JPS62252682A - Welding method for two phase stainless steel pipe - Google Patents

Welding method for two phase stainless steel pipe

Info

Publication number
JPS62252682A
JPS62252682A JP9605086A JP9605086A JPS62252682A JP S62252682 A JPS62252682 A JP S62252682A JP 9605086 A JP9605086 A JP 9605086A JP 9605086 A JP9605086 A JP 9605086A JP S62252682 A JPS62252682 A JP S62252682A
Authority
JP
Japan
Prior art keywords
welding
stainless steel
pipe
seam
phase stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9605086A
Other languages
Japanese (ja)
Inventor
Kazuya Horiuchi
堀内 一也
Ichiji Obayashi
大林 一司
Toyoji Nagao
長尾 豊二
Minoru Ikeda
稔 池田
Kiyoto Fujioka
藤岡 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9605086A priority Critical patent/JPS62252682A/en
Publication of JPS62252682A publication Critical patent/JPS62252682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To achieve a high efficiency in pipe making welding and the higher stiffness of the welding metal by executing a submerged welding from the outer face, inner face or both faces of a pipe after performing a plasma welding of the seam part of a U-formed, O-formed two phase stainless steel pipe stock. CONSTITUTION:A two phase stainless steel pipe is made with a UOE method. In case of the thin thickness pipe stock subjected to a U-formed, then O-formed, a welding metal 2 is formed so as to cover a welding metal 1 by executing a submerged welding from the outer face of the pipe, after forming the welding metal 1 with the plasma welding of the Y groove of the seam part. In case of a thick pipe stock, a welding metal 4 is formed by executing the submerged welding respectively from the outer face and inner face of the pipe after forming a welding metal 3 with the plasma welding of the X groove of the seam part from the outer face. In this way the higher efficiency in the pipe making welding of the two phase stainless steel and the higher stiffness of the welding metal can simultaneously be achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 大径鋼管の製造法として鋼板をまずU成形し、その後0
成形を施して鋼板の端部に突合せシームをつくり、その
シーム部を溶接接合したのち拡管処理を行うUOE方式
がある。
[Detailed description of the invention] (Industrial application field) As a manufacturing method for large-diameter steel pipes, a steel plate is first formed into a U shape, and then
There is a UOE method in which a butt seam is formed at the end of a steel plate, the seam is welded, and the pipe is expanded.

本発明はオーステナイトとフェライトの混合組織からな
る二相ステンレス鋼をこのUOE方式で製管する際のシ
ーム溶接方法に関する。
The present invention relates to a seam welding method for pipe-making duplex stainless steel having a mixed structure of austenite and ferrite using the UOE method.

(従来の技術) UOE製管法では、Uブレス、Oプレス後シーム溶接す
ることになるが、製管ラインラインの生産速度に適合さ
せるためにはどうしてもシーム溶接でのライン速度を向
上させる必要がある。溶接速度を向上させるためには溶
接入熱を大にすることが要求されることになり、しかも
厚肉管になる程大入熱を要する。この大入熱に通した溶
接法としてはサブマージアーク溶接(SAW)がよく知
られている。
(Conventional technology) In the UOE pipe manufacturing method, seam welding is performed after U press and O press, but in order to match the production speed of the pipe manufacturing line, it is necessary to increase the line speed for seam welding. be. In order to improve the welding speed, it is required to increase the welding heat input, and the thicker the pipe, the greater the heat input is required. Submerged arc welding (SAW) is well known as a welding method that allows this large heat input to occur.

一方、Cr系ステンレス鋼はそのMi織よりフェライト
系ステンレス鋼といわれ、Cr−Ni系ステンレス鋼は
オーステナイト系ステンレス鋼といわれる。
On the other hand, Cr stainless steel is called ferritic stainless steel because of its Mi weave, and Cr-Ni stainless steel is called austenitic stainless steel.

