JPS6225236A - Particles detecting device using light - Google Patents

Particles detecting device using light

Info

Publication number
JPS6225236A
JPS6225236A JP60166419A JP16641985A JPS6225236A JP S6225236 A JPS6225236 A JP S6225236A JP 60166419 A JP60166419 A JP 60166419A JP 16641985 A JP16641985 A JP 16641985A JP S6225236 A JPS6225236 A JP S6225236A
Authority
JP
Japan
Prior art keywords
light
flow cell
removing member
stray
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60166419A
Other languages
Japanese (ja)
Inventor
Shingo Suminoe
伸吾 住江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP60166419A priority Critical patent/JPS6225236A/en
Publication of JPS6225236A publication Critical patent/JPS6225236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Abstract

PURPOSE:To catch scattered light in its natural state without converging it on one point through an optical system and to shorten an adjustment time by providing a stray light removing member between a flow cell and a light receiver. CONSTITUTION:The focus P of a condenser lens 8 for a light beam (a) is positioned at a particle array in the flow cell 2. Then, a stray light removing member 5 and the light receiver 4 are arranged at a specific angle theta at a specific position from the center of the flow cell 2 to catch the focus P of the particle array 1 in a light passing hole 6, thus adjusting the optical axis. Part of the scattered light (b) generated by irradiating particles in the particle array 1 in the flow cell 2 with the light beam (a) passes through the light passing hole 6 of the stray light removing member 5 and is detected by the light receiver 4. At this time, reflection on the internal surface is prevented and stray light and straight traveling light (c) are removed securely because the internal surface of the light passing hole 6 is a twisted surface.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、液体中の粒子、例えば血液中の血球等を、
光照射を受けた粒子からの散乱光により検出する光によ
る粒子検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is directed to the use of particles in a liquid, such as blood cells in blood.
The present invention relates to a light-based particle detection device that detects light scattered from particles irradiated with light.

従来の技術 微粒子を含むfiA液を中心にしてさや状に周囲に高速
流体を通すと、中心流は粒子が1列に流れる程度の細流
となる。この粒子に光を照射して粒子の散乱光を検出す
ることにより、縣濁液中の粒子の検出が行なえる。
Conventional Technology When a high-speed fluid is passed around a fiA liquid containing fine particles in a sheath shape, the central flow becomes a rivulet in which the particles flow in a single line. Particles in the suspension can be detected by irradiating the particles with light and detecting the scattered light of the particles.

従来のこの種粒子検出装置の原理構造を第5図に示す0
図において、20は角パイプ状のフローセルであり、粒
子を含む縣濁液を中心にして周囲に高速流体を通してお
り、中心流に粒子列21が形成されている。レーザ発光
装置からなる光源22からの光線aは、コンデンサレン
ズ23で粒子列21に焦点Pを持つように収束され、粒
子列21の粒子から散乱光すを発生させる。散乱光すは
コレクタレンズ24によって集められ、ピンホール板2
5を通過して受光器26に入る。受光器26は光電変換
により電気パルスを発生する。光源22からの光線aの
直進光すなわち粒子に当らなかった光は、コレクタレン
ズ24の前のダークフィールドデスク27により遮断さ
れ、かつ周囲の迷光ハヒンホール板25により遮断され
る。これにより、粒子からの散乱光すのみが受光器26
で検出され、粒子測定が行なえる。
The principle structure of a conventional particle detection device of this type is shown in Figure 5.
In the figure, reference numeral 20 denotes a rectangular pipe-shaped flow cell, through which a high-speed fluid is passed around a suspension liquid containing particles, and particle arrays 21 are formed in the central flow. A light beam a from a light source 22 consisting of a laser emitting device is converged by a condenser lens 23 so as to have a focal point P on the particle array 21, and the particles of the particle array 21 generate scattered light. The scattered light is collected by the collector lens 24, and the pinhole plate 2
5 and enters the light receiver 26. The light receiver 26 generates electric pulses by photoelectric conversion. The straight light of the light ray a from the light source 22, that is, the light that does not hit the particles, is blocked by the dark field disk 27 in front of the collector lens 24 and by the surrounding stray light Hahinhole plate 25. As a result, only the scattered light from the particles is transmitted to the light receiver 26.
can be detected and particle measurements can be performed.

