JPS6062149A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6062149A
JPS6062149A JP17019483A JP17019483A JPS6062149A JP S6062149 A JPS6062149 A JP S6062149A JP 17019483 A JP17019483 A JP 17019483A JP 17019483 A JP17019483 A JP 17019483A JP S6062149 A JPS6062149 A JP S6062149A
Authority
JP
Japan
Prior art keywords
resistance
bipolar transistor
mos
fet
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17019483A
Other languages
Japanese (ja)
Inventor
Shiyougo Kondou
近藤 松悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP17019483A priority Critical patent/JPS6062149A/en
Publication of JPS6062149A publication Critical patent/JPS6062149A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • H01L27/0716Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors in combination with vertical bipolar transistors and diodes, or capacitors, or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a single unit composite device, in which the excellent points of the two mentioned below is utilized and the defective points of them are removed, by a method wherein the collectors and the drains of a bipolar transistor and an FET are connected commonly, a base and a source are directly connected, and an emitter and a source are connected through a resistance element within a semiconductor substrate. CONSTITUTION:A bipolar transistor 2, an FET3 and a P type semiconductor resistor 4 are provided on an N type Si substrate 1, and they are connected as prescribed. Bias V0 is given between the collector C and the emitter E of the element 2, the element 3 is brought into a conductive state by adding input V2 to the gate of the element 3, and a current I1 is applied to the resistor 4. When V1 is increased, the voltage drop of the resistor 4 is increased, and an operating voltage is added to the base B of the element 2, the element 2 is brought into a conductive state, and I2 beings to flow. At this time, the ON resistance of the entire device is mainly determined by the element 2, and it has minor ON resistance characteristics. Also, as the input resistance of the device is the input resistance of the element 3 itself, it is almost infinite. Through the above- mentioned procedures, the single unit device, whereon the excellent point of the elements 2 and 3 is utilized and their defective point is removed, can be mass produced at low cost.

Description

【発明の詳細な説明】 イ、産業上の利用分野 この発明は増幅回路などに単体で使用される半導体装置
で、詳しくはバイポーラトランジスタとMOS −PU
T 、抵抗の複合タイプの半導体装置に関する。
Detailed Description of the Invention A. Field of Industrial Application This invention relates to a semiconductor device used alone in an amplifier circuit, etc.
T, relates to a resistor composite type semiconductor device.

口、従来技術 各種増幅回路の増幅素子等に単体使用されている半導体
装置にNPN型又はPNP型のバイポーラトランジスタ
と、Nチャンネル型又はPチャンネル型のMOS −F
ET (メタルオキサイドシリコン・フィールドエフェ
クトトランジスタ)があり、この両者は特性上、次の相
反する長所、短所を持ち、用途に制限を受けている。
2. Prior Art Semiconductor devices used alone as amplifier elements in various amplifier circuits include NPN or PNP bipolar transistors and N-channel or P-channel MOS-F.
There are ETs (metal oxide silicon field effect transistors), and both have the following contradictory advantages and disadvantages in their characteristics, and their applications are limited.

即ち、バイポーラトランジスタは導通時のいわゆるオン
抵抗が小さい長所を持つ反面、入力抵抗が小さい短所を
持つ。長所のオン抵抗は0.2〜0.3Ω以下にするこ
とが可能である。また短所である入力抵抗は大部分がベ
ースとエミッタ間の抵抗で決まり、大きくしてもIKΩ
程度まででそれ以上にすることが難しく、そのため例え
ばこのバイポーラトランジスタを増幅素子として使用し
た場合は実質的負荷抵抗がバイポーラトランジスタの入
力抵抗でほぼ決まって大きくとれず、増幅度が小さく制
限される。
That is, while bipolar transistors have the advantage of having a small so-called on-resistance when conducting, they have the disadvantage of having a small input resistance. The advantage is that the on-resistance can be reduced to 0.2-0.3Ω or less. In addition, the input resistance, which is a disadvantage, is mostly determined by the resistance between the base and emitter, and even if it is large, it is IKΩ.
Therefore, when this bipolar transistor is used as an amplification element, for example, the actual load resistance is almost always determined by the input resistance of the bipolar transistor, and it is difficult to increase it further, and the amplification degree is limited to a small value.

一方MO3−PETはバイポーラトランジスタと逆で入
力抵抗が大きい長所と、オン抵抗が大きい短所を持つ。
On the other hand, MO3-PET is the opposite of a bipolar transistor, having the advantage of high input resistance and the disadvantage of high on-resistance.