フェライト系ステンレス鋼は安価で耐食性、溶接性に優
れているが強度や靭性が低い、他方オーステナイト系ス
テンレス鋼は耐食性に優れ、かつ良好な靭性と高い強度
を有しているが、溶接による熱影響を受けるとクロム炭
化物を析出して、いわゆる粒界腐食を発生し、溶接によ
る残留引張応力の下で応力腐食割れをおこし破壊する傾
向を生ず二相ステンレス鋼は、フェライトとオーステナ
イトの二相金属組織を呈し、Cr、 Nt、、 MO,
、Nの成分レンジをコントロールすることにより、前記
フェライト系ステンレス鋼とオーステナイト系ステンレ
ス鋼双方の長所を伸ばし、欠点を解消しようとするもの
である。従ってその特性は、優れた耐食性と靭性、強度
を有し、しかも塩素イオンなどの還元性環境下において
も耐応力腐食割れ性と耐孔食性を有するもので、化学工
業、石油工業あるいは海水用の熱交換器などに近年広く
利用されている。
Ferritic stainless steel is inexpensive, has excellent corrosion resistance and weldability, but has low strength and toughness.On the other hand, austenitic stainless steel has excellent corrosion resistance, good toughness, and high strength, but is susceptible to heat effects during welding. When exposed to heat, chromium carbides are precipitated and so-called intergranular corrosion occurs, which tends to cause stress corrosion cracking and fracture under the residual tensile stress caused by welding. Duplex stainless steel is a dual phase metal of ferrite and austenite. It exhibits a structure of Cr, Nt, MO,
By controlling the component range of , N, the advantages of both the ferritic stainless steel and the austenitic stainless steel are enhanced, and the drawbacks are eliminated. Therefore, its characteristics include excellent corrosion resistance, toughness, and strength, as well as stress corrosion cracking resistance and pitting corrosion resistance even in reducing environments such as chlorine ions, making it suitable for use in the chemical industry, oil industry, or seawater. It has been widely used in heat exchangers etc. in recent years.

(発明が解決しようとする問題点) しかしながら、この二相ステンレス鋼をUOE方式で製
管する場合、そのシーム溶接において次の■■の問題が
あった。
(Problems to be Solved by the Invention) However, when pipe-making this duplex stainless steel by the UOE method, there are the following problems in seam welding.

■ 高温割れ 二相ステンレス鋼を従来の溶接法であるSAWで溶接し
た場合、溶接部の高温割れ発生傾向が太き(、溶接性が
害されている。第3図は25%Crステンレス鋼に含有
されるNi量を変化させた材料にSAW溶接を実施した
場合の、溶接金属のフェライト量と、高温割れ感受性を
評価するパレストレイン試験における溶接金属割れ長さ
との関係を示したものである。この図から明らかなよう
に、高温割れ発生度合はフェライト量に大きく依存して
おり、UOE方式におけるシーム溶接で許容される溶接
金属割れ長さ5fi以下(図のA−A’線以下)を確保
するには、フェライト量の範囲を9〜25%にしなけれ
ばならない。しかしながら、二相ステンレス鋼における
フェライト量は40〜60%であるので、二相ステンレ
ス鋼の高温割れ感受性は非常に大きいという問題があっ
た。
■ When hot cracking duplex stainless steel is welded by SAW, which is a conventional welding method, there is a strong tendency for hot cracking to occur in the welded area (which impairs weldability. This figure shows the relationship between the amount of ferrite in the weld metal and the weld metal crack length in the Palestrain test for evaluating hot cracking susceptibility when SAW welding is performed on materials with varying amounts of Ni contained. As is clear from this figure, the degree of occurrence of hot cracking is largely dependent on the amount of ferrite, and ensuring that the weld metal cracking length is 5fi or less (below line A-A' in the figure), which is acceptable for seam welding in the UOE method. In order to achieve this, the ferrite content must be in the range of 9 to 25%. However, since the ferrite content in duplex stainless steel is 40 to 60%, there is a problem that the hot cracking susceptibility of duplex stainless steel is very large. was there.