発明が解決しようとする問題点 測定粒子は直径が0.5μ程度と小さいため、粒子から
の散乱光すを検知するには高倍率高感度の光学系を必要
とする。そのため、この従来構造ではコレクタレンズ2
4やピンホール板25を用いているが、これにより調整
作業が煩雑となっている。すなわち、コンデンサレンズ
23の焦点Pと、フローセル20の粒子列21の位置と
、コレクタレンズ24の物点位置とを合わさなくてはな
らず、またコレクタレンズ24の物点位置と共役な位置
にピンホール板25のピンホールを置かなくてはならな
い。そのため、コンデンサレンズ23の軸とコレクタレ
ンズ24の軸をフローセル20の中心で合致させる調整
が必要であり、この調整に多大な時間(3〜4時間)を
要する。
Problems to be Solved by the Invention Since the particles to be measured have a small diameter of about 0.5 μm, a high-magnification, high-sensitivity optical system is required to detect the scattered light from the particles. Therefore, in this conventional structure, the collector lens 2
4 and a pinhole plate 25 are used, but this makes the adjustment work complicated. That is, the focal point P of the condenser lens 23, the position of the particle array 21 of the flow cell 20, and the object point position of the collector lens 24 must be aligned, and the focus must be placed at a position conjugate with the object point position of the collector lens 24. A pinhole in the hole plate 25 must be placed. Therefore, it is necessary to adjust the axis of the condenser lens 23 and the axis of the collector lens 24 to match at the center of the flow cell 20, and this adjustment takes a long time (3 to 4 hours).

また、コレクタレンズ24や、ピンホール板25や、ダ
ークフィールドデスク27は、精密で限界的高性能を要
するため、部品としてのコストが高い、しかも、これら
に光軸調整のための細ねしによるx−y−z微動ステー
ジ等を備える必要があり、これらを含めると光学系のコ
ストが高くなる。
In addition, the collector lens 24, pinhole plate 25, and dark field desk 27 require precision and marginal high performance, so their cost as parts is high. It is necessary to include an x-y-z fine movement stage, and including these will increase the cost of the optical system.

さらに、フローセル20とピンホール板25の距離は、
市販および特注の安定人手できる限界性能のコレクタレ
ンズ24を使用しても、150〜160mになる。その
ため、検出装置全体では300龍以上となり、装置を小
型化できない。
Furthermore, the distance between the flow cell 20 and the pinhole plate 25 is
Even if a commercially available or custom-made collector lens 24 with the limit performance that can be stably handled manually is used, the distance will be 150 to 160 m. Therefore, the entire detection device requires more than 300 dragons, making it impossible to downsize the device.

この発明は、これらの欠点に鑑みなされたもので、調整
時間を飛IM的に短縮でき、かつ小型で低コストの光に
よる粒子検出装置を提供することを目的とする。
The present invention has been made in view of these drawbacks, and an object of the present invention is to provide a small-sized, low-cost light-based particle detection device that can significantly shorten adjustment time.

問題点を解決するための手段 この発明は、フローセルから受光器までの間に、従来の
光学系の代りに迷光除去部材を設けたちのである。迷光
除去部材は、散乱光を通過させる光通過孔を有するもの
である。
Means for Solving the Problems The present invention provides a stray light removing member between the flow cell and the light receiver instead of the conventional optical system. The stray light removing member has a light passage hole through which scattered light passes.

作用 この構成によると、次の作用が得られる。フローセルの
粒子列の粒子に光線を照射することにより生した散乱光
は、粒子に当らずに進む直進光の立体角の周囲にあるが
、この散乱光の一部が迷光除去部材の光通過孔を通り、
受光器で検出される。
Effects According to this configuration, the following effects can be obtained. Scattered light generated by irradiating light beams onto the particles in the particle array of the flow cell is around the solid angle of the straight light that travels without hitting the particles, but some of this scattered light passes through the light passage hole of the stray light removal member. through,
Detected by a photoreceiver.

