JPS62252972A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62252972A
JPS62252972A JP9650286A JP9650286A JPS62252972A JP S62252972 A JPS62252972 A JP S62252972A JP 9650286 A JP9650286 A JP 9650286A JP 9650286 A JP9650286 A JP 9650286A JP S62252972 A JPS62252972 A JP S62252972A
Authority
JP
Japan
Prior art keywords
resistor
temperature coefficient
type
field effect
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9650286A
Other languages
Japanese (ja)
Inventor
Hiroyuki Miyama
深山 博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP9650286A priority Critical patent/JPS62252972A/en
Publication of JPS62252972A publication Critical patent/JPS62252972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve breakdown strength against noise pulses, in a semiconductor device having a series resistor at the input or output terminal of an MISFET, by constituting the resistor with a resistor having a positive temperature coefficient. CONSTITUTION:A resistor 10, which is constituted by a polycrystalline silicon film, is formed in series with a gate electrode 9 of an MIS type FET. The doping concentration of the polycrystalline silicon film constituting the resistor 10 is selected so that the temperature coefficient of the value of electric resistance is positive. The resistor 10 acts to decrease the peak value of the high voltage pulses of noises, which enter from the outside. Since the resistance value has the positive temperature coefficient during this action, current concentration due to the pulses is not generated. Therefore, strength against thermal breakdown becomes high. Therefore, the breakdown strength against the input noise pulse voltage can be improved to a large extent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型電界効果トランジスタの保護回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protection circuit for MIS type field effect transistors.

〔従来の技術〕[Conventional technology]

従来のMIS型電界効果トランジスタの断面構造の概略
図を第2図に示す。第2図にお(・て、41はP型(或
はN型)半導体基板、42及び46は半導体基板41の
一部に不純物の拡散層℃・はイオン注入により形成され
たN型(或はPa)の拡散層により形成されるソース4
2及びドレイン46.44はこれらのソース42及びド
レイン43に挾まれた半導体基板表面部分に形成される
チャネル領域、45はこのチャネル領域44(7)上に
形成されたゲート絶縁膜、46は更にこのゲート絶縁膜
45の上にアルミニウム等の金属膜により形成されたゲ
ート電極である。このゲート電極46はMIS型電界効
果トランジスタの入力端子であるので、この端子は同一
半導体基板に作られた他のMIS型電界効果トランジス
タの出力端子或はこれらのMIS型電界効果トランジス
タにより構成されている半導体集積回路の入力端子に接
続される。半導体集積回路の入力端子に接続されるMI
S型電界効果トランジスタのゲート電極46には組み立
て作業中に外部から静電気等によるパルス状の高電圧が
印加されることがあるが、第2図に示されている構造図
から明らかなようにこの高電圧はゲート絶縁膜45に1
接印加されるためこのゲート絶縁膜45が往々にして絶
縁破壊を起こし、又出力端子にこの高電圧が印加された
場合はドレイン46或はソース42のPN接合部の破壊
を引き起こし、何れの場合も半導体集積回路の永久的な
破壊につながる。
FIG. 2 shows a schematic diagram of the cross-sectional structure of a conventional MIS field effect transistor. In FIG. 2, 41 is a P-type (or N-type) semiconductor substrate, and 42 and 46 are impurity diffusion layers formed in a part of the semiconductor substrate 41 by ion implantation. is a source 4 formed by a diffusion layer of Pa)
2 and drain 46, 44 are channel regions formed on the surface of the semiconductor substrate sandwiched between these source 42 and drain 43, 45 is a gate insulating film formed on this channel region 44 (7), and 46 is a further A gate electrode is formed on this gate insulating film 45 using a metal film such as aluminum. Since this gate electrode 46 is an input terminal of the MIS type field effect transistor, this terminal is an output terminal of another MIS type field effect transistor made on the same semiconductor substrate or is configured by these MIS type field effect transistors. Connected to the input terminal of the semiconductor integrated circuit. MI connected to the input terminal of the semiconductor integrated circuit
A pulsed high voltage due to static electricity or the like may be applied from the outside to the gate electrode 46 of the S-type field effect transistor during assembly work, but as is clear from the structural diagram shown in FIG. The high voltage is applied to the gate insulating film 45.
Since a voltage is applied to the gate insulating film 45, dielectric breakdown often occurs in the gate insulating film 45. Also, if this high voltage is applied to the output terminal, the PN junction of the drain 46 or the source 42 will be destroyed. can also lead to permanent destruction of semiconductor integrated circuits.