さらに、SAW法による溶接では大気中の0ガス、Nガ
ス等が溶接の際に溶接金属中に溶は込んで酸化物、窒化
物を形成するため、靭性レベルが低いという問題もあっ
た。
Furthermore, in welding by the SAW method, O gas, N gas, etc. in the atmosphere penetrates into the weld metal during welding and forms oxides and nitrides, so there is a problem that the toughness level is low.

■ 溶接入熱量制限 第4図は22Cr−5,5Ni系二相ステンレス鋼にS
AW溶接を施したときの溶接入熱量とバレスレン試験に
おける溶接金属割れ長さとの関係を示したものである。
■ Welding heat input limit Figure 4 shows the S for 22Cr-5,5Ni duplex stainless steel.
This figure shows the relationship between the welding heat input when performing AW welding and the weld metal crack length in a Vallethrene test.

UOE方式で二相ステンレス鋼管を製造する場合に必要
とされるシーム溶接速度を確保するには、20KJ/a
m以上の溶接人熱力、必要とされるが、第4図より、こ
のような大入熱では高温割れ発生の度合いが急増するこ
とがわかる。
To ensure the seam welding speed required when manufacturing duplex stainless steel pipes using the UOE method, 20 KJ/a is required.
Although a welder's thermal power of more than m is required, it can be seen from FIG. 4 that with such a large heat input, the degree of hot cracking increases rapidly.

また鋼管の肉厚が大きい程この傾向は顕著となる・以上
のようなことから、UOE方式による二相ステンレス鋼
管の製造において、シーム溶接としてSAW溶接を採用
する場合、高温割れ感受性を低い値に抑えるには、どう
しても溶接入熱を低くすることが必要になる。その結果
、溶接速度は遅くなり、かつ溶接できる鋼管の肉厚が制
限されることになる。
Also, this tendency becomes more pronounced as the wall thickness of the steel pipe increases.For the above reasons, when using SAW welding as seam welding in the manufacture of duplex stainless steel pipes using the UOE method, it is important to reduce the hot cracking susceptibility to a low value. In order to suppress this, it is necessary to lower the welding heat input. As a result, the welding speed becomes slow and the wall thickness of the steel pipe that can be welded is limited.

(問題点を解決するための手段) 本発明はこれらの問題点を解決するための溶接方法を提
供するもので、U成形、O成形された二相ステンレス鋼
からなる素管のシーム部に対し、まずプラズマ溶接を行
った後、管外面側または管内面側のどちらか一方もしく
は両方からサブマージアーク溶接を施すことを特徴とす
る。
(Means for Solving the Problems) The present invention provides a welding method for solving these problems. , is characterized in that plasma welding is first performed, and then submerged arc welding is performed from either the outer surface of the tube or the inner surface of the tube, or both.

ここで、二相ステンレス鋼の成分はCr : 20〜3
0%、Ni:4〜8%、MO!1〜5%である。
Here, the composition of the duplex stainless steel is Cr: 20-3
0%, Ni: 4-8%, MO! It is 1 to 5%.

またプラズマアーク溶接は管外面側、管内面側のいずれ
から行ってもよい。
Further, plasma arc welding may be performed from either the outer surface of the tube or the inner surface of the tube.

(作   用) プラズマアーク溶接(以下PAWという)は特殊な形状
のノズルよりシールガスを噴出させ、電気アークを不活
性シールドガスの冷却効果によりて収束させて絞り込み
、高電流密度を得ることによって高エネルギーの熱を発
生させる溶接法であり、鋼板のシームの内外面を貫通す
るキーホールを形成しながら溶接を進め得るものである
。そうして次の利点を有する。
(Function) Plasma arc welding (hereinafter referred to as PAW) ejects sealing gas from a specially shaped nozzle, converges and narrows the electric arc using the cooling effect of the inert shielding gas, and achieves high current density. This is a welding method that generates energy heat, and allows welding to proceed while forming a keyhole that penetrates the inner and outer surfaces of the seam of the steel plate. It has the following advantages:

■ 急速加熱冷却であるので溶接部の凝固組織が微細で
あり、強度、靭性レベルが高く、耐高温割れ性が良好で
ある。
■ Due to rapid heating and cooling, the solidified structure of the weld is fine, resulting in high strength and toughness levels, and good hot cracking resistance.

