JPS62250865A - Rotor of superconducting rotary electric machine - Google Patents

Rotor of superconducting rotary electric machine

Info

Publication number
JPS62250865A
JPS62250865A JP61095112A JP9511286A JPS62250865A JP S62250865 A JPS62250865 A JP S62250865A JP 61095112 A JP61095112 A JP 61095112A JP 9511286 A JP9511286 A JP 9511286A JP S62250865 A JPS62250865 A JP S62250865A
Authority
JP
Japan
Prior art keywords
helium
field coil
superconducting
superconducting field
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61095112A
Other languages
Japanese (ja)
Inventor
Kenji Kataoka
片岡 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61095112A priority Critical patent/JPS62250865A/en
Publication of JPS62250865A publication Critical patent/JPS62250865A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To smoothen the flow of helium inside a slot by introducing a first padding with oval holes between a superconducting field coil and a wedge, and by introducing a second padding with through holes between the superconducting field coil and the first padding. CONSTITUTION:A first padding 22 with oval holes 22a in the slot width direction is introduced between a superconducting coil 3 and a wedge 18. Then between the superconducting field coil 3 and the first padding 22 is introduced a second padding with through holes 23a communicating to the oval holes 22a, e.g., with the diameter larger than the width of the oval holes 22a. The shortage of helium around the superconducting field coil 3 is made up for the helium flowing from the helium passage 20 to the superconducting field coil 3 and around through the clearance between wedges 18, the oval holes 22a of the first padding 22 and through holes 23a of the second padding 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超電導回転電機の回転子の構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to the structure of a rotor of a superconducting rotating electric machine.

〔従来の技術〕[Conventional technology]

従来この種の回転子として、例えば特開昭57−22r
5ツ29r公報に開示されたものがあり、その構成ft
第1図に示す。第1図において、fi+はトルクチュー
ブ、[2)i)ルクチューブfi+の中央部を形成する
コイル取付軸、(31はコイル取付軸(2)に固定され
ている超電導界磁コイル、+41fl)ルクチューブ+
11とコイル取付軸(2)を囲繞する常温ダンノ(、+
51 I/iこの常温ダンパ(4)とコイル取付軸+2
)の間に配役されている低温ダンパ、(6)及び(7)
はコイル取付軸(2)の夫々外周部及び側面部に取り付
けられたヘリウム外筒、ヘリウム端板、(8)及び(9
1け夫々駆動側、反駆動側端部軸、tto+#:tとわ
らの端部軸+81 、 +91を軸支する軸受、(2)
は界磁電流供給用のスリップリング、(2)にトルクチ
ューブ+11に形岬或いは配置さねている熱交換器、Q
3t′i側部輻射シールド、α◆は真空部である。
Conventionally, as this type of rotor, for example, JP-A-57-22R
There is something disclosed in the 5th 29r publication, its composition ft
Shown in Figure 1. In Fig. 1, fi+ is a torque tube, [2) i) a coil mounting shaft forming the central part of the torque tube fi+, (31 is a superconducting field coil fixed to the coil mounting shaft (2), +41fl) torque tube +
11 and the normal temperature Danno (, +
51 I/i This room temperature damper (4) and coil mounting shaft +2
), the low temperature damper is placed between (6) and (7)
are a helium outer cylinder, a helium end plate, (8) and (9) attached to the outer periphery and side surface of the coil mounting shaft (2), respectively.
Bearings that support the drive side and non-drive side end shafts, tto+#: t and straw end shafts +81 and +91, respectively, (2)
(2) is a slip ring for supplying field current, (2) is a heat exchanger shaped like a cape or placed on the torque tube +11, (Q)
3t′i side radiation shield, α◆ is a vacuum part.