このため通常半導体集積回路の入出力端子にはこれらの
外部からの高電圧から内部のMIS型電界効果トランジ
スタを保護するために保護回路が設けられる。この保護
回路の動作原理を説明するためにその等価回路を第3図
に示す。
For this reason, a protection circuit is usually provided at the input/output terminals of a semiconductor integrated circuit in order to protect the internal MIS type field effect transistors from these external high voltages. In order to explain the operating principle of this protection circuit, an equivalent circuit thereof is shown in FIG.

第3図において半導体集積回路の正の電源VDD及び負
の電源VSSとMIS型電界効果トランジスタのゲート
電極65の間にダイオード66及び34がそれぞれ逆方
向接続されて挿入され、又MIs型電界効果トランジス
タのゲート電極35には直列に抵抗62が接続される。
In FIG. 3, diodes 66 and 34 are inserted in reverse connection between the positive power supply VDD and negative power supply VSS of the semiconductor integrated circuit and the gate electrode 65 of the MIS field effect transistor, and the MIS field effect transistor A resistor 62 is connected in series to the gate electrode 35 .

このダイオード36及び64は半導体集積回路の入力端
子61に高電圧が印加された時にその順方向特性により
この高電圧を正の電源VDD或は負の電源VSSへ短絡
させる動作をする。
When a high voltage is applied to the input terminal 61 of the semiconductor integrated circuit, the diodes 36 and 64 operate to short-circuit the high voltage to the positive power source VDD or the negative power source VSS due to their forward characteristics.

又ゲート電極65に直列に接続された抵抗32はダイオ
ード66及び64の接合容量と積分回路を構成し、外部
からのパルス状の高電圧の尖頭値を鈍らせる作用をする
Further, the resistor 32 connected in series with the gate electrode 65 constitutes an integrating circuit with the junction capacitance of the diodes 66 and 64, and functions to blunt the peak value of the externally applied pulse-like high voltage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の保護回路は抵抗62には外部からの
高電圧が印加された時に瞬間的に大電流が流れるが、抵
抗32が負の温度係数を有するので抵抗62の一部に一
度電流集中が発生するとこの電流集中部分の温度が他の
部分より上昇し、この集中部分の抵抗は他の部分より低
くなるため、この電流集中部分に更に電流が集中しこれ
が温度を更に上昇させ、より一層の電流集中を引き起こ
す。そしてこれが又次の段階の温度上昇をもたらし、次
の段階の電流集中を引き起こす。この様に熱的に正の帰
還がかかり最終的に抵抗62の熱破壊につながると言う
欠点があった。
However, in the conventional protection circuit, a large current momentarily flows through the resistor 62 when a high voltage is applied from the outside, but since the resistor 32 has a negative temperature coefficient, current concentration occurs once in a part of the resistor 62. Then, the temperature of this current concentrated part rises more than other parts, and the resistance of this concentrated part becomes lower than other parts, so the current is further concentrated in this current concentrated part, which further increases the temperature and causes even more current. cause concentration. This also brings about the next stage of temperature rise and the next stage of current concentration. In this way, there is a drawback that a positive thermal feedback is generated, which ultimately leads to thermal destruction of the resistor 62.