直進光および周囲の迷光は、迷光除去部材の光通過孔を
通過できず、遮断される。
Straight light and surrounding stray light cannot pass through the light passage hole of the stray light removing member and are blocked.

この発明では、粒子検出信号となる散乱光を、従来のよ
うに光学系を使って1点に集めることをせず、自然の状
態で捉えるため、従来のように高精度な位置決めを必要
とせず、迷光除去部材等の位置調整が簡単に行なえる。
In this invention, the scattered light that becomes the particle detection signal is captured in its natural state without using an optical system to collect it at one point as in the past, so there is no need for highly accurate positioning as in the past. , the position of the stray light removing member, etc. can be easily adjusted.

このように、散乱光の受光側については、高精度な調整
を全く必要としないので、x−y−z微動ステージ等を
用いる必要がなく、コストが低減される。また、高価な
部品であるダークフィールドディスクや、コレクタレン
ズや、ピンホール板を必要としないので、このことから
もコストが低減される。また、前述のように受光器をフ
ローセルに近づけられるので、装置全体をコンパクトに
できる。
In this way, since there is no need for highly accurate adjustment at all on the light receiving side of the scattered light, there is no need to use an xyz fine movement stage, etc., and costs are reduced. Furthermore, since there is no need for expensive components such as a dark field disk, collector lens, or pinhole plate, costs are also reduced. Furthermore, as mentioned above, since the light receiver can be brought close to the flow cell, the entire device can be made compact.

従来のコレクタレンズの除去による感度低下は、散乱光
の光源となる粒子列に受光器を近接させることによって
補なえる。受光側にコレクタレンズを用いないことから
、焦点距離の問題がなく、受光器をフローセルに近接さ
せることが可能である。
The reduction in sensitivity due to the removal of the conventional collector lens can be compensated for by placing the light receiver close to the particle array that serves as the light source of the scattered light. Since no collector lens is used on the light receiving side, there is no focal length problem and the light receiver can be placed close to the flow cell.

受光強度は距離の2乗に反比例して減少するので、受光
器を光源に近ずけたことによる感度向上効果は大きい、
また、このように散乱光の受光感度が向上することから
、信号とノイズの比が大きくなり、正確な粒子検出が行
なえる。
Since the received light intensity decreases in inverse proportion to the square of the distance, the effect of improving sensitivity by moving the receiver closer to the light source is large.
Furthermore, since the light reception sensitivity of scattered light is improved in this way, the signal-to-noise ratio becomes large, and accurate particle detection can be performed.

実施例の説明 この発明の一実施例を第1図ないし第3図に示す、この
粒子検出装置は、粒子列lを形成した状態に流体を流す
フローセル2と、このフローセル2中の粒子列1に光線
aを照射する光照射手段3と、光線aが粒子列1の粒子
に当って反射した敗乱光すを検出する受光器4とを備え
た光による粒子検出装置において、フローセル2と受光
器4との間に前記散乱光を通過させる光通過孔6を有す
る迷光除去部材5を設けたものである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention is shown in FIGS. 1 to 3. This particle detection device includes a flow cell 2 through which a fluid flows in a state where a particle column 1 is formed, and a particle column 1 in the flow cell 2. In an optical particle detection device comprising a light irradiation means 3 for irradiating a light beam a to a particle array 1, and a light receiver 4 for detecting scattered light reflected by the light beam a, the flow cell 2 and the light receiving device are provided. A stray light removing member 5 having a light passage hole 6 through which the scattered light passes is provided between the stray light removing member 5 and the vessel 4.

フローセル2は第5図の例と同様である。光照射手段3
は、20mWの半導体レーザからなる光源7と、コンデ
ンサレンズ8とからなる。受光器4は、直径1fi程度
の受光面を有するものであれば十分であるが、この例で
は2.4fl角のシリコンスオドダイオードを用いてお
り、直径0.6μmのラテックスの検出ができる性能を
持つ、受光器4は迷光除去部材5の光通過孔6の出口6
aに近接して配置する。
The flow cell 2 is similar to the example shown in FIG. Light irradiation means 3
consists of a light source 7 consisting of a 20 mW semiconductor laser and a condenser lens 8. It is sufficient for the photoreceiver 4 to have a light-receiving surface with a diameter of about 1fi, but in this example, a 2.4fl square silicon square diode is used, which has the ability to detect latex with a diameter of 0.6μm. The light receiver 4 has an exit 6 of the light passage hole 6 of the stray light removing member 5.
Place it close to a.