上記構成からなる超電導回転機の回転子においては、コ
イル取付軸(2)に配役されている超電導界磁コイル(
3)を極低温に冷却することにより、電気抵抗を零の状
態とし、励磁損失をなくすことにより、この超電導界磁
コイル+31に強力な磁界を発生させ、固定子(図示せ
ず)に交流電力を発生させる。この超電導界磁コイル(
31を極低温に冷却、保持するために液体ヘリウムを反
駆動側咽部軸(91の中央部から導入管(図示せず)を
通じ、ヘリウム外筒(6)、ヘリウム端板(7)により
形成される液体ヘリウム容器部に供給する一方、回転子
内部を真空部αりにより高真空に保つと共に、極低温の
超電導界磁コイル(31及びコイル取付軸(2!に回転
トルクを伝えるトルクチューブ11+を薄肉円筒とし、
且つ熱交換器Q2を投け、このトルクチューブfi+を
通じ極低温部に侵入する熱を極力減らす陶が最も一般的
である。さらに、側面からの輻射により侵入する熱を低
減するため、側部輻射シールド(至)が設けられている
In the rotor of the superconducting rotating machine having the above configuration, the superconducting field coil (
3) is cooled to an extremely low temperature to bring the electrical resistance to zero and eliminate excitation loss, thereby generating a strong magnetic field in this superconducting field coil +31 and supplying AC power to the stator (not shown). to occur. This superconducting field coil (
In order to cool and maintain the 31 at an extremely low temperature, liquid helium is passed through an inlet pipe (not shown) from the center of the anti-drive side throat shaft (91), formed by a helium outer cylinder (6) and a helium end plate (7). While supplying liquid helium to the liquid helium container section where Let be a thin cylinder,
The most common method is to use a heat exchanger Q2 to reduce as much as possible the heat that enters the cryogenic part through the torque tube fi+. Additionally, side radiation shields are provided to reduce heat entering due to radiation from the sides.

一方、常温ダンパ(41及び低温ダンパ(51は、固定
子からの高調波磁界をシールrし、超電導界磁コイル(
31を保護すると共に、電力系統のじよう乱による回転
子振動を減衰させる機能を有する一方、常温ダンパf4
1H真空外筒としての機能、低温夕゛ンノくけヘリウム
容器部への輻射シールドとしての機能を兼ねる方式が一
般的である。なお、第1図(こおいては、回転子内部の
ヘリウム導入、排出系を構成する配管類及び回転子に接
続されているへIJウム導入、排出装置は省略した。
On the other hand, a normal temperature damper (41) and a low temperature damper (51) seal harmonic magnetic fields from the stator, and superconducting field coils (
31 and damps rotor vibrations caused by disturbances in the power system.
A common method is to function as a 1H vacuum outer cylinder and as a radiation shield for the helium container part in the low-temperature bath. In addition, in FIG. 1, the piping constituting the helium introduction and discharge system inside the rotor and the IJ helium introduction and discharge device connected to the rotor are omitted.

第8図は第γ図■−■線における断面図、即ち特開昭5
’7−202852号公報に示されたものであり、(2
)はコイル取付軸、(3)は超電導界磁コイル、(6)
はヘリウム外筒、α5は液体ヘリウムの液溜め部、qQ
はヘリウム蒸気空間、αηはコイル取付軸(2)に形成
された超電導界磁コイル(31を収納するスロット、q
Qは超電導界磁コイル(3)を固定するウェッジ、α9
は超電導界磁コイル(3)とウェッジαQとの間に挿入
されたつめものであり、例えば円形状の貫通孔(19a
)を有している。(1)はコイル取付軸(2)とへ1ノ
ウム外筒(6)との間に設けられたヘリウム流路、3N
)は液溜め部(至)とスロットαηの底部とに連通して
設けられたコイル取付軸ヘリウム流通孔である。
Figure 8 is a cross-sectional view taken along the line ■-■ of Figure γ, that is, JP-A No. 5
It is shown in the '7-202852 publication, (2
) is the coil mounting shaft, (3) is the superconducting field coil, (6)
is the helium outer cylinder, α5 is the liquid helium reservoir, qQ
is the helium vapor space, αη is the slot that accommodates the superconducting field coil (31) formed on the coil mounting shaft (2), and q
Q is the wedge that fixes the superconducting field coil (3), α9
is a plug inserted between the superconducting field coil (3) and the wedge αQ, for example, a circular through hole (19a
)have. (1) is a helium flow path provided between the coil mounting shaft (2) and the outer tube (6), 3N
) is a coil mounting shaft helium flow hole provided in communication with the liquid reservoir (to) and the bottom of the slot αη.

