JPS62252904A - Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same - Google Patents

Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same

Info

Publication number
JPS62252904A
JPS62252904A JP61097139A JP9713986A JPS62252904A JP S62252904 A JPS62252904 A JP S62252904A JP 61097139 A JP61097139 A JP 61097139A JP 9713986 A JP9713986 A JP 9713986A JP S62252904 A JPS62252904 A JP S62252904A
Authority
JP
Japan
Prior art keywords
parts
mol parts
range
temperature
voltage nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61097139A
Other languages
Japanese (ja)
Inventor
池辺 庄一
徳次 西野
佐土原 一見
中松 勝利
藤村 正紀
多木 宏光
佐藤 紀哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61097139A priority Critical patent/JPS62252904A/en
Publication of JPS62252904A publication Critical patent/JPS62252904A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は5r(j z)CaxTi05を主成分とする
、コンデンサとバリスタの両機能を有する電圧非直線性
抵抗体磁器組成物及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a voltage nonlinear resistor ceramic composition having both the functions of a capacitor and a varistor, and a method for manufacturing the same, which is mainly composed of 5r(j z)CaxTi05.

従来の技術 電子機器において、機器の内外部より伝播する異常電圧
やノイズ等によるトランジスタや集積回路等の破壊誤動
作を防止するため、各種のコンデンサやバリスタ等が使
用されているが、部品ではこれらノイズやサージパルス
等の吸収 il/Iτ去が不完全である。近年登場した
容量性バリスタは、コンデンサとバリスタの両機能を有
するもので、ノイズやサージパルス等の吸収、除去、又
はバイパスとしての機能を単品で行うことができる。
Conventional technology In electronic devices, various capacitors and varistors are used to prevent malfunctions of transistors and integrated circuits due to abnormal voltages and noise propagated from inside and outside the device. The absorption of il/Iτ from pulses and surge pulses is incomplete. Capacitive varistors, which have appeared in recent years, have both the functions of a capacitor and a varistor, and are capable of absorbing and removing noise and surge pulses, or acting as a bypass.

発明が解決しようとする問題点 しかし、従来のSr Ti 05材に半導体化元素(N
d2O3 、 Ta2O3 、 CeO2等)ならびに
粒界に析出する元素Bi、Cu、Mn等)を添加して作
製したものは、サージ耐量が10〜60人と小さいだめ
、信頼性が乏しく、利用範囲も限定されたものであった
。また、電子機器の高性能、多機能化に伴い、小型大容
量でなおかつサージ耐量の大きな、信頼性の高い容量性
バリスタが要求されている。
Problems to be Solved by the Invention However, the semiconductor element (N) is added to the conventional SrTi05 material.
Products made by adding elements such as d2O3, Ta2O3, CeO2) and elements precipitated at grain boundaries (Bi, Cu, Mn, etc.) have a small surge resistance of 10 to 60 people, have poor reliability, and have a limited range of use. It was something that was done. Further, as electronic equipment becomes more sophisticated and multifunctional, there is a demand for highly reliable capacitive varistors that are small in size, have large capacity, and have high surge resistance.

問題点を解決するだめの手段 本発明にかかわる磁器組成物は、Sr(+−x)””T
iO3(但しXは0.014X l−(J 5の範囲)
成分が100モル部、Nb2O3、Ta2O3 、 W
O3、GeO2。
Means for Solving the Problems The porcelain composition according to the present invention has Sr(+-x)""T
iO3 (X is 0.014X l- (range of J5)
Ingredients: 100 mole parts, Nb2O3, Ta2O3, W
O3, GeO2.

”2O3 、Nd2 o3 r Y2O3 * ”2O
3 r D3’2 o5 + ”2O3及びPr60,
1  の内、少くとも1種の金属酸物成分が、0、oO
°6〜3.00モル部、Cr2O3成分が0.01〜2
800モル部、さらに、SiO2.CuO及びMn 0
2の内、少くとも1種の酸化物成分が0.01〜2.0
0モル部からなるものである。
"2O3, Nd2 o3 r Y2O3 *"2O
3 r D3'2 o5 + "2O3 and Pr60,
1, at least one metal oxide component is 0, oO
°6 to 3.00 mole parts, Cr2O3 component is 0.01 to 2
800 mole parts, and further SiO2. CuO and Mn0
2, at least one oxide component is 0.01 to 2.0
It consists of 0 mole part.