■ シールドガスによって溶接部を完全に大気と遮断す
ることができるので、O、N等の溶接部への混入がほと
んどない。
■ Since the welding area can be completely isolated from the atmosphere by the shielding gas, there is almost no chance of O, N, etc. entering the welding area.

それ故、UOE方式による二相ステンレス鋼管の製造に
PAW法を適用した場合には、良好な耐高温割れ性と高
靭性とを得ることが可能となり、さらにPAW法のビー
トの上に小人熱のSAW溶接を行うことにより、表面溶
接金属が高能率に得られ、従来の5AWi接では不可能
とされるUOEブレス製管に必要な溶接速度が確保され
、かつ安定溶接が可能な肉厚範囲を拡大するものとなる
Therefore, when the PAW method is applied to the production of duplex stainless steel pipes using the UOE method, it is possible to obtain good hot cracking resistance and high toughness, and furthermore, on the beat of the PAW method, dwarf heat By performing SAW welding, surface weld metal can be obtained with high efficiency, the welding speed required for UOE press pipe making, which is impossible with conventional 5A Wi welding, can be secured, and the wall thickness range that allows stable welding can be achieved. It will expand the

なお、二相ステンレス鋼等の高合金鋼のUOE方式での
素管のシーム溶接にPAW法を用いた例として特開昭6
0−154875号公報に記載の方法がある。これは素
管の内面よりTIG溶接をし、外面よりプラズマ溶接と
TAGもしくはMIG溶接する方法であるが、この方法
では内面から入熱の低いTIG溶接をするために能率が
低下し生産性が悪い。さらに、PAWと共にTIGもし
くはMIGを行うため、前述のPAW法を能率よく稼動
させることの利点を充分に生かしていない。
In addition, as an example of using the PAW method for seam welding of raw pipes using the UOE method for high-alloy steel such as duplex stainless steel, JP-A No. 6
There is a method described in Japanese Patent No. 0-154875. This method involves performing TIG welding on the inner surface of the raw pipe, and plasma welding and TAG or MIG welding on the outer surface, but this method uses TIG welding with low heat input from the inner surface, resulting in lower efficiency and poor productivity. . Furthermore, since TIG or MIG is performed together with PAW, the advantages of efficient operation of the PAW method described above are not fully utilized.

(実 施 例) 薄肉管については第り図に示すように先づシーム部のY
開先にPAW溶接をして(1)の溶着金属をつくり、さ
らに管の外面からその上を覆うようにSAW溶接して(
2)の溶着金属をつくるのが、溶接入熱及び溶接安定性
の面から好ましい。この時、PAW法は比較的低入熱で
溶接の安定化が図れるので、従来の内、外面よりSAW
する方法に比べて一層高い靭性の溶着金属をもつ薄肉管
をつくり得る。
(Example) For thin-walled pipes, first check the Y of the seam as shown in
PAW weld the groove to create the weld metal in (1), and then SAW weld it from the outside of the tube to cover it (
It is preferable to make the weld metal of 2) from the viewpoint of welding heat input and welding stability. At this time, since the PAW method can stabilize welding with a relatively low heat input, SAW
Thin-walled tubes can be produced with higher tenacity of the weld metal than with other methods.

厚肉管については第2図に示すように、先づ外面よりシ
ーム部のX開先にPAW溶接をして(3)の溶着金属を
つくり、さらに管の外面および内面よりそれぞれSAW
溶接をして(41の溶着金属をつくるのが溶接入熱及び
溶接安定性の面から好ましい。
For thick-walled pipes, as shown in Figure 2, PAW welding is first performed on the
It is preferable from the viewpoint of welding heat input and welding stability to form a welded metal of 41 by welding.