本発明の目的はかかる欠点を除去し、MIS型電界効果
トランジスタの入力端子或は出力端子に直列に接続され
る抵抗の熱破壊強度が大きい半導体装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks and to provide a semiconductor device in which a resistor connected in series to an input terminal or an output terminal of an MIS type field effect transistor has a high thermal breakdown strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に依ればMIS型電界効果トランジスタの入力端
子或は出力端子に直列に接続される抵抗を正の温度係数
を有する抵抗により構成するものである。
According to the present invention, the resistor connected in series to the input terminal or output terminal of the MIS field effect transistor is constituted by a resistor having a positive temperature coefficient.

〔実施例〕〔Example〕

次に本発明の実施例を工程順に図面を参照して説明する
。第1図(a)に示すようにN型半導体基板1に熱酸化
等の方法によりシリコン酸化膜2を5000〜xooo
oAの厚さに形成し、次に第1図(b)に示すようにシ
リコン酸化膜2にフォトエツチングにより開口部6を設
け、この開口部6からP型の不純物を拡散してMIS型
電界効果トランジスタのゲート電極と負の電源VSSの
間に接続されるダイオードのP型領域を構成するP型の
拡散層4を形成する。
Next, embodiments of the present invention will be described in order of steps with reference to the drawings. As shown in FIG. 1(a), a silicon oxide film 2 with a thickness of 5,000 to xooo is formed on an N-type semiconductor substrate 1 by a method such as thermal oxidation.
Next, as shown in FIG. 1(b), an opening 6 is formed in the silicon oxide film 2 by photoetching, and P-type impurities are diffused through this opening 6 to create a MIS type electric field. A P-type diffusion layer 4 constituting a P-type region of a diode connected between the gate electrode of the effect transistor and the negative power supply VSS is formed.

次に第1図(C)に示すようにシリコン酸化膜2を全て
除去し、再び熱酸化等の方法によりシリコン酸化膜5を
5000〜tooooxの厚さに形成し、フォトエツチ
ングにより所望の部分に開口部6を設け、シリコン面を
露出し、この露出部分に再び熱酸化等の方法によりシリ
コン酸化膜7を約500Aの厚さに形成し、次にシリコ
ン酸化膜5及び7の上に気相成長法等により多結晶シリ
コン膜8を半導体基板1の全面に形成する。
Next, as shown in FIG. 1(C), the silicon oxide film 2 is completely removed, and a silicon oxide film 5 is again formed to a thickness of 5000 to 5000 mm by a method such as thermal oxidation. An opening 6 is provided to expose the silicon surface, and a silicon oxide film 7 is formed on the exposed portion to a thickness of approximately 500A by thermal oxidation or the like. A polycrystalline silicon film 8 is formed over the entire surface of the semiconductor substrate 1 by a growth method or the like.

次に第1図(d)に示されるようにこの多結晶シリコン
膜8をフォトエツチングにより所望の形状にエツチング
し、MIS型電界効果トランジスタのゲート電極9及び
このゲート電極に直列に挿入される多結晶シリコン膜に
より構成される抵抗10を形成する。
Next, as shown in FIG. 1(d), this polycrystalline silicon film 8 is etched into a desired shape by photo-etching, and the gate electrode 9 of the MIS type field effect transistor and the polycrystalline silicon film 8 inserted in series with the gate electrode are etched. A resistor 10 made of a crystalline silicon film is formed.

この時ゲート電極となる多結晶シリコン膜と抵抗を構成
する多結晶シリコン膜の不純物のドーピング濃度を各々
変えて、抵抗を構成する多結晶シリコン膜については電
気抵抗値の温度係数が正になるような濃度を選ぶ。
At this time, the doping concentration of impurities in the polycrystalline silicon film that will become the gate electrode and the polycrystalline silicon film that will make up the resistor will be changed so that the temperature coefficient of the electrical resistance value will be positive for the polycrystalline silicon film that will make up the resistor. Choose a suitable concentration.

