo+a:+b++a2b2+a+b3+aob
a)x’+ (a:+ba+a2b++a+b2+aa
b3)x3+ (a2bo+a+b++aob2)x”
+ (a 1 bo+aob+)x la o b 。
αi. αj sea 7b? K” + (a7bv+avb7)xl3 + (a-, bz+abbb+astz)x12+ (
a7b++abbs+asb6+aat++)x”+
(a7bx+aaba+a5bs+a4b6+a3bt
)x”+ (aib2+aSb3+aSba+a4b5
+a3b6+a2b7)X'+ (a tb !+a
Cb2+a 5 b3+a a ba+a 3b5+a
2bt+a l bt)X8+ (atbo+a t
b 1+a5b2+a a bz+a 3ba +a
2b5+a l ba+a obt)x'+ (acb
a+a5b1+a4b=+a:+b3+a2ba+a+
t+s+a*b6)x'+ (asbn+aaffi+
asb2+a2bp+a+ ba+aobs)x'+
(aabo+a:+b++a2b2+a+b3+aob
a) x'+ (a:+ba+a2b++a+b2+aa
b3)x3+ (a2bo+a+b++aob2)x”
+ (a 1 bo+aob+)x la ob.

・・・・・・(3) となる。ここでCF(28)の原始多項式(Primi
tive1’olync*ial) g(X)=x’ +x4 +x3 +z2+1=0よ 
リ、 x   −x   +x   +x   +l    
                     ・・・・
・イ4)x9ジ[Xa=x’ +x’ +X” +X 
     ・叩(5)x10=x  −x’  =X6
 +X’  +X4  +X2           
   ・叩イ6)x”=x  −x”=x7 +x’ 
 +x’  +x”              0.
”、イア)x  −x−x  ””x  +X  +X
  +X=J’+X3+X2+ 1 +x7+x’+?
=x7+ ×6 +xJ +x2+ l       
           ・叩イ8)xl3 = x、 
xl 2 =x8+x’+x’+x3+x=X7+X2
+ X + 1            、、、、、べ
9)X14=X ・X13=x8 +x3+x2+x=
z  +X+1             ・・・・・
側であるので、これら(桁あふれの項)を(3)式に代
入して整理する(同じXのべき乗の項を纏める)と cx’−a’= (at(bo+bt+b5+bs) 
+as (bl+b5+b6+bt) +as (b2
+b6+bt) +a4 (b3+bt) +a3ba
+a2bs+a+bt++aob7) x7 + (at(b3+ba+b5) +as (bo+b
t+b5+bb) +a5(b++bs+bs+bt)
 +aa (b2+bs+bt) +a 3 (bx+
bt)  +a 2ba+a+ba+aobs)  x
’+ (at (b2+b3+bn) +aa (b3
+ba+b5) +as (bo+b4+ba+ba)
+84 (tz+bs+b6+bt)+a3(b2+b
6+bt) +a2(bx+bt) +a+ba+ao
ba)x’+ (at(tz+b2+bz+bt) +
as (b2+b3+ba) +a5(b3+ba+b
5) +a4 (bo+b4+b5+bs) +a3(
b++b5+ba+b7)+a2(b2十ba+bt)
+a+ (b3+bt) +aoba) x’+(at
 (b++b2+ba+bs) +aa  (b2+b
3+bs+ba)+a5 (bx+ba+bs+bt)
+aa (ba+b5+bt)+a3 (ba+b5+
b6)+a2 (b++ba+bt)+al  (b2
+bt)+aab3)x” + (at (b++bx+ba+b6)+ab (b
2+b4+b6+tz)+as  (bx+ba+bt
)+3m (ba+bs)+23 (b5+b7)+a
2(ba+bb)+3.(b++bt)+aub2) 
x2+ (at(b2+b6+b7)+86 (b3+
bt)+a5ba+aab5+a:+bs+a2bt+
a+bo+aob+) x+a7(b++b、+b6+
bt)+86 (b2+b6+b7)+a5(b3+b
7)+aaba+a3b5+a2ha+a+bt+ao
b。
・・・・・・(3) It becomes. Here, the primitive polynomial (Primi
tive1'olync*ial) g(X)=x' +x4 +x3 +z2+1=0
li, x −x +x +x +l
・・・・・・
・A4) x9ji[Xa=x'+x'+X'' +X
・Strike (5)x10=x -x' =X6
+X' +X4 +X2
・Slap A 6) x"=x -x"=x7 +x'
+x'+x" 0.
”, ia)x −x−x ””x +X +X
+X=J'+X3+X2+ 1 +x7+x'+?
=x7+ ×6 +xJ +x2+ l
・Slap A8) xl3 = x,
xl 2 =x8+x'+x'+x3+x=X7+X2
+ X + 1 ,,,,,be9)
z+X+1・・・・・・
Therefore, by substituting these (overflow terms) into equation (3) and arranging them (combining terms of the same power of X), we get cx'-a'= (at(bo+bt+b5+bs)
+as (bl+b5+b6+bt) +as (b2
+b6+bt) +a4 (b3+bt) +a3ba
+a2bs+a+bt++aob7) x7 + (at(b3+ba+b5) +as (bo+b
t+b5+bb) +a5(b++bs+bs+bt)
+aa (b2+bs+bt) +a 3 (bx+
bt) +a 2ba+a+ba+aobs) x
'+ (at (b2+b3+bn) +aa (b3
+ba+b5) +as (bo+b4+ba+ba)
+84 (tz+bs+b6+bt)+a3(b2+b
6+bt) +a2(bx+bt) +a+ba+ao
ba)x'+ (at(tz+b2+bz+bt)+
as (b2+b3+ba) +a5(b3+ba+b
5) +a4 (bo+b4+b5+bs) +a3(
b++b5+ba+b7)+a2(b2 ten ba+bt)
+a+ (b3+bt) +aoba) x'+(at
(b++b2+ba+bs) +aa (b2+b
3+bs+ba)+a5 (bx+ba+bs+bt)
+aa (ba+b5+bt)+a3 (ba+b5+
b6)+a2 (b++ba+bt)+al (b2
+bt)+aab3)x” + (at (b++bx+ba+b6)+ab (b
2+b4+b6+tz)+as (bx+ba+bt
)+3m (ba+bs)+23 (b5+b7)+a
2(ba+bb)+3. (b++bt)+aub2)
x2+ (at(b2+b6+b7)+86 (b3+
bt)+a5ba+aab5+a:+bs+a2bt+
a+bo+aob+) x+a7(b++b, +b6+
bt)+86 (b2+b6+b7)+a5(b3+b
7)+aaba+a3b5+a2ha+a+bt+ao
b.