連孔除去部材5は、厚肉円筒状のものであり、材質とし
て黒のポリアセタール樹脂を用いている。
The continuous hole removing member 5 has a thick cylindrical shape and is made of black polyacetal resin.

光通過孔6はトンネル状のものであって、内径に対して
奥行を十分に長くしてあり、かつ光軸Aに対して若干傾
かせである。光通過孔6は、内径を1mとし、内面をピ
ッチが0.5 tmのねし面に形成しである。光通過孔
6の傾斜角θは例えば5〜7゜とし、迷光除去部材5と
フローセル2の中心との距離は12〜13龍とする。こ
れにより、光線aの粒子列1に当る焦点Pを光通過孔6
内に捕えられるように調整する。
The light passage hole 6 is tunnel-shaped, has a sufficiently long depth relative to its inner diameter, and is slightly inclined with respect to the optical axis A. The light passage hole 6 has an inner diameter of 1 m, and the inner surface is formed into a tapered surface with a pitch of 0.5 tm. The inclination angle θ of the light passage hole 6 is, for example, 5 to 7 degrees, and the distance between the stray light removing member 5 and the center of the flow cell 2 is 12 to 13 degrees. As a result, the focal point P of the light ray a hitting the particle array 1 is shifted to the light passing hole 6.
Adjust so that it can be captured inside.

なお、迷光除去部材5と受光器4とは予め軸合せして互
いに一体に固定しておく、この一体化したものは、上下
および左右に位Wfff整可能なように支持台(図示せ
ず)に取付ける。また、コンデンサレンズ8は、光軸A
の方向に前後移動(X方向)可能に支持台に設置し、フ
ローセル2はその長手方向と光軸Aとに直交する方向(
Y方向)に移動可能な支持台に設置しである。
The stray light removing member 5 and the light receiver 4 are aligned in advance and fixed integrally with each other. Attach to. Further, the condenser lens 8 has an optical axis A
The flow cell 2 is installed on a support stand so that it can move back and forth in the direction (X direction), and the flow cell 2 is moved in the direction perpendicular to its longitudinal direction and the optical axis A (
It is installed on a support stand that is movable in the Y direction.

この構成によると、次の作用が得られる。フローセル2
の粒子列■の粒子に照射した光線aにより生じた散乱光
すは、粒子に当らずに進む直進光Cの周囲にあるが、こ
の散乱光すの一部が迷光除去部材5の光通過孔6を通り
、受光器4で検出される。直進光Cは迷光となるが、そ
の迷光は迷光除去部材5の光通過孔6を通過できず、遮
断される。このとき、光通過孔6の内面がねじ面となっ
ていることから、内面での反射が防止できて迷光および
直進光Cの除去がより一層確実に行なえる。
According to this configuration, the following effects can be obtained. flow cell 2
The scattered light generated by the light beam a irradiated on the particles of the particle row (■) is located around the straight light C that travels without hitting the particles, but a part of this scattered light passes through the light passage hole of the stray light removing member 5. 6 and is detected by the light receiver 4. Although the straight light C becomes stray light, the stray light cannot pass through the light passage hole 6 of the stray light removing member 5 and is blocked. At this time, since the inner surface of the light passage hole 6 is a threaded surface, reflection on the inner surface can be prevented, and stray light and straight light C can be removed more reliably.

従来のコレクタレンズの除去による感度低下は、受光器
4を散乱光すの光源となる粒子列1に近接させることに
よって補なえる。受光側にコレクタレンズを用いないこ
とから、像点距離の問題がなく、受光器4をフローセル
2に近接させることが可能である。受光強度は距離の2
乗に反比例して減少するので、受光器4を光源に近すけ
たことによる感度向上効果は大きい、また、このように
散乱光すの受光感度が向上することから、信号とノイズ
の比が大きくなる。これにより、従来の検出装置と同等
以上の検出性能が得られる。
The decrease in sensitivity due to the removal of the conventional collector lens can be compensated for by placing the light receiver 4 close to the particle array 1 that is the light source of the scattered light. Since no collector lens is used on the light receiving side, there is no problem with the image point distance, and the light receiver 4 can be placed close to the flow cell 2. The received light intensity is 2 of the distance
Since the sensitivity decreases in inverse proportion to the power of Become. As a result, detection performance equivalent to or higher than that of conventional detection devices can be obtained.