作用 本発明は以上の手段よりなるため、5r(1−x)Ca
xTi05成分の内C&がバリスタ電圧の非直線係数を
大きくするとともにサージ耐量を向上させNb2o5な
どは、5r(j z)CaxTi05を原子価制御の原
理により半導体化させるのに必要な成分であり、Cr2
O3は、結晶粒界での濃度が高く、バリスタ特性に寄与
し、さらにSiO2 、 (uo及びMnO□はバリス
タ電圧の非直線係数を改善する。
Effect Since the present invention consists of the above means, 5r(1-x)Ca
Of the xTi05 components, C& increases the nonlinear coefficient of the varistor voltage and improves the surge resistance.
O3 has a high concentration at grain boundaries and contributes to the varistor properties, and SiO2, (uo and MnO□) improve the nonlinear coefficient of the varistor voltage.

実施例 以下実施例をあげて、本発明につき詳細に説明する。Example The present invention will be described in detail below with reference to Examples.

実施例1 Sr(、z)CaxTi05のXが第1表の主成分の欄
のXの値になるように、市販の工業用原料5rCO5粉
末(純度99係以上)、CaCO3粉末(純度99チ以
上)、及びTiO2粉末(純度99%9%以上それぞれ
秤量配合し、ボールミルで20時間(、i+’5合した
。これを乾燥した後、この粉末を1150℃の温度で2
時間仮焼した。その後ボールミルで湿式粉砕した。この
ようにして得られた5r(1−2)CazT105粉末
100モル部に対して、市販の試薬特級(純度99.9
%以上) Nb2O3、Ta2O,、、WO3。
Example 1 Commercially available industrial raw materials 5rCO5 powder (purity of 99% or higher) and CaCO3 powder (purity of 99% or higher) were used so that the value of ), and TiO2 powder (purity of 99% or higher, 9% or higher) were weighed and blended in a ball mill for 20 hours (i+'5). After drying, this powder was heated at a temperature of 1150°C for 20 hours.
Calcined for an hour. Thereafter, it was wet-pulverized using a ball mill. To 100 mol parts of the 5r(1-2)CazT105 powder thus obtained, commercially available reagent special grade (purity 99.9
% or more) Nb2O3, Ta2O,..., WO3.

CeO2+ L2L2 ”5 + Nd2O3 r Y
2O3− ”2 o5 * D3’2O3 rGd2o
3及びPr6O11の内9、少くとも1種の金属酸化物
と、試薬特級(純度99.9%以上)Cr2O3を第1
表に示すように秤量配合し、ボールミルで20時時間式
混合した。乾燥後、5重量%のポリビニルアルコール水
溶液をバインダーとして10重量係添加混合し、32メ
ツシユバスに造粒した。
CeO2+ L2L2 ”5 + Nd2O3 r Y
2O3- "2 o5 * D3'2O3 rGd2o
3 and 9 of Pr6O11, at least one metal oxide, and reagent special grade (purity 99.9% or more) Cr2O3 as the first
The ingredients were weighed and blended as shown in the table, and mixed in a ball mill for 20 hours. After drying, 10% by weight of a 5% by weight aqueous polyvinyl alcohol solution was added and mixed as a binder, and the mixture was granulated into a 32 mesh bath.

この造粒粉末を10100o/cmの圧力で円板形に成
形した。
This granulated powder was molded into a disk shape under a pressure of 10,100 o/cm.