次に酸化膜5.7或はフォトレジスト膜等をマスクにし
てP型不純物を所望の部分に拡散して、MIS型電界効
果トランジスタのソース及びドレインを形成するP型の
拡散層11及び12、MIS型電界効果トランジスタの
ゲート電極9と正の電源VDDの間に接続されるダイオ
ードのP型頭域を形成するP型の拡散層13、P型の拡
散層4とVSSとの電気的コンタクトをとるためのP型
の拡散層15を各々形成し、続けてN型不純物をP型不
純物の場合と同様な方法で所望の部分に拡散して、MI
S型電界効果トランジスタのゲート電極9と負の電源V
SSO間に接続されるもう一方のダイオードのN型領域
を形成するN型の拡散層14、N型の半導体基板1とV
DDとの電気的コンタクトをとるためのN型の拡散層1
6を各々形成する。
Next, using an oxide film 5.7 or a photoresist film as a mask, P-type impurities are diffused into desired portions to form P-type diffusion layers 11 and 12, which form the source and drain of the MIS field effect transistor; A P-type diffusion layer 13 forming a P-type head region of the diode connected between the gate electrode 9 of the MIS field effect transistor and the positive power supply VDD, and an electrical contact between the P-type diffusion layer 4 and VSS. A P-type diffusion layer 15 is formed for each MI layer, and then an N-type impurity is diffused into a desired portion in the same manner as the P-type impurity.
The gate electrode 9 of the S-type field effect transistor and the negative power supply V
An N-type diffusion layer 14 forming an N-type region of the other diode connected between the SSO, an N-type semiconductor substrate 1 and a V
N-type diffusion layer 1 for making electrical contact with DD
6 each.

次に第1図(e)に示されるように層間絶縁膜17とな
るリンガラス膜を気相成長法等により半導体基板1の全
面に形成し、この眉間絶縁膜17と酸化膜7の所望の部
分にフォトエツチングによりコンタクトホール18を穿
孔し、次に眉間絶縁膜17の上に全面にアルミニウム膜
等の導電性の金属膜を形成し、次に不要な部分をフォト
エツチングでエツチング除去してMIS型電界効果トラ
ンジスタのソース電極19、ドレイン電極21、ゲート
電極配線20、抵抗10の端子配線22.23、正の電
源VDD及び負の電源VssとMIS型電界効果トラン
ジスタのゲート電極90間にそれぞれ逆方向接続されて
挿入される2つのダイオードを接続する配線24、負の
電源VSSの電極25、正の電源VDDの電極26を各
々形成する。
Next, as shown in FIG. 1(e), a phosphorous glass film which will become the interlayer insulating film 17 is formed on the entire surface of the semiconductor substrate 1 by vapor phase growth or the like, and the desired thickness of the glabellar insulating film 17 and the oxide film 7 is formed. A contact hole 18 is formed in the area by photo-etching, then a conductive metal film such as an aluminum film is formed on the entire surface of the glabella insulating film 17, and then unnecessary parts are removed by photo-etching to form an MIS. The source electrode 19, the drain electrode 21, the gate electrode wiring 20, the terminal wiring 22, 23 of the resistor 10, the positive power supply VDD and the negative power supply Vss of the MIS field effect transistor, and the gate electrode 90 of the MIS field effect transistor are connected in opposite directions, respectively. A wiring 24 connecting the two diodes inserted in a directional connection, an electrode 25 for the negative power source VSS, and an electrode 26 for the positive power source VDD are formed, respectively.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に依ればMIS型電界効果トランジ
スタのゲート電極9に直列に接続されて半導体集積回路
の入出力端子から印加される雑音高電圧パルスの尖頭値
を鈍らせる抵抗10はその抵抗値が正の温度係数を有す
るため、このパルス電流による電流集中が発生せず電流
が均一に分布するので従来のものと比べて熱的な破壊強
度が太き(、従って入力雑音パルス電圧に対する耐圧を
大きく向上させることが出来る。
As described above, according to the present invention, the resistor 10 is connected in series to the gate electrode 9 of the MIS field effect transistor and blunts the peak value of the noise high voltage pulse applied from the input/output terminal of the semiconductor integrated circuit. Since the resistance value has a positive temperature coefficient, current concentration due to this pulse current does not occur and the current is distributed uniformly, so the thermal breakdown strength is greater than that of the conventional one (therefore, the input noise pulse voltage The withstand voltage can be greatly improved.