このMOS −FETの入力抵抗はゲートとワニス間の
抵抗でゲートとソース間にはSt 02等の絶縁膜があ
って入力抵抗はほぼ無限大と大きく、従ってMOS −
FETは真空管と同じように増幅度が大きな範囲で設定
され得る。
The input resistance of this MOS-FET is the resistance between the gate and the varnish, and there is an insulating film such as St02 between the gate and the source, and the input resistance is large and almost infinite.
Like vacuum tubes, FETs can have amplification levels set over a wide range.

またMOS −FETのオン抵抗はバイポーラトランジ
スタに比べ大きくて0.2Ω〜数Ωである。
Furthermore, the on-resistance of a MOS-FET is larger than that of a bipolar transistor, ranging from 0.2 Ω to several Ω.

ハ1発明の目的 本発明は上記バイポーラトランジスタとMOS・FET
の特性上の問題点に鑑みてなされたもので、バイポーラ
トランジスタとMOS ・NETの各長所が活かされ、
短所が除去された特性を持つ単体の複合型半導体装置を
提供することを目的とする。
C1 Purpose of the Invention The present invention relates to the above-mentioned bipolar transistor and MOS/FET.
It was created in view of the problems with the characteristics of
It is an object of the present invention to provide a single composite semiconductor device having characteristics in which disadvantages have been eliminated.

二1発明の構成 本発明は1つの半導体基板内にバイポーラトランジスタ
素子と、間5−FET素子及び抵抗素子を前記バイポー
ラトランジスタ素子のコレクタとMOS −FET素子
のドレインを共通にして一括形成すると共に、前記バイ
ポーラトランジスタ素子のベースとMOS −FET素
子のソースを直接に、バイポーラトランジスタ素子のエ
ミッタとMOS −FET素子のソースを抵抗素子を介
して電気的接続して1個の3端子トランジスタ構造とし
たことを特徴とする。このような構造によるとオン抵抗
はバイポーラトランジスタ素子のオン抵抗で決定され、
逆に入力抵抗はMOS −FET素子の入力抵抗だけで
決定され、従って従来のバイポーラトランジスタとMO
S −FETの各長所が活かされ、各短所が相殺された
動作をする1個のトランジスタとしての半導体装置が実
現される。
21 Structure of the Invention The present invention forms a bipolar transistor element, an inter-FET element, and a resistor element in one semiconductor substrate at once, with the collector of the bipolar transistor element and the drain of the MOS-FET element being common, and The base of the bipolar transistor element and the source of the MOS-FET element are electrically connected directly, and the emitter of the bipolar transistor element and the source of the MOS-FET element are electrically connected via a resistance element to form one three-terminal transistor structure. It is characterized by According to this structure, the on-resistance is determined by the on-resistance of the bipolar transistor element,
Conversely, the input resistance is determined only by the input resistance of the MOS-FET element, so conventional bipolar transistors and MO
A semiconductor device as a single transistor is realized in which the advantages of the S-FET are utilized and the disadvantages are canceled out.

ホ、実施例 本発明”の一実施例を図面から説明する。第1図及び第
2図において、(1)は1つの半導体基板、(2)(3
)(4)は半導体基板(1)に不純物選択拡散で形成さ
れたバイポーラトランジスタ素子、MOS −Fl!T
素子、抵抗素子である。図面ではN型の半導体基板(1
)にNPN型バイポーラトランジスタ素子(2) 、N
チャンネル型MOS −FET (3) 、 P型半導
体抵抗素子(4)を形成した例を示す。(5,)は半導
体基板(1)の裏面に形成された裏面電極でバイポーラ
トランジスタ素子(2)のコレクタCとMOS −FE
T (3)のドレインDの共通電極である。(6)及び
(7)はバイポーラトランジスタ素子(2)のベースB
及びエミッタEの各電極、(8)及び(,9)はMOS
 −FET素子(3)のゲートG及びソースSの各電極
、(10〉及び(11)は抵抗素子(4)の両端の各電
極で、これら各々の電極(6)〜(11)は半導体基板
(1)の表面に形成した絶縁膜(12)を選択除去して
Aβ蒸着等の手段で次の配線パターンでもつて被着形成
される。
Embodiment One embodiment of the present invention will be explained with reference to the drawings. In FIGS. 1 and 2, (1) is one semiconductor substrate, (2) (3
)(4) is a bipolar transistor element formed in the semiconductor substrate (1) by selective diffusion of impurities, MOS-Fl! T
element, resistance element. In the drawing, an N-type semiconductor substrate (1
) is an NPN bipolar transistor element (2), N
An example in which a channel type MOS-FET (3) and a P-type semiconductor resistance element (4) are formed is shown. (5,) is the back electrode formed on the back surface of the semiconductor substrate (1), and the collector C of the bipolar transistor element (2) and the MOS-FE
This is the common electrode of the drain D of T (3). (6) and (7) are the base B of the bipolar transistor element (2)
and each electrode of emitter E, (8) and (,9) are MOS
- Each electrode of the gate G and source S of the FET element (3), (10> and (11) are each electrode at both ends of the resistance element (4), and each of these electrodes (6) to (11) is the semiconductor substrate The insulating film (12) formed on the surface of (1) is selectively removed and the next wiring pattern is deposited by Aβ vapor deposition or the like.