光軸調整は次のように行なう、すなわち、コンデンサレ
ンズ8のX方向移動と、フローセル2のY方向移動とに
より、光線aのコンデンサレンズ8による焦点Pがフロ
ーセル2内の粒子列1に位置するようにする。この後、
予じめ軸を互いに合せられた迷光除去部材5と受光器4
を、所定の傾斜角度θでフローセル2の中心から所定位
置に来るように配置して、粒子列2の焦点Pを光通過孔
6内に捉えることによって調整は完了する。
The optical axis adjustment is performed as follows. That is, by moving the condenser lens 8 in the X direction and moving the flow cell 2 in the Y direction, the focal point P of the light ray a by the condenser lens 8 is located at the particle row 1 in the flow cell 2. Do it like this. After this,
Stray light removing member 5 and light receiver 4 whose axes are aligned with each other in advance
is arranged at a predetermined inclination angle θ at a predetermined position from the center of the flow cell 2, and the adjustment is completed by capturing the focal point P of the particle array 2 within the light passage hole 6.

このとき、従来のように散乱光すを光学系を使って1点
に集めることをせず、自然の状態で捉えるので、高精度
な位置調整を必要としない、また、次のことからも位置
調整が粗なものですむ、すなわち、光通過孔6は出口6
a側が光軸A II+から離れるように傾斜した孔であ
り、またトンネル状の孔であって内径に対して奥行長さ
が長いため、直進光Cは光通過孔6を全く通過できず、
また通過できたとしても、そのように通過可能となる迷
光除去部材5の位置はごくわずかな範囲に限られる。
At this time, the scattered light is captured in its natural state without using an optical system to focus it on one point as in the past, so there is no need for highly accurate position adjustment. Only rough adjustment is required, that is, the light passing hole 6 is the exit 6
Since the hole is inclined so that the a side is away from the optical axis A II+, and it is a tunnel-shaped hole with a long depth relative to the inner diameter, the straight light C cannot pass through the light passage hole 6 at all.
Furthermore, even if the stray light can pass through, the position of the stray light removing member 5 that allows the stray light to pass through is limited to a very small range.

これに対して、散乱光すの進む方向は光軸Aに対して傾
斜しており、光通過孔6の傾き角度に近いので、迷光除
去部材5の中心軸Bの位置が第3図のように焦点Pから
多少ずれていても、散乱光すが通過可能となる。このた
め、迷光除去部材5の位ii整に高精度を必要としない
On the other hand, since the direction in which the scattered light travels is inclined with respect to the optical axis A and is close to the inclination angle of the light passage hole 6, the position of the central axis B of the stray light removing member 5 is as shown in FIG. Scattered light can pass through even if it is slightly deviated from the focal point P. Therefore, high precision is not required for positioning the stray light removing member 5.

このように、迷光除去部材5の位2!調整に精度を要せ
ず、しかも受光側につき従来ではコレクタレンズとピン
ホール板との2部材の調整を必要としたのに対して、こ
の装置では迷光除去部材5の調整だけですむ、そのため
、光軸調整に要する時間が大幅に短縮され、従来では3
〜4時間必要であったところが、30秒程度ですむ。
In this way, the digit 2 of the stray light removing member 5! Adjustment does not require precision, and whereas conventional systems require adjustment of two components, the collector lens and pinhole plate, on the light receiving side, this device only requires adjustment of the stray light removal member 5. The time required for optical axis adjustment has been significantly shortened, compared to 3
What used to take ~4 hours can now be completed in about 30 seconds.