このとき、溶接入熱をPAW部分とSAW部分とに分散
させ得ると同時に高温割れ感受性の低いPAWを有効に
活用できるので、従来の内外面よりSAWする方法に比
べて、さらに肉厚の厚い25鶴程度の管に対しても高靭
性な溶着金属を与えることが可能となる。
At this time, the welding heat input can be dispersed between the PAW part and the SAW part, and at the same time, the PAW with low hot cracking susceptibility can be effectively utilized. It becomes possible to provide highly tough welded metal even to a pipe the size of a crane.

第5図(イ)(ロ)は本発明方法を実施するのに適した
装置の概要を示したものである。(イ)図の装置は管外
面側からPAWとSAWとを同時並行して行うものであ
る。
Figures 5(a) and 5(b) schematically show an apparatus suitable for carrying out the method of the present invention. (a) The device shown in the figure performs PAW and SAW simultaneously from the outside surface of the tube.

すなわちUブレス、Oプレスされた素管(7)がシーム
を上にしてローラ台車等の上にのせられて矢印方向にパ
イプフィードされる。シーム上方に固定された溶接装置
があり、この装置は先端に設けたシーム芯合わせをする
シームトラフカー(8)と、プラズマ溶接をするプラズ
マトーチ(9)と、その後にサブマージアーク溶接用フ
ラクス側を供給するフラックス供給装置Qlと、溶接ワ
イヤaυを供給してサブマージアーク溶接を行う溶接ヘ
ッド圓とよりなる。そして、素管がフィードされるに従
って素管のシームに外面よりPAW溶接されその溶接部
に引続き外面よりSAW?f#接が施される。
That is, the raw pipe (7) that has been U-pressed or O-pressed is placed on a roller truck or the like with the seam facing up, and pipe-fed in the direction of the arrow. There is a welding device fixed above the seam, and this device has a seam trough car (8) installed at the tip for aligning the seam, a plasma torch (9) for plasma welding, and then a flux side for submerged arc welding. and a welding head circle that supplies a welding wire aυ to perform submerged arc welding. Then, as the raw pipe is fed, the seam of the raw pipe is PAW-welded from the outside surface, and the welded part is then SAW-welded from the outside surface. f# junction is applied.

(ロ)図の装置は(イ)図の装置で管外面側からPAW
、SAWを行った後に管内面側からSAWを行うための
装置である。
(b) The device shown in the figure is the device shown in (a) the PAW from the outside of the tube.
This is a device for performing SAW from the inner surface of the tube after performing SAW.

素管は外面よりの溶接の後に半回転させてシームを下側
にし、溶接装置をシーム部の上部に位置するように管内
に挿入する。溶接装置は素管の外部より固定されたサブ
マージアーク溶接用フラッフ供給装置Q鴨と、溶接ワイ
ヤ111)を供給するサブマージアーク溶接用溶接ヘッ
ドωとよりなる。この状態で素管をフィードさせること
により、内面部にSAW溶接が施工される。
After welding the raw tube from the outside, turn it half a turn so that the seam is on the lower side, and insert the welding device into the tube so that it is positioned above the seam. The welding device consists of a fluff supply device Q for submerged arc welding fixed from the outside of the raw pipe, and a welding head ω for submerged arc welding that supplies welding wire 111). By feeding the raw pipe in this state, SAW welding is performed on the inner surface.

二相ステレス鋼である材質DP8 (化学成分C: 0
.02%、Si : 0.4%、Mn : 1.7%、
Cr : 22.5%、Ni : 6.5%、Mo :
 3.3%)の素管(外径20“φ肉厚12.’7m)
をU成形、O成形でつくり、そのシーム部に本発明法と
、比較のための従来法とで溶接を行った。従来法はSA
W、本発明法はPAW−3AWであり、各々の条件を第
1表に示す。
Duplex stainless steel material DP8 (Chemical composition C: 0
.. 02%, Si: 0.4%, Mn: 1.7%,
Cr: 22.5%, Ni: 6.5%, Mo:
3.3%) raw pipe (outer diameter 20"φ wall thickness 12.'7m)
were made by U-forming and O-forming, and the seams were welded using the method of the present invention and the conventional method for comparison. The conventional method is SA
W, the method of the present invention is PAW-3AW, and the respective conditions are shown in Table 1.