一般的に超電導回転電機においては、超電導界磁コイル
の極低温冷却をいかにして行なうかという点に重要な技
術問題がある。超電導界磁コイルを超電導状態にするた
めには、超電遷移温度以下に冷却することが必要であり
、現在ではヘリウムを冷却媒体として絶対温度1にない
し20Kに保持することが行なわれている。一方、この
ような極低温状態においては超電導界磁コイルの比熱が
極めて小さくなっているため、超電導界磁コイル内の微
少な発熱あるいけ超電導界磁コイルへの僅かな侵入熱量
によって超電導界磁コイルの温度が上昇し超電導遷移温
度を越える恐れが常に存在する。従って、超電導界磁コ
イル内の微少な発熱あるいけ超電導界磁コイルへの僅か
な侵入熱tkいかに速かに除去して超電導界磁コイルの
温度上昇をおさえるかが超電導回転稀の設計上の重要な
ポイントとなる。
Generally speaking, in superconducting rotating electric machines, there is an important technical problem in how to cool the superconducting field coil to a cryogenic temperature. In order to bring a superconducting field coil into a superconducting state, it is necessary to cool it below the superconducting transition temperature, and currently, helium is used as a cooling medium to maintain the absolute temperature at an absolute temperature of 1 to 20 K. On the other hand, in such extremely low temperature conditions, the specific heat of the superconducting field coil is extremely small, so the superconducting field coil is heated by a small amount of heat generated within the superconducting field coil or by a small amount of heat entering the superconducting field coil. There is always a risk that the temperature of the superconductor will rise and exceed the superconducting transition temperature. Therefore, it is important in the design of superconducting rotating systems how quickly the slight heat generated in the superconducting field coil can be removed and the temperature rise of the superconducting field coil can be suppressed. This is a great point.

次に冷却動作を第9図に基づいて説明する。超電導界磁
コイル(31内の微少発熱、あるいは超電導界磁コイル
(3)への僅かな熱侵入によって生じた熱け、超電導界
磁コイル(31の周囲の僅かな間隙に存在しているヘリ
ウムに吸収される。吸熱により膨張し密度が小さくなっ
たヘリウムけ、遠心力場の自然対流によって、コイル取
付軸(2)のヘリウム流通孔(財)を経て液溜め部(至
)に出る。一方、超電導界磁コイル(3)回りで生ずる
ヘリウム不足は、ヘリウム流路(4)からウェッジ(至
)の隙間及びつめものa9の貫通孔(19&)を通って
超電導界磁コイル(31回りに流入するヘリウムによっ
て補われる。吸熱膨張したヘリウムは、液溜め部(至)
において、その一部が蒸発することによって冷却される
。冷却さnたヘリウムは、別のコイル取付軸ヘリウム流
通孔eυから超電導界磁コイル(3)の周囲に入り込み
、さらにつめもの09の貫通孔(x9m )及びウェッ
ジ(至)の隙間を通りヘリウム流路(7)に出る。
Next, the cooling operation will be explained based on FIG. 9. Heat generated by slight heat generation within the superconducting field coil (31) or by slight heat intrusion into the superconducting field coil (3), or due to helium existing in a small gap around the superconducting field coil (31). The helium tank, which expands due to heat absorption and has a lower density, exits through the helium flow hole of the coil mounting shaft (2) to the liquid reservoir (end) due to the natural convection of the centrifugal force field.On the other hand, The helium shortage that occurs around the superconducting field coil (3) flows from the helium flow path (4) to the area around the superconducting field coil (31) through the gap between the wedges (to) and the through hole (19&) of the pawl a9. The helium is supplemented by helium.The helium that has expanded endothermically is
, a portion of it evaporates to cool it down. The cooled helium enters around the superconducting field coil (3) from another coil mounting shaft helium flow hole eυ, and then passes through the through hole (x9m) of the stopper 09 and the gap between the wedge (toward) and the helium flow. Exit to road (7).