これらの成形体を空気中において1000℃の温度で加
熱処理した後、N2 (95容積%)+H2(6容積チ
)の還元性雰囲気中で1400℃の温度で4時間焼成し
、直径約6’ mm、厚さ約0.’7 mmの半導体磁
器を得た。次に、これを空気中で1150℃の温度で4
時間熱処理した。次にこの磁器の両面にオーミックAg
ペーストを塗布し、650℃の温度で焼付けて容量性バ
リスタを得た。
These molded bodies were heat-treated at a temperature of 1000°C in air, and then fired at a temperature of 1400°C for 4 hours in a reducing atmosphere of N2 (95% by volume) + H2 (6 volumes) to give a diameter of approximately 6'. mm, thickness approximately 0. '7 mm semiconductor porcelain was obtained. Next, this was heated in air at a temperature of 1150℃ for 4 hours.
Heat treated for hours. Next, ohmic Ag is applied to both sides of this porcelain.
The paste was applied and baked at a temperature of 650°C to obtain a capacitive varistor.

次に容量性バリスタの特性評価を行うために、静電容量
(以下Cと略す)、誘電圧接(以下tanδと略す)、
バリスタ電圧v+  +非直線係数α、及びサージ耐量
を測定し、第2表に示す結果を得た。
Next, in order to evaluate the characteristics of the capacitive varistor, the capacitance (hereinafter abbreviated as C), dielectric voltage contact (hereinafter abbreviated as tanδ),
The varistor voltage v+ + nonlinear coefficient α and surge resistance were measured, and the results shown in Table 2 were obtained.

Cおよびtanδはブリッジ回路を用い20℃。C and tan δ using a bridge circuit at 20°C.

1KHzで測定した。Measured at 1KHz.

また、バリスタ電圧v1はバリスタに1m人の電流を流
した時の電圧を測定し、非直線係数αはバリスタに1m
mムラ0m人の各電流を流した時のそれぞれの電圧v+
zvToを測定し、次式よシ求めた。
In addition, the varistor voltage v1 is measured as the voltage when a current of 1 m is passed through the varistor, and the nonlinear coefficient α is the voltage when a current of 1 m is applied to the varistor.
Each voltage v+ when each current is passed through m unevenness 0m person
zvTo was measured and calculated using the following formula.

α=1/βOg(L+o/ v4 ) また、サージ耐量は、バリスタに8×20μsの電流波
形のサージを加え、その後バリスタ電圧v1 を測定し
初期値に対して10%変化した時の最大電流値を測定し
た。
α=1/βOg(L+o/v4) In addition, the surge withstand capacity is the maximum current value when a surge with a current waveform of 8 x 20 μs is applied to the varistor, and then the varistor voltage v1 is measured and changes by 10% from the initial value. was measured.

また、寿命試験は、次に示す条件で湿空負荷寿命試験を
1000時間行い、コンデンサ特性とバリスタ特性を前
述の方法で測定した。
In addition, for the life test, a humid air load life test was conducted for 1000 hours under the following conditions, and the capacitor characteristics and varistor characteristics were measured using the method described above.

湿空負荷寿命試験条件 65±2℃、90〜95チRh、の恒温恒湿槽にてり、
C20V連続印加を行った。
Humid air load life test conditions: 65±2℃, 90-95cmRh, in a constant temperature and humidity chamber.
C20V was continuously applied.

(以 下 余 白) 第   1   表 試料番号1はSr(、z)CaxTi03のXが0.0
1未満でバリスタ特性の改善に効果がなく、試料番号1
6はXが0.5を超え、Capが34nFと低くtan
δ も3.2俤と高く、本発明の範囲外とした。
(Margin below) Table 1 Sample number 1 has Sr(,z)CaxTi03 with X of 0.0.
If it is less than 1, there is no effect on improving the varistor characteristics, and sample number 1
6 has a low tan with X exceeding 0.5 and a cap of 34nF.
δ was also as high as 3.2 k, which was outside the scope of the present invention.