・・・・・・イ旬 が得られる。・・・・・・Ishun is obtained.

この第(11)式のx?、  x6.・・・−・・各項
の演算回路を用意し、各回路でαi.αjより各項の値
を算出させれば、積αi+jが直ちに得られる。
x in this equation (11)? , x6. ...--Prepare an arithmetic circuit for each term, and each circuit calculates αi. By calculating the value of each term from αj, the product αi+j can be immediately obtained.

ガロア体の元がCF(2)1.−でm は任意の整数、の元である場合も同様 で、それを多項式表現し、桁あふれの 項は対応する下位桁で旧め、(11)式相当の式を得て
それにより演算回路を構 成すればよい。
The source of the Galois field is CF(2)1. The same goes for the case where m is an element of - and m is an arbitrary integer.It is expressed as a polynomial, the terms with overflow are obsolete by the corresponding lower digits, an expression equivalent to equation (11) is obtained, and then the arithmetic circuit All you have to do is configure.

〔作用〕[Effect]

このようにすると乗数、被乗数の各桁を該当演算回路へ
入力するだけで乗算結果が得られ、極めて高速な乗算が
可能になる。
In this way, the multiplication result can be obtained simply by inputting each digit of the multiplier and the multiplicand to the corresponding arithmetic circuit, and extremely high-speed multiplication becomes possible.

〔実施例〕〔Example〕

第1図に0F(2)の元の乗算回路を、そして第3図に
その一部のx7  の項の乗算回路を示す。
FIG. 1 shows an original multiplication circuit for 0F(2), and FIG. 3 shows a multiplication circuit for a part of the x7 term.

第1図で10.12は乗数αi 、被乗数αjの各桁の
2値データをセットされるレジスタ、27゜26、・・
・・・・20はx71 X’ l・・・・・・xo の
項の演算回路、14はこれらの演算回路の演算結果を格
納されるレジスタである。(11)式によればx7の項
はat (bo+b4+b5+bs)+aa(b++b
5+ba+bt) +−・・・・+a(1b7であるか
ら第3図のように構成すればx7  の項の演算を行な
うことができる。
In Fig. 1, 10.12 is a register in which the binary data of each digit of the multiplier αi and the multiplicand αj is set, 27°26,...
. . . 20 is an arithmetic circuit for the term x71 X′ l . According to equation (11), the term x7 is at (bo+b4+b5+bs)+aa(b++b
5+ba+bt) +-...+a (1b7, so if it is constructed as shown in FIG. 3, the term x7 can be calculated.