第  1  表 *:にJ/cm 両溶接施工法で得られた溶接金属の靭性性能をしらべる
ために寸法lO鶴×10龍 深さ2鶴Vノツチ試験片に
よる溶接部断面ノツチシャルピー衝撃試験を行った結果
を第7図に示す、同図において横軸には試験温度、縦軸
には吸収エネルギーVEを各々示し、○印は本発明法の
PAW−3AW法、・印は従来法のSAW法における試
験結果である。
Table 1 *: J/cm In order to examine the toughness performance of the weld metals obtained by both welding construction methods, a notch Charpy impact test was conducted on the cross section of the weld using a V-notch test piece with dimensions 10x10x and depth 2x. The results are shown in Figure 7, in which the horizontal axis shows the test temperature and the vertical axis shows the absorbed energy VE, where ○ marks are for the PAW-3AW method of the present invention, and marks are for the conventional SAW method. These are the test results.

この結果からして、VE値で評価される靭性レベルは本
発明のほうが従来法より優位であり、特に低温はどレベ
ル差が大きいことが明らかである。
From this result, it is clear that the toughness level evaluated by the VE value of the present invention is superior to the conventional method, and that the difference in the level is especially large at low temperatures.

これは、本発明法においてPAWを採用していることに
よって溶接部の凝固組織が微細化され、かつ酸化物、窒
化物の量が低下した結果と考えられ、本発明法において
PAWをSAWと組合わせる事によって靭性レベルが向
上することを裏付けている。
This is thought to be due to the use of PAW in the method of the present invention, which refines the solidified structure of the weld and reduces the amount of oxides and nitrides. This proves that the toughness level can be improved by combining them.

(発明の効果) 以上の説明から明らかなように、UOE方式で二相ステ
ンレス鋼管を製造する場合のシーム溶接を本発明法で行
うことにより、従来のSAW法で行う場合に比して高靭
性レベルの溶接金属が得られ、これにより溶接速度を増
大させ、また厚肉(〜25.4fi)の管の製造が可能
になり、品質を高め生産性を高める効果は極めて大きい
ものとなる。
(Effects of the Invention) As is clear from the above explanation, by performing seam welding using the method of the present invention when manufacturing duplex stainless steel pipes using the UOE method, higher toughness can be achieved compared to when performing seam welding using the conventional SAW method. This increases the welding speed and makes it possible to manufacture thick-walled (~25.4 fi) pipes, which has an extremely large effect on improving quality and increasing productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の御飯様を、第2図はさらに他の態様を
示す説明図、第3図はステンレス鋼を溶接したときの溶
接金属のフェライト量とパレストレイン溶接金属割れ長
さとの関係を示す線図、第4図は二相ステンレス鋼をS
AW溶接したときの溶接入熱と溶接金属割れ長さとの関
係を示す線図、第5図(イ) (ロ)は本発明を実施す
るのに通した装置例を示すもので、(イ)は素管の外面
溶接用、(ロ)は素管の内面溶接用の装置を示す説明図
、第6図は従来法SAWと本発明法P AW−SAWと
のビード形状を示す説明図、第7図は従来法および本発
明法で得た溶接部について試験温度とシャルピー衝撃値
との関係を示す線図である。 l、2.3.4:?8着金属、7:素管、8:シームト
ラッカ、9:プラズマトーチ、10:フランクス供給装
置、11:溶接ワイヤ、12:溶接ヘッド、13:フラ
ックス。 第  5 @ 第  l  図 薄、梓金屓のフェライトt (y、 )第  3 図 第  2  図 薄#F入熱(Uんm) 第4図
Figure 1 is an illustration of the method of the present invention, Figure 2 is an explanatory diagram showing another embodiment, and Figure 3 is the relationship between the amount of ferrite in the weld metal and the length of palistrain weld metal cracking when stainless steel is welded. Figure 4 is a diagram showing duplex stainless steel.
Diagrams showing the relationship between welding heat input and weld metal crack length during AW welding, Figures 5(a) and 5(b) show examples of equipment used to carry out the present invention; 6 is an explanatory diagram showing an apparatus for welding the outer surface of a blank pipe, (b) is an apparatus for welding the inner surface of a blank pipe, FIG. FIG. 7 is a diagram showing the relationship between test temperature and Charpy impact value for welds obtained by the conventional method and the method of the present invention. l, 2.3.4:? 8: Coated metal, 7: Raw pipe, 8: Seam tracker, 9: Plasma torch, 10: Franks supply device, 11: Welding wire, 12: Welding head, 13: Flux. Fig. 5 @ Fig. l Ferrite t (y, ) of Azusa Kinpei Fig. 3 Fig. 2 Fig. #F heat input (Um) Fig. 4

