JPS6225269B2 - - Google Patents

Info

Publication number
JPS6225269B2
JPS6225269B2 JP54062992A JP6299279A JPS6225269B2 JP S6225269 B2 JPS6225269 B2 JP S6225269B2 JP 54062992 A JP54062992 A JP 54062992A JP 6299279 A JP6299279 A JP 6299279A JP S6225269 B2 JPS6225269 B2 JP S6225269B2
Authority
JP
Japan
Prior art keywords
base
collector
region
contact
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54062992A
Other languages
Japanese (ja)
Other versions
JPS55154760A (en
Inventor
Sadaji Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6299279A priority Critical patent/JPS55154760A/en
Publication of JPS55154760A publication Critical patent/JPS55154760A/en
Publication of JPS6225269B2 publication Critical patent/JPS6225269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0761Vertical bipolar transistor in combination with diodes only
    • H01L27/0766Vertical bipolar transistor in combination with diodes only with Schottky diodes only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明はシヨツトキ障壁ダイオード(以下SBD
と記す)で飽和を抑制しているトランジスタを用
いたバイポーラ型半導体集積回路に関するもので
ある。
[Detailed Description of the Invention] The present invention relates to a shot barrier diode (hereinafter referred to as SBD).
The present invention relates to a bipolar semiconductor integrated circuit using transistors that suppress saturation.

一般に論理回路を構成する集積回路は、その入
力インピーダンスが高いほど、1つの出力端子に
たくさんの入力端子をつなげるので使用に際して
都合がよい。入力インピーダンスを表わすパラメ
ータの1つに高レベル入力電流(以下IIHと記
す)がある。これは、入力電圧が高レベル時に入
力端子から流れ込む電流値で、小さいほどよい。
In general, the higher the input impedance of an integrated circuit constituting a logic circuit, the more convenient it is for use because a large number of input terminals can be connected to one output terminal. One of the parameters representing input impedance is high level input current (hereinafter referred to as I IH ). This is the current value that flows from the input terminal when the input voltage is at a high level, and the smaller the value, the better.

SBDを用いているトランジスタ・トランジスタ
論理回路(以下SBD―TTLと記す)では入力ト
ランジスタのベースとコレクタ間にSBDをつなぐ
事によりIIHを小さく抑えている。
In a transistor-transistor logic circuit using SBD (hereinafter referred to as SBD-TTL), I IH is kept small by connecting the SBD between the base and collector of the input transistor.

トランジスタ・トランジスタ論理回路では、そ
の入力トランジスタは入力信号数に応じた数のエ
ミツタを持つが、エミツタ電極相互間や、それと
ベース電極間に何本かの信号線を通したり、エミ
ツタ電極に接続する信号線をそのまま通過させた
りするために、エミツタ及びベース電極を直線状
に並べ、全体としてほそ長い形状にするのが配線
構成上都合よい。SBD―TTLの場合も同様で、
ほそ長い形状にする場合が多いが、こうすると、
ベース電極から遠い部分ではSBDの直列抵抗(R
D)が高くなりIIHが増加する。この事情を図で
説明する。
In a transistor/transistor logic circuit, the input transistor has a number of emitters corresponding to the number of input signals, but some signal lines are passed between the emitter electrodes or between them and the base electrode, or connected to the emitter electrodes. In order to allow the signal line to pass through as is, it is convenient for the wiring configuration to arrange the emitter and base electrodes in a straight line and to form a generally long shape. The same is true for SBD-TTL,
It is often made into a long shape, but if you do this,
At the part far from the base electrode, the series resistance (R
D ) becomes higher and I IH increases. This situation will be explained with a diagram.