この第3図で31〜34は排他オアゲートであり、ゲー
ト31はbg、ba、bs、baを入力され、b o 
+b a +b 5+b sを出力する(ガロア体の元
の加算は排他オア論理とおなし)。またゲート32はb
+、bs、b6.b7を入力され、b 1 +bs+b
s+btを出力する。以下これに準する。41〜48は
アントゲ−1・であり、ゲート41はatとゲート31
の出力を入力され、at(bo+ba+bs+bb)を
出力する。42゜43、・・・・・・もこれに準じ、従
って排他オアゲート51からは(11)式のX? の項
が出力される。
In FIG. 3, 31 to 34 are exclusive OR gates, and gate 31 receives inputs bg, ba, bs, and ba, and b o
+b a +b 5+b s is output (addition of Galois field elements is treated as exclusive OR logic). Also, the gate 32 is b
+, bs, b6. b7 is input, b 1 +bs+b
Output s+bt. The following shall apply accordingly. 41 to 48 are ant game 1, gate 41 is at and gate 31
The output of is input, and at(bo+ba+bs+bb) is output. 42゜43, . . . also follow this, and therefore, from the exclusive OR gate 51, The term is output.

(11)式のx’  、  x5.・・・・・・の項に
ついても第3図と同様に回路を構成することができ、結
局第1図の回路で(11)式の演算が可能である。
x' in equation (11), x5. Regarding the terms .

本発明では第2図に示すように、第1図の如きガロア体
乗算回路62を、データバス66を介してコントローラ
(CPU)64へ接続し、データαi、αjをコントロ
ーラ64によりガロア体乗算回路62のレジスタ10.
12にセットし、レジスタ14の乗算結果を取込むだけ
でよく、これを繰り返すことにより多数の乗算を高速で
実行することができる。
In the present invention, as shown in FIG. 2, a Galois field multiplication circuit 62 as shown in FIG. 62 registers 10.
It is only necessary to set the value to 12 and take in the multiplication result of the register 14, and by repeating this, a large number of multiplications can be executed at high speed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ROM方式のよう
に一旦元を対数表現に変換することなく、直接乗算を行
なうので、■高速乗算が可能となる、■従ってディジタ
ル通信、ディジタル信号処理等がリアルタイムで行なえ
る領域が広がる、■プログラムステップ数が少なくて済
むので、複雑な演算やシステムの多機能化に対応可能と
なる、等の効果が得られる。本発明はDAT (ディジ
タルオーディオテープ)、CD(コンパクト ディスク
)、ディジタル通信システムを始め、リードソロモン符
号使用機器などガロア休演算を必要とする機器に適用し
て有効である。
As explained above, according to the present invention, direct multiplication is performed without first converting the elements into logarithmic representation as in the ROM method, so that 1) high-speed multiplication is possible; 2) therefore, digital communication, digital signal processing, etc. The following effects can be obtained: (1) The number of program steps is reduced, making it possible to handle complex calculations and increase the functionality of the system. The present invention is effective when applied to equipment requiring Galois rest arithmetic, such as DAT (digital audio tape), CD (compact disc), digital communication systems, and equipment using Reed-Solomon codes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は全
体の構成を示すブロック図、第3図は第1図の一部の詳
細を示す回路図、第4図は従来例を示すブロック図、第
5図は演算要領を示す流れ図である。 第1図で、10は第1のレジスタ、12は第2のレジス
タ、27,26.・・・・・・20は各項の演算回路、
14は第3のレジスタである。 第4図 第5図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing the overall configuration, Fig. 3 is a circuit diagram showing some details of Fig. 1, and Fig. 4 is a conventional example. The block diagram shown in FIG. 5 is a flowchart showing the operation procedure. In FIG. 1, 10 is a first register, 12 is a second register, 27, 26 . ...20 is an arithmetic circuit for each term,
14 is a third register. Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 乗数α^iをセットされる第1のレジスタ(10)と、 被乗数α^jをセットされる第2のレジスタ(12)と
、 乗数α^i及び被乗数α^jを多項式表現し、その多項
式の形で乗算し、桁あふれの項は対応する下位の桁に纏
め、こうして得た乗算結果の各項を出力するゲート群を
有し、前記第1、第2のレジスタの乗数、被乗数の各桁
のデータを入力される、乗算結果の各項(x^7、x^
6、・・・・・・x^0)別演算回路(27、26、・
・・・・・20)と、これらの演算回路の出力をセット
される各桁位置を持ち、乗算結果を出力する第3のレジ
スタ(14)、とを備えることを特徴とするガロア体乗
算回路。
[Claims] A first register (10) to which a multiplier α^i is set; a second register (12) to which a multiplicand α^j is set; a multiplier α^i and a multiplicand α^j It has a group of gates that express polynomials, multiply them in the form of the polynomials, combine overflow terms into corresponding lower digits, and output each term of the multiplication results obtained in this way, and the first and second registers Each term of the multiplication result (x^7, x^
6,...x^0) Separate calculation circuit (27, 26,...
...20), and a third register (14) that has each digit position to which the output of these arithmetic circuits is set and outputs the multiplication result. .
JP61099110A 1986-04-28 1986-04-28 Galois field multiplication circuit Pending JPS62254525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099110A JPS62254525A (en) 1986-04-28 1986-04-28 Galois field multiplication circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099110A JPS62254525A (en) 1986-04-28 1986-04-28 Galois field multiplication circuit