バイポーラトランジスタ素子(2)のベース電極(6)
とMOS −FET素子(4)のソース電極(9)と抵
抗素子(4)の−電極(11)は電気的に結線され、抵
抗素子(4)の他の一電極(10)はバイポーラトラン
ジスタ素子(2)のエミッタ電極(7)に電気的結線さ
れる。そしてMOS−FET素子(3)のゲート電極(
8)と裏面電極(5)及びバイポーラトランジスタ素子
(2)のエミッタ電極(7)が夫々に外部の入出力端子
(13) (14) (15)に電気的接続されて、1
個の3端子トランジスタが得られる。
Base electrode (6) of bipolar transistor element (2)
The source electrode (9) of the MOS-FET element (4) and the - electrode (11) of the resistive element (4) are electrically connected, and the other electrode (10) of the resistive element (4) is a bipolar transistor element. (2) is electrically connected to the emitter electrode (7). And the gate electrode of the MOS-FET element (3) (
8), the back electrode (5), and the emitter electrode (7) of the bipolar transistor element (2) are electrically connected to external input/output terminals (13), (14), and (15), respectively.
3-terminal transistors are obtained.

次に上記半導体装置の動作特性を第3図から説明する。Next, the operating characteristics of the above semiconductor device will be explained with reference to FIG.

第3図に示す如(バイポーラトランジスタ素子(2)の
コレクタCとエミッタ8間にバイアス電圧vOを付与し
、MOS −FET素子(3)のゲートGに所望の入力
電圧v1を印加してMOS −FET素子(3)を導通
させて抵抗素子(4)に電流11を流す。入力電圧v1
.を大きくして抵抗素子(4)での電圧ドロップを大き
(し、バイポーラトランジスタ素子(2)のベースBに
動作電圧(約0.6V)が加わるとバイポーラトランジ
スタ素子(2)が導通してコレクタC−エミッタ8間に
電流I?がメイン電流として流れ、この時の装置全体の
オン抵抗はバイポーラトランジスタ素子(2)のオン抵
抗ではほぼ決定され、小さなオン抵抗特性を持つことが
分る。
As shown in FIG. 3, a bias voltage vO is applied between the collector C and emitter 8 of the bipolar transistor element (2), and a desired input voltage v1 is applied to the gate G of the MOS-FET element (3). The FET element (3) is made conductive and current 11 flows through the resistance element (4).Input voltage v1
.. is increased to increase the voltage drop across the resistor element (4), and when an operating voltage (approximately 0.6 V) is applied to the base B of the bipolar transistor element (2), the bipolar transistor element (2) becomes conductive and the collector A current I? flows as a main current between C and emitter 8, and the on-resistance of the entire device at this time is almost determined by the on-resistance of the bipolar transistor element (2), and it can be seen that the device has small on-resistance characteristics.

また上記半導体装置の入力抵抗はMOS −FET素子
(3)の入力抵抗そのものでほぼ無限大のものが得られ
る。
Further, the input resistance of the semiconductor device is almost infinite due to the input resistance of the MOS-FET element (3) itself.

尚、本発明は上記実施例に限らず、1つの半導体基板に
PNP型バイポーラトランジスタ素子、Pチャンネル型
Mt)S −FET素子、N型半導体抵抗素子を形成し
て上述要領で配線したも゛のであってもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can also include a PNP bipolar transistor element, a P-channel type Mt)S-FET element, and an N-type semiconductor resistance element formed on one semiconductor substrate and wired in the manner described above. There may be.