第1図は半導体基板上に通常のプロセスで作ら
れた例で、エミツタが2つある場合である。第2
図にその断面図を示す。図中の数字は第1図、第
2図とも共通で、半導体基板1には電気的に分離
されたコレクタ領域2、ベース領域3、コレク
タ・コンタクト層4、コレクタ・コンタクト電極
5、ベース電極6、酸化膜7、エミツタ領域11
〜12、エミツタ電極21〜22、通過する信号
線31〜33が設けられている。ベース電極6は
ベース領域上ではオーム接触し、コレクタ領域上
ではシヨツトキ障壁を形成している。第2図に
は、あわせてトランジスタの各部の寄生抵抗も示
してある(R1〜R7)。第3図には、1つのエミツ
タに注目した時の等価回路を示してある。同図の
E点が入力信号線につながり、B点は片方を最高
電位に接続した抵抗(Rg)に、C点は次段のト
ランジスタのベースにつながる。Dはベース電極
のSBDを表わす。
FIG. 1 shows an example of a device made on a semiconductor substrate using a normal process, in which there are two emitters. Second
The cross-sectional view is shown in the figure. The numbers in the figure are common to both FIG. 1 and FIG. , oxide film 7, emitter region 11
12, emitter electrodes 21 and 22, and passing signal lines 31 and 33 are provided. The base electrode 6 is in ohmic contact on the base region and forms a shot barrier on the collector region. FIG. 2 also shows the parasitic resistances of each part of the transistor (R 1 to R 7 ). FIG. 3 shows an equivalent circuit when focusing on one emitter. Point E in the figure is connected to the input signal line, point B is connected to the resistor (Rg) with one end connected to the highest potential, and point C is connected to the base of the next stage transistor. D represents the SBD of the base electrode.

このトランジスタQがエミツタ11に対応する
ものとすれば第3図の各抵抗値は次のようにな
る。
If this transistor Q corresponds to the emitter 11, the respective resistance values in FIG. 3 will be as follows.

D=R1+R2B≒0 RC=R6O=R3+R4+R5 ……(1) Qがエミツタ12に対応するものとし、エミツ
タ11の入力信号も高レベルとすれば、 RD=R1+R2+R3B=R7C=R6O=R4+R5 ……(2) となる。
R D = R 1 + R 2 R B ≒ 0 R C = R 6 R O = R 3 + R 4 + R 5 ...(1) Assume that Q corresponds to emitter 12, and the input signal of emitter 11 is also at a high level. For example, R D = R 1 + R 2 + R 3 R B = R 7 R C = R 6 R O = R 4 + R 5 (2).

B点より電流Igが流れ、C点にぬけるとき、大
部分の電流はD及びRDを流れ、Qのベース・コ
レクタ接合には、DとRDの電圧の和とほぼ等し
い順方向電圧がかかる(RB,RCに流れる電流は
十分少さいのでこれによる電圧降下は無視でき
る)。この順バイアスにより、コレクタ側からベ
ースに少数担体が注入され、それがエミツタに達
する事によりIIHが流れる。
When current Ig flows from point B and passes through point C, most of the current flows through D and R D , and a forward voltage approximately equal to the sum of the voltages of D and R D appears at the base-collector junction of Q. (The current flowing through R B and R C is sufficiently small, so the voltage drop caused by this can be ignored.) Due to this forward bias, minority carriers are injected from the collector side to the base, and when they reach the emitter, I IH flows.

Qが理想トランジスタで、IgがIIHに比べ十分
少さいとみなせる場合にはIIHは次式で表わせ
る。
If Q is an ideal transistor and Ig is considered to be sufficiently smaller than I IH , I IH can be expressed by the following equation.

IH=IIH0×exp{RDIg×q/kT} ……(3) ここでIIH0はRB=RC=RD=0のときのIIH
である。IgはB点に流入する電流で、B点と最高
電位の間につながる抵抗(Rg)によつて定ま
る。qは電子の電荷、kはボルツマン定数、Tは
絶対温度である。
I IH = I IH0 × exp {R D Ig×q/kT} ...(3) Here, I IH0 is I IH when R B = R C = R D = 0
It is. Ig is the current flowing into point B, and is determined by the resistance (Rg) connected between point B and the highest potential. q is the electron charge, k is Boltzmann's constant, and T is the absolute temperature.

(1),(2)式から分るように、エミツタがベース電
極から離れているとRDが高くなり、(3)式から、
IHが増加するのが分る。現実的な例として、
R3=60Ω、Ig=1.2mAとすれば、ベース電極から
離れた側のIIHは、ベース電極に近い側のIIH
比べ17倍にもなる。
As can be seen from equations (1) and (2), R D increases when the emitter is far from the base electrode, and from equation (3),
It can be seen that I IH increases. As a practical example,
If R 3 =60Ω and Ig = 1.2 mA, I IH on the side away from the base electrode is 17 times as large as I IH on the side close to the base electrode.

本発明の目的はベース電極から離れているエミ
ツタのIIHを、配線の構成に支障なく、小さく抑
える事にある。
An object of the present invention is to suppress the I IH of the emitter located away from the base electrode to a small value without causing any problems in the wiring configuration.