また、このように散乱光すの受光側については、高精度
な調整を全く必要としないので、x−y−Z微動ステー
ジ等を用いる必要がなく、コストが低減される。また、
高価な部品であるダークフィールドディスクや、コレク
タレンズや、ピンホール板を必要としないので、このこ
とからもコストが低減される。さらに、前述のように受
光器4をフローセル2に近づけられるので、装置全体を
コンパクトにできる0例えば、フローセル2と受光器4
との距離はlO〜15fiとでき、検出装置全体の長さ
を120fl程度とできる。
Furthermore, since there is no need for highly accurate adjustment at all on the light receiving side of the scattered light, there is no need to use an x-y-z fine movement stage, etc., and costs are reduced. Also,
This also reduces costs because there is no need for expensive components such as a dark field disk, collector lens, or pinhole plate. Furthermore, as mentioned above, since the light receiver 4 can be brought close to the flow cell 2, the entire device can be made compact.
The distance can be set to 10 to 15fi, and the length of the entire detection device can be set to about 120 fl.

なお、前記実施例では、迷光除去部材5を円筒状とした
が、第4図のように迷光除去部材5′の光通過孔6′を
薄い角スリット状としてもよい。
In the above embodiment, the stray light removing member 5 is cylindrical, but the light passing hole 6' of the stray light removing member 5' may be formed into a thin rectangular slit shape as shown in FIG.

また、光通過孔6.6′の内面は、ねじ面の代りに凹凸
の粗面としてもよく、また平らな面としてもよい。
Further, the inner surface of the light passage hole 6.6' may be a rough surface with unevenness instead of a threaded surface, or may be a flat surface.

発明の効果 この発明の光による粒子検出装置は、粒子検出信号とな
る散乱光を光学系を使って1点に集めることをせず、迷
光除去部材の光通過孔に通すだけで自然の状態で捉える
ので、高精度な調整を必要としない、そのため調整時間
が大幅に短縮される。
Effects of the Invention The light-based particle detection device of this invention does not use an optical system to collect the scattered light that serves as a particle detection signal at one point, but simply passes it through the light passage hole of the stray light removal member, allowing it to be detected in its natural state. Because it captures the information, highly accurate adjustment is not required, which greatly reduces adjustment time.

受光側のレンズを省いたことによる感度低下は、散乱光
の光源となる粒子列に受光器を近接させることにより補
なえる。
The decrease in sensitivity caused by omitting the lens on the light receiving side can be compensated for by placing the light receiver close to the particle array that serves as the light source of the scattered light.