また試料番号8は、Nb2O5の成分量が0.005モ
ル部未満でtanδが8.1チと高く、試料番号15は
Nb2O5の成分量が3.00モル部を超え、tanδ
が5チと高くサージ耐量も了OAと低く本発明の範囲外
とした。また試料番号2,5はCr2O5の成分量が0
.01モル部未満でサージ耐量40.00人と低く、試
料番号9はCr2O5の成分量が200モル部を超え、
tanδが3.2%と高く、サージ耐量も80Aと低く
本発明の範囲外とした。
In addition, sample number 8 has a component amount of Nb2O5 of less than 0.005 mol parts and has a high tan δ of 8.1, while sample number 15 has a component amount of Nb2O5 exceeding 3.00 mol parts and has a high tan δ of 8.1.
The surge resistance was as high as 5 cm, and the surge resistance was low as OA, which was outside the scope of the present invention. In addition, sample numbers 2 and 5 have a content of Cr2O5 of 0.
.. Sample No. 9 has a Cr2O5 component amount of over 200 mole parts, and the surge resistance is low at 40.00 mole parts.
The tan δ was high at 3.2%, and the surge resistance was low at 80 A, so it was outside the scope of the present invention.

実施例2 実施例1で示した主成分、半導体化元素、Cr2O5か
らなる組成に第3表に示すように、市販の試薬特級(純
度99.9%以上) SiO2 、 CuO、及びMn
O2の内、少くとも1種の酸化物を添加し、容量性バリ
スタを実施例1と同一方法で作成、測定した。
Example 2 In addition to the composition shown in Example 1 consisting of the main components, semiconducting elements, and Cr2O5, commercially available special grade reagents (purity of 99.9% or more) SiO2, CuO, and Mn were added as shown in Table 3.
A capacitive varistor was prepared and measured in the same manner as in Example 1 except that at least one oxide of O2 was added.

その結果を第4表に示す。The results are shown in Table 4.

試料番号7は、SiO2 、 CuO、及びMnO2の
添加の効果を調べるための比較試料である。試料番号5
3.63.73は、それぞれSiO2 、 Cu O、
MnO2の成分量が、2.00モル部を超え、tanδ
が3チ以上あり、サージ耐量も50Å以下と低く、本発
明の範囲外とした。
Sample number 7 is a comparative sample for examining the effects of adding SiO2, CuO, and MnO2. Sample number 5
3.63.73 are SiO2, CuO, and
The component amount of MnO2 exceeds 2.00 mol parts, tan δ
3 or more, and the surge resistance was low at 50 Å or less, and was therefore outside the scope of the present invention.

実施例3 実施例1における試料番号7,4,10.29、実施例
2における試料番号6!5.90の組成を用いて、実施
例1と同一方法で成形体を作成した。
Example 3 Molded bodies were created in the same manner as in Example 1 using the compositions of sample numbers 7, 4, and 10.29 in Example 1 and sample numbers 6!5.90 in Example 2.

これら成形体を空気中において、1000℃の温度で加
熱処理した後、M2(s s容積係)+H2(6容積係
)の還元性雰囲気中で第6表に示す温度で4時間焼成し
、直径約emm、厚さ約0.7 mmの半導体磁器を得
た。次にこれを空気中で第5表に示す再酸化温度で4時
間、熱処理した。次にこの磁器の両面にオーミックAg
ペーストを!で布し、550℃の温度で焼付けて容量性
バリスタを心また〇測定は、実施例1と同一方法で行な
い、その結果を第ぢ表に併せて示す。
These molded bodies were heat-treated in air at a temperature of 1000°C, and then fired for 4 hours at the temperatures shown in Table 6 in a reducing atmosphere of M2 (s s volume ratio) + H2 (6 volume ratio). A semiconductor porcelain with a thickness of about 0.7 mm and a thickness of about 0.7 mm was obtained. Next, this was heat treated in air at the reoxidation temperature shown in Table 5 for 4 hours. Next, ohmic Ag is applied to both sides of this porcelain.
Paste! The measurements were carried out in the same manner as in Example 1, and the results are also shown in Table 1.