以上のように円滑な自然循環を行なうことにより、超電
導界磁コイル(31の冷却が行なわわ、超電導界磁コイ
ル(3)を超電導遷移温度以下に保っている。
By performing the smooth natural circulation as described above, the superconducting field coil (31) is cooled, and the superconducting field coil (3) is kept below the superconducting transition temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は上記のように構成されており、つめもの頭の部分
のヘリウム通路は、他の部分に比べ狭く表っており、こ
の個所でヘリウムの流通が制限さねていた。つめもの0
9の貫通孔(19& )のうちウェッジ(至)相互間の
隙間に開口するのけ一部で、開口していない貫通孔(1
9& )を出たヘリウムはウェッジ叫とつめもの09と
の間の僅かな隙間を流れることになる。貫通孔(19a
)の部分では、超電導界磁コイル(31力技持さねてい
ないため、強大な遠心力を考慮すると貫通孔(19M 
)の直径を増すことはできない。また、つめもの09の
厚さは超電導界磁コイル(31とコイル取付軸(2)と
の間の絶縁沿面距離で定まり、厚さも減少できない。従
って、従来の構成では、超電導界磁コイル(31の冷却
が悪くなっているという大きな間叩かあり、それにより
常電導遷移か発生して発電機の機能を停止する可能性が
高かった〇 この発明は上記のような間争点を解消するためになされ
たもので、超電導界磁コイルの熱除去を円滑に行い、常
′成導遷移を起こさない超電導回転電機の回転子を得る
ことを目的とする。
Conventionally, the structure was as described above, and the helium passage at the head of the nail was narrower than other parts, and the flow of helium was restricted at this location. 0 nails
Among the through holes (19 & ) of 9, only a portion opens into the gap between the wedges (to), and the through holes (19 & ) that are not open are
The helium that exits 9 &) will flow through the small gap between Wedge Scream and Tsumemo 09. Through hole (19a
), the superconducting field coil (31 force is not maintained, so considering the strong centrifugal force, the through hole (19M)
) cannot be increased in diameter. In addition, the thickness of the clamp 09 is determined by the insulation creepage distance between the superconducting field coil (31) and the coil mounting shaft (2), and the thickness cannot be reduced. Therefore, in the conventional configuration, the superconducting field coil (31) There was a big problem that the cooling of the generator was getting worse, and as a result, there was a high possibility that a normal conduction transition would occur and the generator would stop functioning. This invention was made to solve the above-mentioned problems. The purpose of the present invention is to obtain a rotor for a superconducting rotating electrical machine that smoothly removes heat from a superconducting field coil and does not cause normal conduction transition.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超電導回転電機の回転子は、超を堺界m
コイルとウェッジとの間にスロット幅方向の小判状孔を
有する第1のつめものを挿着し、超電導界磁コイルと第
1のつめものとの間に第1のつめものの小判状孔と連通
ずる貫通孔を有する第2のつめものを挿着したものであ
る。
The rotor of the superconducting rotating electrical machine according to the present invention
A first pawl having an oval hole extending in the width direction of the slot is inserted between the coil and the wedge, and a hole connected to the oval hole of the first pawl is inserted between the superconducting field coil and the first pawl. A second pawl having a through hole for communication is inserted.

〔作用〕[Effect]

この発明においては、第1のつめものにスロット幅方向
の小判状孔を設け、第2のつめものに第1のつめものの
小判状孔と連通ずる貫通孔を設はテイルので、スロット
内のヘリウム流通を円滑にする。
In this invention, the first claw is provided with an oval-shaped hole in the width direction of the slot, and the second claw is provided with a through hole that communicates with the oval-shaped hole of the first claw. Facilitate distribution.