Publications (1)

Publication Number Publication Date
JPS62254525A true JPS62254525A (en) 1987-11-06

Family

ID=14238684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099110A Pending JPS62254525A (en) 1986-04-28 1986-04-28 Galois field multiplication circuit

Country Status (1)

Country Link
JP (1) JPS62254525A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386925A (en) * 1986-09-30 1988-04-18 Canon Inc Galois body multiplying circuit
JPH06314979A (en) * 1993-04-28 1994-11-08 Nec Corp Galois field multiplier circuit
US7178091B1 (en) * 2001-07-10 2007-02-13 National Semiconductor Corporation Reed solomon encoder
KR20140034678A (en) * 2012-09-12 2014-03-20 삼성전자주식회사 Error check and correction circuit and semiconductor memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386925A (en) * 1986-09-30 1988-04-18 Canon Inc Galois body multiplying circuit
JPH06314979A (en) * 1993-04-28 1994-11-08 Nec Corp Galois field multiplier circuit
US7178091B1 (en) * 2001-07-10 2007-02-13 National Semiconductor Corporation Reed solomon encoder
KR20140034678A (en) * 2012-09-12 2014-03-20 삼성전자주식회사 Error check and correction circuit and semiconductor memory

Similar Documents

Publication Publication Date Title
JP2557190B2 (en) Optimization system for argument reduction
Arnold et al. Redundant logarithmic arithmetic
JPH02196328A (en) Floating point computing apparatus
KR19980701803A (en) Log / Inverse Log Converter, Calculation Device and Log Value Generation Method
Prabhu et al. A delay efficient vedic multiplier
JPS62254525A (en) Galois field multiplication circuit
Kuninobu et al. High speed MOS multiplier and divider using redundant binary representation and their implementation in a microprocessor
JP3850512B2 (en) Reed-Solomon decoder
JPS6024650A (en) Operating circuit on galois field
JPH03192429A (en) Square root arithmetic unit
Wang et al. A high-speed residue-to-binary converter and a scheme for its VLSI implementation
KR0147588B1 (en) Galois field device
JPH0371331A (en) Multiplier
Natarajan et al. Arithmetic Operations and Circuits
Lakshmi et al. Low latency VLSI architecture for the radix-4 CORDIC algorithm
Prasanna et al. Efficient Square Root Computation–An Analysis
Ahari Computer Arithmetic in modern computers and usages of Computer Arithmetic
JPS63254525A (en) Dividing device
MURTHY et al. Designing of Low Power and High Speed Modified Carry Select Adder for 16-Bit Vedic Multiplier
Jain et al. CORDIC on a configurable serial architecture for biomedical signal processing applications
Farivar et al. A cordic-based processor extension for scalar and vector processing
JP4484002B2 (en) Arithmetic processor
Lloris Ruiz et al. Basic Arithmetic Circuits
Lloris Ruiz et al. Number Systems
Srikanthan et al. Optimizing scaling factor computations in flat CORDIC