試料番号101は雰囲気焼成温度が1300℃未満で焼
結不足となり半導体化が充分性なわれず、コンデンサ特
性、バリスタ特性共に悪く、また試料番号105は雰囲
気焼成温度が1600℃を超え、100μm以上の粗大
粒子ができ、サージ耐量が50A以下であるので本発明
の範囲外とした。
Sample No. 101 has an atmosphere firing temperature of less than 1300°C, which results in insufficient sintering, resulting in insufficient semiconductor formation and poor capacitor and varistor characteristics. Sample No. 105 has an atmosphere firing temperature of over 1600°C, resulting in insufficient sintering and poor varistor characteristics. Since coarse particles are formed and the surge resistance is 50A or less, it is excluded from the scope of the present invention.

また試料番号106は再酸化温度が800℃未満で、結
晶粒界の絶縁化が不充分で、tanδが3係以上、サー
ジ耐量が50Å以下になるので本発明の範囲外とした。
Sample No. 106 had a reoxidation temperature of less than 800° C., insufficient insulation of grain boundaries, tan δ of 3 or more, and surge resistance of 50 Å or less, so it was excluded from the scope of the present invention.

また、試料番号111は再酸化温度が1300℃を超え
、結晶粒子内部まで再酸化が進行し、サージ耐量が50
Å以下になるので本発明の範囲外とした。
In addition, sample number 111 has a reoxidation temperature exceeding 1300°C, and reoxidation progresses to the inside of the crystal grains, resulting in a surge resistance of 50°C.
Since it is less than Å, it is outside the scope of the present invention.

尚、本発明での実施例では、金属酸化物を使用したが、
最終的に金属酸化物が得られれば本発明の目的が達成さ
れるので、金属元素 H;、H、rl塩、水酸化物、硝
酸塩9シユウ酸塩を用いてもさしつかえない。
In addition, in the examples of the present invention, metal oxides were used, but
Since the object of the present invention is achieved if a metal oxide is finally obtained, it is acceptable to use metal elements H;, H, rl salts, hydroxides, nitrates, and oxalates.

発明の効果 本発明の電圧非直線性抵抗体は以上のように、S r 
(1z ) (: a X T 105 (但しXは0
.014)(≦0.05の範囲)の成分が100モル部
、Nb2O5+ T’2O3 。
Effects of the Invention As described above, the voltage nonlinear resistor of the present invention has S r
(1z) (: a X T 105 (X is 0
.. 014) (range of ≦0.05) is 100 mole parts, Nb2O5+ T'2O3.

WO3、CeO2,La2O3、Nb2O3、Y2O3
、Y2O3、Sm2O3、Dy2O3゜Gd2O3及び
Pr6O11の内、少くとも1種の金属酸化物成分がO
1○06〜:1JOOモル部、cr2o、成分が0.0
1〜2.0Qモル部、SiO2 、 CuO及びMnO
2の内、少くとも1種の酸化物成分が0.01〜2.0
0モル部からなるだめサージ耐圧が高くまだバリスタ電
圧の非直線性係数が大きくなる。
WO3, CeO2, La2O3, Nb2O3, Y2O3
, Y2O3, Sm2O3, Dy2O3°Gd2O3 and Pr6O11, at least one metal oxide component is O
1○06~: 1 JOO mole part, cr2o, component is 0.0
1-2.0Q mole parts, SiO2, CuO and MnO
2, at least one oxide component is 0.01 to 2.0
Due to the 0 molar part, the surge withstand voltage is high and the nonlinearity coefficient of the varistor voltage is large.

Claims (4)