尚実施例に於ては半導体基板をN型としであるがP型の
半導体基板を用いても同様な効果が得られるのは言うま
でもない。
In the embodiment, the semiconductor substrate is of N type, but it goes without saying that the same effect can be obtained even if a P type semiconductor substrate is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の導体装置の製造工程を
説明する概略断面図、第2図はMIS型電界効果トラン
ジスタの構造を説明する概略断面図、第3図は保護回路
の動作を説明する等価回路図である。 1・・・・・・半導体基板。 (C) 1                 4、P型の私4
λ智第−X閃 (d) (e) 第2図 第3図
1(a) to (e) are schematic cross-sectional views explaining the manufacturing process of the conductor device of the present invention, FIG. 2 is a schematic cross-sectional view explaining the structure of an MIS field effect transistor, and FIG. 3 is a protection circuit. FIG. 2 is an equivalent circuit diagram illustrating the operation of FIG. 1... Semiconductor substrate. (C) 1 4, I am type P 4
λChi-X flash (d) (e) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 基板上に設けられた少なくとも1個の金属−絶縁物−半
導体(以下MISと記す)型電界効果トランジスタと該
トランジスタの入力端子或は出力端子に直列に接続され
る少なくとも1個の抵抗を有する半導体装置において、
前記抵抗を正の温度係数を持つ抵抗により構成したこと
を特徴とする半導体装置。
A semiconductor having at least one metal-insulator-semiconductor (hereinafter referred to as MIS) type field effect transistor provided on a substrate and at least one resistor connected in series to the input terminal or output terminal of the transistor. In the device,
A semiconductor device characterized in that the resistor is constituted by a resistor having a positive temperature coefficient.
JP9650286A 1986-04-25 1986-04-25 Semiconductor device Pending JPS62252972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9650286A JPS62252972A (en) 1986-04-25 1986-04-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9650286A JPS62252972A (en) 1986-04-25 1986-04-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62252972A true JPS62252972A (en) 1987-11-04

Family

ID=14166880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9650286A Pending JPS62252972A (en) 1986-04-25 1986-04-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62252972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177591A (en) * 2014-03-13 2015-10-05 富士電機株式会社 Semiconductor device and semiconductor system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177591A (en) * 2014-03-13 2015-10-05 富士電機株式会社 Semiconductor device and semiconductor system
US11070127B2 (en) 2014-03-13 2021-07-20 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US6060750A (en) Semiconductor device having SOI-MOSFET
KR100208632B1 (en) Semiconductor integrated circuit and method of fabricating it
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
US4375717A (en) Process for producing a field-effect transistor
JPH07130963A (en) Monolithic integrated circuit and protective device
EP0625797B1 (en) Integrated structure current sensing resistor for power MOS devices, particularly for overload self-protected power MOS devices
JPS6119164A (en) Supplementary integrated circuit and method of producing same
EP0381139A2 (en) Semiconductor integrated circuit and method of manufacture thereof
JPS63244874A (en) Input protective circuit
JPH06350031A (en) Protective circuit of integrated structure
JPS62252972A (en) Semiconductor device
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
JP3932665B2 (en) Semiconductor device
EP0281032B1 (en) Semiconductor device comprising a field effect transistor
KR970009032B1 (en) Power semiconductor and its manufacturing method
KR100192966B1 (en) Mos control diode and manufacturing method thereof
KR100800252B1 (en) Method of manufacturing diode using cmos process
JP2743814B2 (en) Semiconductor device
JP2870450B2 (en) Semiconductor integrated circuit device
KR0145119B1 (en) Darlington connected semiconductor device and manufacturing method thereof
JPS6060753A (en) Semiconductor device
JP2546179B2 (en) Semiconductor device
KR0131369B1 (en) Manufacturing method for power semiconductor device
KR100332115B1 (en) Semiconductor power device and fabricating method thereof
JPS6237822B2 (en)