本発明では、エミツタに関してベース電極の反
対側にも、もう1つのベース補助電極を設ける。
このベース補助電極は、正規のベース電極と同様
にベース領域とコレクタ領域にまたがつており、
ベース領域上ではオーム接触し、コレクタ側では
シヨツトキ障壁を形成している。
In the present invention, another base auxiliary electrode is also provided on the opposite side of the base electrode with respect to the emitter.
This base auxiliary electrode straddles the base region and collector region like a regular base electrode,
There is ohmic contact on the base region, and a shot barrier is formed on the collector side.

本発明では、このベース補助電極が、正規ベー
ス電極とも、他のどことも接続せず弧立している
事を特徴とする。ベース補助電極から一切の配線
が出ないので、これを設けても、他の配線の構成
に影響しない。
The present invention is characterized in that the base auxiliary electrode is not connected to the regular base electrode or to any other part and stands upright. Since no wiring comes out from the base auxiliary electrode, even if it is provided, it does not affect the configuration of other wiring.

次に弧立したベース補助電極を設ける事によつ
てIIHが小さくできる事を図を以つて説明する。
Next, the fact that I IH can be reduced by providing an erect base auxiliary electrode will be explained with reference to the drawings.

第4図に本発明による入力用トランジスタ(エ
ミツタは2つ)の例を示す。第5図はその断面図
で、両図中の数字は第1図、第2図の場合と同じ
内容を示すが、新たに8のベース補助電極および
寄生抵抗R8,R9が加わる。8のベース補助電極
は、ベース領域上ではオーム接触し、コレクタ領
域ではシヨツトキ障壁を形成している。第6図に
はエミツタ12に対応するトランジスタに注目し
た場合の等価回路を示す。D1は従来のSBD、D2
はベース補助電極のSBDを示す。各部の抵抗値
は、 RD1=R1+R2+R3D2=R9B=R7C=R6S=R8O=R4+R5} (4) となる。この等価回路から分るようにIgはD1
D2に分流するため、第1にD1に流れる電流が減
少するのでB点H点間の電圧が下り、第2にD2
を流れる電流ID2はRBを流れるので、G点H点
間の電圧はさらにRB×ID2だけ低くなる。しか
し、現実的にはRB≫RD1であるからID2はIgに
比べ十分小さいので、上述の第2の効果が支配的
となる。すなわち、トランジスタQのベース・コ
レクタ接合の順方向バイアスはベース補助電極が
無い場合に比べRB×ID2だけ小さくなり、その
分だけIIHを小さくする。
FIG. 4 shows an example of an input transistor (two emitters) according to the present invention. FIG. 5 is a sectional view thereof, and the numbers in both figures indicate the same content as in FIGS. 1 and 2, but a base auxiliary electrode of 8 and parasitic resistances R 8 and R 9 are newly added. The base auxiliary electrode of 8 is in ohmic contact on the base region and forms a shot barrier on the collector region. FIG. 6 shows an equivalent circuit focusing on the transistor corresponding to the emitter 12. D 1 is traditional SBD, D 2
indicates the SBD of the base auxiliary electrode. The resistance values of each part are R D1 = R 1 + R 2 + R 3 R D2 = R 9 R B = R 7 R C = R 6 R S = R 8 R O = R 4 + R 5 } (4). As you can see from this equivalent circuit, Ig is D 1 and
Since the current is shunted to D 2 , first, the current flowing to D 1 decreases, so the voltage between points B and H decreases, and second, the current flowing to D 2 decreases.
Since the current I D2 flowing through R B flows through R B, the voltage between the G point and the H point further decreases by R B ×I D2 . However, in reality, since R B >>R D1 , I D2 is sufficiently smaller than Ig, so the second effect described above becomes dominant. That is, the forward bias of the base-collector junction of the transistor Q is reduced by R B ×I D2 compared to the case without the base auxiliary electrode, and I IH is reduced by that amount.

Qが理想トランジスタであり、RB≫RD1の場
合には IIH=I′IH0 exp〔{RD1×Ig −(RB+RD1)I2}×q/kT〕 …(5) となる。I′IH0はRB≫RD1の関係を保つたままRD
=0となつた場合のIIHで、D2への分流I2は、
次式を満すような値である。
If Q is an ideal transistor and R B ≫ R D1 , then I IH = I′ IH0 exp [{R D1 ×Ig − (R B +R D1 ) I 2 }×q/kT] …(5) . I′ IH0 is R D while maintaining the relationship R B ≫ R D1 .
At I IH when 1 = 0, the shunt I 2 to D 2 is:
It is a value that satisfies the following formula.