Claims (1)

【特許請求の範囲】[Claims] (1)U成形、O成形された二相ステンレス鋼からなる
素管のシーム部に対し、まずプラズマ溶接を行った後、
管外面側または管内面側のいずれか一方もしくは両方か
らサブマージアーク溶接を施することを特徴とする二相
ステンレス鋼管の溶接方法。
(1) After plasma welding is first performed on the seam of the U-formed and O-formed duplex stainless steel tube,
A method for welding duplex stainless steel pipes, characterized by performing submerged arc welding from either the outer surface of the tube or the inner surface of the tube, or both.
JP9605086A 1986-04-24 1986-04-24 Welding method for two phase stainless steel pipe Pending JPS62252682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9605086A JPS62252682A (en) 1986-04-24 1986-04-24 Welding method for two phase stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9605086A JPS62252682A (en) 1986-04-24 1986-04-24 Welding method for two phase stainless steel pipe

Publications (1)

Publication Number Publication Date
JPS62252682A true JPS62252682A (en) 1987-11-04

Family

ID=14154635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9605086A Pending JPS62252682A (en) 1986-04-24 1986-04-24 Welding method for two phase stainless steel pipe

Country Status (1)

Country Link
JP (1) JPS62252682A (en)

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
JP6016170B2 (en) High toughness weld metal with excellent ductile tear strength
Steels Practical guidelines for the fabrication of duplex stainless steels
EP0867520A2 (en) Welded high-strength steel structures and methods of manufacturing the same
WO1997012072A1 (en) High-strength welded steel structures having excellent corrosion resistance
JPH11129078A (en) Welding two phase stainless steel
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
JP3330837B2 (en) Consumable electrode type gas shielded arc welding method
JPH11320097A (en) Weld joint structure of high cr ferrite steel
Westin et al. Experience in welding stainless steels for water heater applications
JPH0724577A (en) Butt welding method for clad tubes
Hudson et al. Girth welding of X100 pipeline steels
JPH09168878A (en) Manufacture of duplex stainless steel welded tube
JPS62252682A (en) Welding method for two phase stainless steel pipe
US6831248B2 (en) Use of helium/nitrogen gas mixtures for the laser welding of stainless steel pipes
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics
JP2003220492A (en) Cored wire for laser beam welding of steel material and solid wire
Lauro et al. Welding and weldability of the ‘super-austenitic’and ‘super-martensitic’stainless steels
Holmberg Progress on welding of high nitrogen alloyed austenitic stainless steels
Gorka et al. A technology for the welding of tubes to perforated, clad tube plates
JP2001107200A (en) Martensitic stainless steel welded joint excellent in toughness and strength
JP2000288738A (en) Structure in welded joint of high chrominum ferrite steel
JPH05212539A (en) Production of steel tube for contact weld
JP3146889B2 (en) Method for producing duplex stainless steel welded pipe with excellent weld toughness and corrosion resistance