〔実施例〕〔Example〕

以下、この発明の一実施例fr図について説明する。@
1図ないし第5図において、(財)は超電導界磁コイル
(3)とウェッジ(至)との間に挿清さね、スロット幅
方向の小判状孔(22a )を有する第1のつめもの、
(至)は超電導界磁コイル13+七第1のつめもの(財
)との間に挿着され、第1のつめもの1局の小判状孔(
22& )と連通ずる、例えば小判状孔(22&)の幅
寸法より大きい径の貫通孔(23M)を有する第2のつ
めものであり、小判状孔(22m)、 貫通孔(23a
)flウェッジ(至)相互間の隙間に合わせた位置に配
役されている。
Hereinafter, an embodiment fr diagram of the present invention will be described. @
In Figures 1 to 5, the foundation is inserted between the superconducting field coil (3) and the wedge (toward), and has a first pawl having an oval-shaped hole (22a) in the width direction of the slot. ,
(to) is inserted between the superconducting field coil 13 + the 7th first clamp (goods), and the oval-shaped hole in one station of the first clamp (
22 & ), and has a through hole (23M) with a diameter larger than the width of the oval hole (22&), for example, the oval hole (22 m), the through hole (23a)
) fl wedge (to) is placed at a position that matches the gap between them.

次に動作について説明する。第5図はスロットαη内の
ヘリウムの流通状態を示し、超電導界磁コイル13+内
の微少発熱、あるいけ超電導界磁コイル(3)への僅か
な熱侵入によって生じた熱は、超電導界隈コイル(3)
の周囲の僅かな間隙に存在しているヘリウムに吸収され
る。吸熱により膨張し密度が小さくなったヘリウムは、
遠心力場の自然対流によってコイル取付軸ヘリウム流通
孔2))を経て液溜め部09に出る。一方、超電導界磁
コイル(31回りで生ずるヘリウム不足は、ヘリウム流
路(ホ)からウェッジ08)相互間の隙間、@1のつめ
もの(ハ)の小判状孔(22a)汲び第2のつめもの(
至)のぼ通孔(23a)を経て超電導界樗コイル(31
回りに流入するヘリウムによって補われる。吸熱膨張し
たヘリウムは、液溜め部(至)において、その一部が蒸
発することによって冷却される。冷却されたヘリウムは
、別のコイル取付軸ヘリウム流通孔3υから超電導界磁
コイル(3:の周囲に入り込み、さらに、第2のつめも
の(ハ)の貫通孔(2351) 、 第1のつめものに
)の小判状孔(22& )及びウェッジ(至)相互間の
隙間を通りヘリウム流路に)に出る。このように超電導
界磁コイル(31のどの位置においても熱除去が速やか
に行わわ、常電導遷移を起こすことがなく、発電機の機
能停止を未然に防止することができる。また、ウェツジ
0&相互間の隙間が規定より−t″ねていても、小判状
孔(22a) 、貫通孔(23a)からげずねることが
なく、確実にヘリウム流路が確保できる。また、第6図
に示すように第2のつめもの翰の貫通孔(23a)の径
寸法を第1のつめもの@の小判状孔(22&)のC寸法
より小さくしてもよい。また、第1のつめもの(イ)、
@2のつめもの(ハ)は電気絶縁の役目も合わせて持つ
部材であり、絶縁沿面距離tI′i第6図に示すように
、!lのつめもの四、第2のつめもの(財)の厚さの合
計A、第2のつめもの器の貫通孔(23a)の寸法と第
1のつめもの(イ)の小判状孔(22a )の寸法との
差Bの和(A+B)で表わされる。
Next, the operation will be explained. FIG. 5 shows the flow state of helium in the slot αη. 3)
is absorbed by the helium that exists in the small gap around it. Helium expands due to heat absorption and its density decreases,
Due to the natural convection of the centrifugal force field, the liquid exits to the liquid reservoir 09 through the coil mounting shaft helium flow hole 2)). On the other hand, the helium shortage that occurs around the superconducting field coil (31) is caused by the gap between the helium flow path (E) and the wedge 08, the oval hole (22a) of the @1 clamp (C), and the second Tsumemono (
The superconducting field coil (31) passes through the through hole (23a) of
This is supplemented by helium flowing into the surrounding area. The endothermically expanded helium is cooled by evaporating a portion of it in the liquid reservoir. The cooled helium enters around the superconducting field coil (3:) through another coil mounting shaft helium flow hole 3υ, and then passes through the through hole (2351) of the second claw (c) and the first claw. It exits to the helium flow path through the oval hole (22 & ) of the helium (22 & ) and the gap between the wedges (to). In this way, heat is removed quickly at any position of the superconducting field coil (31), and normal conduction transition does not occur, making it possible to prevent the generator from stopping. Even if the gap between them is -t'' more than the specified value, the helium flow path can be ensured without sagging from the oval hole (22a) or the through hole (23a).Furthermore, as shown in FIG. As shown in FIG. ),
The claw (c) in @2 is a member that also serves as electrical insulation, and the insulation creepage distance tI'i is as shown in Figure 6! 4, the total thickness of the second clasp (goods), A, the dimensions of the through hole (23a) of the second clasp, and the oval hole (22a) of the first clasp (a). ) is expressed as the sum of the difference B (A+B).