へ1発明の効果 以上の如く、本発明によればバイポーラトランジスタと
MOS −FETの短所が消え両者長所のみがそのまま
発揮されるオン抵抗小、入力抵抗大な、る1個のトラン
ジスタとしての使用が可能であり、増幅回路等での実用
効果は極めて大である。また1つの半導体基板にバイポ
ーラトランジスタ、MOS −FBT 、抵抗の各素子
を形成して配線したので量産性に優れ、複合型半導体装
置として安価なものが提供できる。
1. Effects of the Invention As described above, according to the present invention, the disadvantages of bipolar transistors and MOS-FETs are eliminated, and only the advantages of both can be utilized as they are.On-resistance is low, input resistance is high, and the transistor can be used as a single transistor. It is possible, and the practical effect in amplifier circuits etc. is extremely large. Furthermore, since the bipolar transistor, MOS-FBT, and resistor elements are formed and wired on one semiconductor substrate, mass productivity is excellent, and a composite semiconductor device can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示す等価回路図
及び模式断面図、第3図は第1図回路における動作原理
を説明する等価回路図である。 (1)・・半導体基板、(2)・・バイポーラトランジ
スタ素子、(3)・・MOS −FET素子、(4) 
・・抵抗素子。
1 and 2 are an equivalent circuit diagram and a schematic sectional view showing one embodiment of the present invention, and FIG. 3 is an equivalent circuit diagram illustrating the operating principle of the circuit shown in FIG. 1. (1) Semiconductor substrate, (2) Bipolar transistor element, (3) MOS-FET element, (4)
...Resistance element.

Claims (1)

【特許請求の範囲】[Claims] (1)1つの半導体基板内にバイポーラトランジスタ素
子、MOS −FET素子及び抵抗素子を前記バイポー
ラトランジスタ素子のコレクタとMOS −PR,T素
子のドレインを共通にして形成すると共に、バイポーラ
トランジスタ素子のベースとMOS −FET素子のソ
ースを直接に、バイポーラトランジスタ素子のエミッタ
とMOS −FET素子のソースを前記抵抗素子を介し
て電気的配・ 線して1個のトランジスタとして動作さ
せることを特徴とする半導体装置。
(1) A bipolar transistor element, a MOS-FET element, and a resistance element are formed in one semiconductor substrate so that the collector of the bipolar transistor element and the drain of the MOS-PR, T element are common, and the base of the bipolar transistor element and the drain of the MOS-PR, T element are formed in common. A semiconductor device characterized in that the source of a MOS-FET element is electrically wired directly and the emitter of a bipolar transistor element and the source of a MOS-FET element are electrically wired via the resistance element to operate as one transistor. .
JP17019483A 1983-09-14 1983-09-14 Semiconductor device Pending JPS6062149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17019483A JPS6062149A (en) 1983-09-14 1983-09-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17019483A JPS6062149A (en) 1983-09-14 1983-09-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6062149A true JPS6062149A (en) 1985-04-10

Family

ID=15900413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17019483A Pending JPS6062149A (en) 1983-09-14 1983-09-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6062149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200791A (en) * 1999-01-05 2000-07-18 Kansai Electric Power Co Inc:The Voltage driven bipolar semiconductor device
US8324691B2 (en) 2007-06-12 2012-12-04 Toyota Jidosha Kabushiki Kaisha Power semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333071A (en) * 1976-09-09 1978-03-28 Nec Corp Complementary type insulated gate semiconductor circuit
JPS57186833A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Switching element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333071A (en) * 1976-09-09 1978-03-28 Nec Corp Complementary type insulated gate semiconductor circuit
JPS57186833A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Switching element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200791A (en) * 1999-01-05 2000-07-18 Kansai Electric Power Co Inc:The Voltage driven bipolar semiconductor device
US8324691B2 (en) 2007-06-12 2012-12-04 Toyota Jidosha Kabushiki Kaisha Power semiconductor device

Similar Documents

Publication Publication Date Title
SU528894A3 (en) Current amplifier
JP3319406B2 (en) Comparison amplification detection circuit
JP3325396B2 (en) Semiconductor integrated circuit
JP2001168651A (en) Semiconductor device
JP3043250B2 (en) Analog output drive circuit for gate array
JPS6062149A (en) Semiconductor device
US4994694A (en) Complementary composite PNP transistor
JPH0865074A (en) Current to voltage conversion circuit, current compression and expansion circuit, automatic exposure control system and automatic exposure control system with built-in sensor
JPH0321927B2 (en)
US6768139B2 (en) Transistor configuration for a bandgap circuit
JPH01162005A (en) Amplifying circuit
JPS58207672A (en) Semiconductor device
JPH053424A (en) Minute voltage detection circuit and current limit circuit using the same
US4859966A (en) Current amplifier circuit and a current amplifying type differential current converter circuit
KR820001797B1 (en) Differential anplitier
JPH0526769Y2 (en)
JP2571102Y2 (en) Semiconductor integrated circuit
JP3086687B2 (en) Differential amplifier
JP2596151B2 (en) Voltage comparator
JPH0327606A (en) Field effect transistor amplifying circuit
JP2674274B2 (en) Reference voltage circuit
JPS6221310A (en) Current constant multiple circuit
JP3094564B2 (en) Semiconductor device
JP2001127167A (en) Semiconductor device
JP2671304B2 (en) Logic circuit