D1(Ig−I2)+(RD1+RS)(Ig−I2) =VD2(I2)+(RB+RD2)I2 …(6) ここでVD1(Ig−I2)は電流がIg−I2のときのD1
の電圧、VD2(I2)は、電流がI2のときのD2の電圧
である。
V D1 (Ig-I 2 ) + (R D1 + R S ) (Ig-I 2 ) = V D2 (I 2 ) + (R B + R D2 ) I 2 ...(6) Here, V D1 (Ig-I 2 ) is D 1 when the current is Ig−I 2
The voltage V D2 (I 2 ) is the voltage across D 2 when the current is I 2 .

(5)式から、ベース補助電極が無い場合(I2
0)に比べ、有る場合にはIIHは、 1/exp{(RB+RD1)I2×q/kT} ……(7) 倍になる事が分る。試算のために、現実的な値と
してIg=1.2mA RD1=130Ω,RS=10Ω,RB
1400Ω,RD2=240Ω,D1とD2の逆方向飽和電流
を4×10-11Aと1×10-11Aとすれば(6)式よりI2
107μAとなり(7)式より、ベース補助電極が無い
場合に比べ約700分の1へと激減することにな
る。この例では、D2の面積をD1の4分の1にし
てあるが、このようにベース補助電極は小さくて
も効果が大きい。
From equation (5), when there is no base auxiliary electrode (I 2 =
0), when it exists, I IH is 1/exp {( RB + R D1 ) I 2 ×q/kT} ...(7) It can be seen that it becomes twice as large. For trial calculation, realistic values are Ig = 1.2mA R D1 = 130Ω, R S = 10Ω, R B =
1400Ω, R D2 = 240Ω, and the reverse saturation currents of D 1 and D 2 are 4×10 -11 A and 1×10 -11 A, then from equation (6), I 2 =
It becomes 107μA, which is a sharp decrease to about 1/700 compared to the case without the base auxiliary electrode, according to equation (7). In this example, the area of D 2 is set to one quarter of D 1 , but even if the base auxiliary electrode is small, it has a large effect.

これまでエミツタが2つの場合について説明し
てきたが、3つ以上の場合には、両端だけにエミ
ツタがある場合のIIHが共に一定値より小さくな
るようにしてあれば、その間に入れたエミツタの
IHはその一定値より小さくなる。
So far, we have explained the case where there are two emitters, but if there are three or more emitters, if I and IH are both smaller than a certain value when there are emitters at both ends, then the emitters inserted between them can be I IH becomes smaller than its constant value.

以上の説明は、複数入力のすべてが高レベルに
なつている場合についてのものであるが、いくつ
かが低レベルになつた場合にも同様な効果が得ら
れる。
The above explanation is for the case where all of the multiple inputs are at high level, but similar effects can be obtained even when some of the inputs are at low level.