【特許請求の範囲】[Claims] (1)Sr_(_1_−_x_)Ca_xTiO_3(
但しxは0.01≦x≦0.5の範囲)が100モル部
と、Nb_2O_5、Ta_2O_5、WO_3、Ge
O_2、La_2O_3、Nd_2O_3、Y_2O_
3、Sm_2O_3、Dy_2O_3、Gd_2O_3
及びPr_6O_1_1の内少くとも1種の金属酸化物
0.005〜3.00モル部と、Cr_2O_3が0.
01〜2.00モル部とを含む電圧非直線性抵抗体磁器
組成物。
(1) Sr_(_1_−_x_)Ca_xTiO_3(
However, x is in the range of 0.01≦x≦0.5) is 100 mol parts, and Nb_2O_5, Ta_2O_5, WO_3, Ge
O_2, La_2O_3, Nd_2O_3, Y_2O_
3, Sm_2O_3, Dy_2O_3, Gd_2O_3
and 0.005 to 3.00 mol parts of at least one metal oxide among Pr_6O_1_1, and 0.005 to 3.00 mol parts of Cr_2O_3.
01 to 2.00 mole parts of a voltage nonlinear resistor ceramic composition.
(2)Sr_(_1_−_x_)Ca_xTiO_3(
但しxは0.01≦x≦0.5の範囲)が100モル部
と、Nb_2O_5、Ta_2O_5、WO_3、Ce
O_2、La_2O_3、Nd_2O_3、Y_2O_
3、Sm_2O_3、Dy_2O_3、Gd_2O_3
及びPr_6O_1_1の内、少くとも1種の金属酸化
物0.005〜3.00モル部と、Cr_2O_3が0
.01〜2.00モル部とを含む組成物を成形体としこ
れを還元性雰囲気中において、1300〜1500℃の
範囲内の温度で焼結させ、得られた半導体磁器をさらに
酸化性雰囲気中において800〜1300℃の範囲内の
温度で加熱することを特徴とする電圧非直線性抵抗体磁
器組成物の製造方法。
(2) Sr_(_1_−_x_)Ca_xTiO_3(
However, x is in the range of 0.01≦x≦0.5) is 100 mol parts, Nb_2O_5, Ta_2O_5, WO_3, Ce
O_2, La_2O_3, Nd_2O_3, Y_2O_
3, Sm_2O_3, Dy_2O_3, Gd_2O_3
and 0.005 to 3.00 mol parts of at least one metal oxide among Pr_6O_1_1 and 0.005 to 3.00 mol parts of Cr_2O_3.
.. A composition containing 01 to 2.00 mole parts is made into a molded body, and this is sintered in a reducing atmosphere at a temperature within the range of 1300 to 1500°C, and the obtained semiconductor porcelain is further sintered in an oxidizing atmosphere. A method for producing a voltage nonlinear resistor ceramic composition, which comprises heating at a temperature within the range of 800 to 1300°C.
(3)Sr_(_1_−_x_)Ca_xTiO_3(
但しxは0.01≦x≦0.5の範囲)が100モル部
と、Nb_2O_5、Ta_2O_5、WO_3、Ce
O_2、La_2O_3、Nd_2O_3、Y_2O_
3、Sm_2O_3、Dy_2O_3、Gd_2O_3
及びPr_6O_1_1の内、少くとも1種の金属酸化
物0.005〜3.00モル部と、Cr_2O_3が0
.01〜2.00モル部と、SiO_2、CuO及びM
nO_2の内少くとも1種の酸化物0.01〜2.00
モル部を含む電圧非直線性抵抗体磁器組成物。
(3) Sr_(_1_−_x_)Ca_xTiO_3(
However, x is in the range of 0.01≦x≦0.5) is 100 mol parts, Nb_2O_5, Ta_2O_5, WO_3, Ce
O_2, La_2O_3, Nd_2O_3, Y_2O_
3, Sm_2O_3, Dy_2O_3, Gd_2O_3
and 0.005 to 3.00 mol parts of at least one metal oxide among Pr_6O_1_1 and 0.005 to 3.00 mol parts of Cr_2O_3.
.. 01 to 2.00 mole parts, SiO_2, CuO and M
At least one oxide of nO_2 0.01 to 2.00
A voltage nonlinear resistor ceramic composition comprising molar parts.
(4)Sr_(_1_−_x_)Ca_xTiO_3(
但しxは0.01≦x≦0.5の範囲)が100モル部
と、Nb_2O_5、Ta_2O_5、WO_3、Ce
O_2、La_2O_3、Nd_2O_3、Y_2O_
3、Sm_2O_3、Dy_2O_3、Gd_2O_3
及びPr_6O_1_1の内、少くとも1種の金属酸化
物0.005〜3.00モル部と、Cr_2O_3が0
.01〜2.00モル部と、SiO_2、CuO及びM
nO_2の内、少くとも1種の酸化物0.01〜2.0
0モル部とから成る組成物を成形体とし、これを還元性
雰囲気中で1300〜1500℃の範囲内の温度で焼結
させ、得られた半導体磁器を、さらに酸化性雰囲気中に
おいて800〜1300℃の範囲内の温度で加熱して再
酸化することを特徴とする電圧非直線性抵抗体磁器組成
物の製造方法。
(4) Sr_(_1_−_x_)Ca_xTiO_3(
However, x is in the range of 0.01≦x≦0.5) is 100 mol parts, Nb_2O_5, Ta_2O_5, WO_3, Ce
O_2, La_2O_3, Nd_2O_3, Y_2O_
3, Sm_2O_3, Dy_2O_3, Gd_2O_3
and 0.005 to 3.00 mol parts of at least one metal oxide among Pr_6O_1_1 and 0.005 to 3.00 mol parts of Cr_2O_3.
.. 01 to 2.00 mole parts, SiO_2, CuO and M
At least one oxide of nO_2 0.01 to 2.0
A composition consisting of 0 molar part is made into a molded body, which is sintered at a temperature within the range of 1300 to 1500°C in a reducing atmosphere, and the obtained semiconductor porcelain is further sintered at a temperature of 800 to 1300°C in an oxidizing atmosphere. 1. A method for producing a voltage nonlinear resistor ceramic composition, which comprises heating and reoxidizing at a temperature within the range of °C.
JP61097139A 1986-04-25 1986-04-25 Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same Pending JPS62252904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097139A JPS62252904A (en) 1986-04-25 1986-04-25 Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097139A JPS62252904A (en) 1986-04-25 1986-04-25 Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same