また、前述のように高精度を必要としないことから、微
動位置決め装置が不要となり、また高価な部品であるレ
ンズ等を受光側に使用しないので、部品コストも低減さ
れる。さらに、受光側にレンズを用いないので、焦点距
離をとる必要がなくて、小型化が図れるという効果があ
る。
Furthermore, since high precision is not required as described above, a fine positioning device is not required, and expensive parts such as lenses are not used on the light receiving side, so component costs are also reduced. Furthermore, since no lens is used on the light-receiving side, there is no need to set a focal length, resulting in an effect of miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の断面図、第2図はその迷
光除去部材の拡大断面図、第3図は同じくその作用説明
図、第4図は迷光除去部材の変形例の斜視図、第5図は
従来の光学式粒子検出装置の原理図である。 1・・・粒子列、2・・・フローセル、3・・・光照射
手段、4・・・受光器、5・・・迷光除去部材、6・・
・光通過孔、a・・・光線、b・・・散乱光、C・・・
直進光E、1Ji(’−:中 1−  粒子列      2=−70−亡ル    
3・・范照鰐手「え4− 受tXS一式し尤Jをfl]
薊4人    6・・先通−ALa−え、線     
b−・−炊糺肥    c−直1尤第1図 第2図 第3図
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the stray light removing member, FIG. 3 is an explanatory diagram of its operation, and FIG. 4 is a perspective view of a modified example of the stray light removing member. , FIG. 5 is a principle diagram of a conventional optical particle detection device. DESCRIPTION OF SYMBOLS 1... Particle row, 2... Flow cell, 3... Light irradiation means, 4... Light receiver, 5... Stray light removal member, 6...
・Light passing hole, a...light beam, b...scattered light, C...
Straight light E, 1Ji ('-: medium 1- particle array 2 = -70-destruction
3. Fan Teruwanite “E4- Complete set of UtXS and fl J]
薊4 people 6...Sientoshi-ALa-E, line
b-・-Cooked fertilizer c-Direct 1-Yu Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)粒子列を形成した状態に流体を流すフローセルと
、このフローセル中の粒子列に光線を照射する光照射手
段と、前記光線が前記粒子列の粒子に当って反射した散
乱光を検出する受光器とを備えた光による粒子検出装置
において、前記フローセルと前記受光器との間に、前記
散乱光を通過させる光通過孔を有する迷光除去部材を設
けたことを特徴とする光による粒子検出装置。
(1) A flow cell that allows a fluid to flow through a particle array, a light irradiation means that irradiates a light beam onto the particle array in the flow cell, and detects scattered light that is reflected by the light beam hitting the particles in the particle array. An optical particle detection device comprising a light receiver, further comprising a stray light removing member having a light passage hole through which the scattered light passes between the flow cell and the light receiver. Device.
(2)前記光通過孔は、内径に対して奥行が十分に長い
ものとし、かつ前記光線の光軸に対して出口側が離れる
向きに傾かせた特許請求の範囲第(1)項記載の光によ
る粒子検出装置。
(2) The light passage hole according to claim 1, wherein the light passage hole has a sufficiently long depth relative to the inner diameter, and is tilted so that the exit side is away from the optical axis of the light beam. particle detection device.
(3)前記光通過孔の内面を凹凸面に形成した特許請求
の範囲第(2)項記載の光による粒子検出装置。
(3) The light-based particle detection device according to claim (2), wherein the inner surface of the light passage hole is formed into an uneven surface.
JP60166419A 1985-07-26 1985-07-26 Particles detecting device using light Pending JPS6225236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166419A JPS6225236A (en) 1985-07-26 1985-07-26 Particles detecting device using light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166419A JPS6225236A (en) 1985-07-26 1985-07-26 Particles detecting device using light

Publications (1)

Publication Number Publication Date
JPS6225236A true JPS6225236A (en) 1987-02-03

Family

ID=15831075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166419A Pending JPS6225236A (en) 1985-07-26 1985-07-26 Particles detecting device using light

Country Status (1)

Country Link
JP (1) JPS6225236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590619U (en) * 1992-05-20 1993-12-10 松下電器産業株式会社 Optical head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112271A (en) * 1974-07-17 1976-01-30 Noritsu Kk Junkan kyutoshikifurogama

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112271A (en) * 1974-07-17 1976-01-30 Noritsu Kk Junkan kyutoshikifurogama

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590619U (en) * 1992-05-20 1993-12-10 松下電器産業株式会社 Optical head

Similar Documents

Publication Publication Date Title
US4273443A (en) Method and apparatus for measurement of reradiation in particle flow cell systems
US4341471A (en) Apparatus and method for measuring the distribution of radiant energy produced in particle investigating systems
US4920275A (en) Particle measuring device with elliptically-shaped scanning beam
US5576831A (en) Wafer alignment sensor
EP0503874A2 (en) Optical measurement device with enhanced sensitivity
US4286876A (en) Apparatus and method for measuring scattering of light in particle detection systems
JPH038686B2 (en)
JP2000230901A (en) Optical unit
CN100370223C (en) Double hole type measural apparatus for scattering angle of laser beam
JPS6225236A (en) Particles detecting device using light
JPS6225237A (en) Particles detecting device using light
JPH0749302A (en) Method and apparatus of measuring particle size of microparticle in fluid
GB2041516A (en) Methods and apparatus for measurement of reradiation in particle flow cell systems
JPH0262178B2 (en)
JPS61288139A (en) Fine particle detecting device
JPH0438282Y2 (en)
JPS60161548A (en) Apparatus for measuring scattered light of flowing fine particulate material
JPH02193041A (en) Particle size distribution apparatus
JP2681829B2 (en) Raindrop particle size distribution measuring device
JPS61112905A (en) Optical measuring apparatus
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPS62151742A (en) Analyzing and selecting device for corpuscle
US4712914A (en) Device for characterizing wide angle beams
JPH0513454B2 (en)
JPH06242015A (en) Microparticle detection system