なお、上記実施例の如く、第2のつめもの(ハ)の貫通
孔(23& )の径寸法が大きい場合も同様に表ゎさね
、第1のつめものに)、第2のつめもの(ハ)の2枚で
つめものを構成することにより、厚さAを増すことなく
絶縁沿面距臨iBだけ増大でき、絶縁耐力が向上する。
In addition, as in the above embodiment, when the diameter of the through hole (23 & ) of the second claw (c) is large, the same applies to the first claw) and the second claw (). By configuring the pawl with the two sheets c), the insulation creepage distance iB can be increased without increasing the thickness A, and the dielectric strength is improved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、超電導界磁コイルとウェ
ッジとの間にスロット幅方向の小判状孔を有する第1の
つめものを挿着し、超電導界磁コイルと第1のつめもの
との間に第1のつめものの小判状孔と連通するH通孔を
有する第2のつめものを挿着したことにより、スロット
内のヘリウム流通を円滑に行うことができ、冷却性能が
向上する効果が得られる。
As explained above, the present invention includes inserting a first pawl having an oval hole in the width direction of the slot between the superconducting field coil and the wedge, and inserting the first pawl between the superconducting field coil and the first pawl. By inserting a second pawl having an H hole that communicates with the oval hole of the first pawl, it is possible to smoothly circulate helium in the slot, resulting in the effect of improving cooling performance. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による超電導回転電機の回
転子にかける第1のつめものを示す平面図、第2図は第
1図■−■線における断面図、第3図はこの発明に係る
第2のつめものを示す平面図、′:JI!J4図は第3
図IV−IV線における断面図、第5図はこの発明に係
るヘリウムの流れる示す断面図、第6図けこの発明の他
の実柿例によるスロット部を示す断面図、第7図は従来
の一般的な超電導回転電機の回転子を示す縦断面図、第
8図は第1図■−■線における断面図、hfJ9図は従
来のスロット内長手方向を示す断面図である。 図において、(2)けコイル取付軸、(31け超電導界
確コイル、αηけスロツ)、@i第1のつめもの、@け
第2のつめものである。 なお、図中同−符Ji+け同−又は相当部分を示す。
Fig. 1 is a plan view showing a first clamping member attached to the rotor of a superconducting rotating electrical machine according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a plan view of the invention. A plan view showing a second nail according to ':JI! J4 diagram is the third
5 is a sectional view showing the flow of helium according to the present invention, FIG. 6 is a sectional view showing the slot portion according to another example of the present invention, and FIG. 7 is a sectional view of the conventional persimmon. FIG. 8 is a longitudinal cross-sectional view showing a rotor of a general superconducting rotating electrical machine, FIG. 8 is a cross-sectional view taken along the line ■--■ in FIG. 1, and FIG. hfJ9 is a cross-sectional view showing the longitudinal direction inside a conventional slot. In the figure, (2) coil mounting shaft, (31 superconducting field coils, αη slot), @i first tab, and @key second tab. In addition, in the figure, the same symbol Ji+the same minus sign or a corresponding part is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)コイル取付軸に設けられたスロット内に収納され
る超電導界磁コイル、この超電導界磁コイルを固定する
ウェッジ、このウェッジと上記超電導界磁コイルとの間
に挿入され、スロット幅方向の小判状孔を有する第1の
つめもの、この第1のつめものと上記超電導界磁コイル
との間に挿入され、上記第1のつめものの小判状孔と連
通する貫通孔を有する第2のつめものを備えたことを特
徴とする超電導回転電機の回転子。
(1) A superconducting field coil housed in a slot provided on the coil mounting shaft, a wedge that fixes this superconducting field coil, and a wedge inserted between this wedge and the superconducting field coil that extends in the slot width direction. a first claw having an oval-shaped hole; a second claw having a through hole that is inserted between the first claw and the superconducting field coil and communicating with the oval-shaped hole of the first claw; A rotor for a superconducting rotating electrical machine characterized by comprising:
(2)第2のつめものの貫通孔の径寸法は第1のつめも
のの小判状孔の幅寸法より大きいことを特徴とする特許
請求の範囲第1項記載の超電導回転電機の回転子。
(2) A rotor for a superconducting rotating electric machine according to claim 1, wherein the diameter of the through hole of the second pawl is larger than the width of the oval-shaped hole of the first pawl.
JP61095112A 1986-04-22 1986-04-22 Rotor of superconducting rotary electric machine Pending JPS62250865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61095112A JPS62250865A (en) 1986-04-22 1986-04-22 Rotor of superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61095112A JPS62250865A (en) 1986-04-22 1986-04-22 Rotor of superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPS62250865A true JPS62250865A (en) 1987-10-31