次に本発明の具体例を示す。第1図に示す従来
のものと、第4図のベース補助電極のついたパタ
ーンの両方を含むSBD―TTLを通常の半導体集
積回路プロセスで作成した。ベース補助電極のな
い従来のもののIIHは室温で6μA〜20μAであ
つたのに対しベース補助電極をつけたもののIIH
は0.02μA〜0.06μAで大幅に改善された。(各
部寄生抵抗値は、現実的な数値例として示した値
に近いはずであるが、IIHの減少比が(7)式のよう
に700分の1にならず約300分の1に留まつている
のは、トランジスタの特性のうち特にベース・コ
レクタ接合部の特性が理想トランジスタと異なつ
ているためと思われる。) 本発明には以上説明したように、エミツタに関
してベース電極の反対側に弧立したベース補助電
極を設ける事により、配線の構成に影響すること
なく、高レベル入力電流IIHを大幅に減少できる
という効果がある。
Next, specific examples of the present invention will be shown. An SBD-TTL including both the conventional pattern shown in FIG. 1 and the pattern with base auxiliary electrodes shown in FIG. 4 was created using a normal semiconductor integrated circuit process. The I IH of the conventional model without the base auxiliary electrode was 6 μA to 20 μA at room temperature, while the I IH of the conventional model with the base auxiliary electrode
was significantly improved by 0.02 μA to 0.06 μA. (The parasitic resistance values of each part should be close to the values shown as realistic numerical examples, but the reduction ratio of I (This is thought to be because the characteristics of the transistor, especially the characteristics of the base-collector junction, are different from those of an ideal transistor.) As explained above, the present invention has an emitter on the opposite side of the base electrode. Providing the raised base auxiliary electrode has the effect of significantly reducing the high level input current I IH without affecting the wiring configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2エミツタ・トランジスタを示
す平面図、第2図はその断面図、第3図はその等
価回路である。第4図は本発明の2エミツタ・ト
ランジスタを示す平面図、第5図はその断面図、
第6図はその等価回路である。 1……半導体基板、2……コレクタ領域、3…
…ベース領域、4……コレクタコンタクト層、6
……ベース電極。
FIG. 1 is a plan view showing a conventional two-emitter transistor, FIG. 2 is a cross-sectional view thereof, and FIG. 3 is its equivalent circuit. FIG. 4 is a plan view showing a two-emitter transistor of the present invention, and FIG. 5 is a cross-sectional view thereof.
FIG. 6 shows its equivalent circuit. 1...Semiconductor substrate, 2...Collector region, 3...
... Base region, 4 ... Collector contact layer, 6
...Base electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 コレクタ領域上に該コレクタ領域と接続する
第1および第2のコレクタコンタクトが離間して
設けられ、ベース領域に該ベース領域と接続する
第1および第2のベースコンタクトが離間して設
けられ、該第1のベースコンタクトと第1のコレ
クタコンタクトは互いに近接しかつ絶縁膜の同一
の開口によつて露出されたベースおよびコレクタ
領域に、コレクタ領域とはシヨツトキ障壁を形成
し、ベース領域とはオーム接触する金属を被着す
ることによつて形成され、前記第2のベースコン
タクトと該第1のコレクタコンタクトも同様に互
いに近接しかつ絶縁膜の同一の開口によつて露出
されたベースおよびコレクタ領域に前記金属を被
着することによつて形成され、前記第2のベース
コンタクトおよび第2のコレクタコンタクトは孤
立していることを特徴とする半導体装置。
1 first and second collector contacts connected to the collector region are provided spaced apart on the collector region; first and second base contacts connected to the base region are provided spaced apart on the base region; The first base contact and the first collector contact are close to each other and have base and collector regions exposed by the same opening in the insulating film, forming a shot barrier with the collector region and an ohmic contact with the base region. base and collector regions formed by depositing a contacting metal, said second base contact and said first collector contact also being close to each other and exposed by the same opening in the insulating film; A semiconductor device, characterized in that the second base contact and the second collector contact are isolated.
JP6299279A 1979-05-22 1979-05-22 Semiconductor device Granted JPS55154760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6299279A JPS55154760A (en) 1979-05-22 1979-05-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6299279A JPS55154760A (en) 1979-05-22 1979-05-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS55154760A JPS55154760A (en) 1980-12-02
JPS6225269B2 true JPS6225269B2 (en) 1987-06-02

Family

ID=13216366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6299279A Granted JPS55154760A (en) 1979-05-22 1979-05-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS55154760A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762094B2 (en) * 2002-09-27 2004-07-13 Hewlett-Packard Development Company, L.P. Nanometer-scale semiconductor devices and method of making

Also Published As

Publication number Publication date
JPS55154760A (en) 1980-12-02

Similar Documents

Publication Publication Date Title
JPS63136712A (en) Differential comparator
JPS6225269B2 (en)
JP3145455B2 (en) Semiconductor integrated circuit device
US4160986A (en) Bipolar transistors having fixed gain characteristics
US4814852A (en) Controlled voltage drop diode
JPH0355875A (en) Integrated circuit with current detection
JPH0418459B2 (en)
JPS586310B2 (en) Hand tie souchi
JPS6128257B2 (en)
JP2778076B2 (en) Measuring method for transistor collector stake
JPS5855454Y2 (en) constant current circuit
JP2705301B2 (en) Constant current circuit
JPS6062149A (en) Semiconductor device
JPH0381325B2 (en)
JP2996551B2 (en) Current mirror circuit device
JPH0117170B2 (en)
JPS58159366A (en) Current mirror circuit
JPS6294974A (en) Semiconductor integrated circuit device
JPS6384157A (en) Semlconductor device
JPS58211395A (en) Bipolar ram
JPS639410B2 (en)
JPH0353804B2 (en)
JPH05315869A (en) Semiconductor integrated circuit device
JPS6119169A (en) Multi-emitter transistor
JPH06204372A (en) Power transistor