Publications (1)

Publication Number Publication Date
JPS62252904A true JPS62252904A (en) 1987-11-04

Family

ID=14184232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097139A Pending JPS62252904A (en) 1986-04-25 1986-04-25 Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same

Country Status (1)

Country Link
JP (1) JPS62252904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444003A (en) * 1987-08-12 1989-02-16 Hokuriku Elect Ind Voltage-dependent nonlinear resistance ceramic composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187906A (en) * 1981-05-14 1982-11-18 Taiyo Yuden Kk Semiconductor porcelain composition with nonlinear voltage/current characteristic and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187906A (en) * 1981-05-14 1982-11-18 Taiyo Yuden Kk Semiconductor porcelain composition with nonlinear voltage/current characteristic and method of producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444003A (en) * 1987-08-12 1989-02-16 Hokuriku Elect Ind Voltage-dependent nonlinear resistance ceramic composition

Similar Documents

Publication Publication Date Title
JPS6257245B2 (en)
JPH05314817A (en) Nonreducing dielectric ceramic composition
EP0101824B1 (en) Semiconductive ceramic materials with a voltage-dependent nonlinear resistance
JPH02123614A (en) High permittivity type porcelain composition
EP0137044B1 (en) Composition of porcelain for voltage-dependent, non-linear resistor
JPH0345559A (en) Ceramic composition having resistive element non-linear to electric voltage
JPS62252904A (en) Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JPH03201503A (en) Porcelain composition for voltage dependent nonlinear resistor
JPS6320362B2 (en)
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JPS62282413A (en) Porcelain compound for voltage nonlinear resistance unit
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JPS62252903A (en) Porcelain compound for voltage nonlinear resistance unit andmanufacture of the same
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPS62282412A (en) Porcelain compound for voltage nonlinear resistance unit
JPH0353408A (en) Dielectric porcelain composite
JPH01239704A (en) Ceramic component with high dielectric constant
JPH03237057A (en) Porcelain composition for voltage nonlinear resistor
JPH01236607A (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPS5830002A (en) Dielectric porcelain composition
JPS5919442B2 (en) Semiconductor ceramic material and its manufacturing method
JPS5814518A (en) Surface dielectric layer type semiconductor porcelain composition and method of producing same
JPS6246958A (en) Pyroelectric ceramic material