Family

ID=14128765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61095112A Pending JPS62250865A (en) 1986-04-22 1986-04-22 Rotor of superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS62250865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149131A1 (en) * 2020-01-21 2021-07-29 三菱電機株式会社 Stator and rotating electrical machine using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149131A1 (en) * 2020-01-21 2021-07-29 三菱電機株式会社 Stator and rotating electrical machine using the same
JPWO2021149131A1 (en) * 2020-01-21 2021-07-29

Similar Documents

Publication Publication Date Title
US4315172A (en) Cooling system for rotors of electric machines, especially for turbo-generator rotors with a superconductive field winding
US3809933A (en) Supercooled rotor coil type electric machine
US7741738B2 (en) Machine comprising a rotor and a superconducting rotor winding
MXPA02004837A (en) High temperature super-conducting rotor having a vacuum vessel and electromagnetic shield and an assembly method.
US4513218A (en) Rotor cooling in rotary electric machines
US4267474A (en) Cooling arrangement for the rotor of an electric machine
US4396847A (en) Arrangement for cooling a super conducting field winding and a damper shield of the rotor of an electric machine
JPS62250865A (en) Rotor of superconducting rotary electric machine
JP2013538035A (en) Rotor for electric machine
CN108110928A (en) High pressure ultrahigh speed permanent magnet synchronous motor
US4649303A (en) Rotor for a superconducting rotating electric machine
JPS62213562A (en) Rotor of superconducting rotary electric machine
JPS62213546A (en) Rotor of superconducting rotary electric machine
JPS62250866A (en) Rotor of superconducting rotary electric machine
JPS62213565A (en) Rotor of superconducting rotary electric machine
JPS62213557A (en) Rotor of superconducting rotary electric machine
JPS62213561A (en) Rotor of superconducting rotary electric machine
JPS62213553A (en) Rotor of superconducting rotary electric machine
JPS62213564A (en) Rotor of superconducting rotary electric machine
JPS62213556A (en) Rotor of superconducting rotary electric machine
JPH0561869B2 (en)
JPS60200737A (en) Cylindrical rotor
JPS63228957A (en) Rotor for superconducting rotary electric machine
JPS589567A (en) Rotor for superconducting rotary electric machine
JPS62213558A (en) Rotor of superconducting rotary electric machine