JPS62213565A - Rotor of superconducting rotary electric machine - Google Patents

Rotor of superconducting rotary electric machine

Info

Publication number
JPS62213565A
JPS62213565A JP61056330A JP5633086A JPS62213565A JP S62213565 A JPS62213565 A JP S62213565A JP 61056330 A JP61056330 A JP 61056330A JP 5633086 A JP5633086 A JP 5633086A JP S62213565 A JPS62213565 A JP S62213565A
Authority
JP
Japan
Prior art keywords
helium
coil
wedge
superconducting
field coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61056330A
Other languages
Japanese (ja)
Inventor
Toshiki Hirao
平尾 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61056330A priority Critical patent/JPS62213565A/en
Publication of JPS62213565A publication Critical patent/JPS62213565A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To smoothly remove the heat of a superconducting field coil by forming a groove on the surface of a wedge at the side of the coil. CONSTITUTION:The rotor of a superconductive rotary electric machine is composed of a coil mounting shaft 2 having a helium flowing hole 21, a superconducting field coil 3, a helium outer cylinder 6, a liquid helium reservoir 15, and a filler 19. In this case, a wedge 22 for fixing the coil 3 is provided, a groove 23 is formed on the surface of the wedge 22 at the coil 3 side to communicate with a gap between the hole 19a of the filler 19 and the wedge 22. Thus, the heat of the coil 3 is absorbed by helium, and fed through the hole 21 to the reservoir 15. The helium cooled by the reservoir 15 is fed from other flowing hole 21 through the periphery of the coil 3, a through hole 19a, the groove 23 of the wedge 22 and the gap to a helium passage 20. As a result, the flowing resistance of the cooling circuit of the coil 3 can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超電導回転電機の回転子の構造匡関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a rotor of a superconducting rotating electric machine.

〔従来の技術〕[Conventional technology]

従来この種の回転子として例えば特開昭57−2287
2号公報(ζ開示されたものがあり、その構成を第8図
に示す。第8図蚤ζおいて、11)はトルクチューブ、
(2)はトルクチューブU)の中央部を形成するコイル
取付軸、(3)はコイル取付軸(2)に固定されている
超電導界磁コイル、(4)はトルクチューブ(1)とコ
イル取付軸(2)を囲繞する常温ダンパ、(5)はこの
常温ダンパ(4)とコイル取付軸(2)の間に配設され
ている低温ダンパ、(6)及び(7)はコイル取付軸(
2)の夫々外周部及び側面部に取付けられたヘリウム外
筒、ヘリウム端板、(8)及び(9)は夫々駆動側、反
駆動側端部軸、uqはこれらの端部軸+8) 、 +9
)を軸支する軸受、aηは界磁電流供給用のスリップリ
ング、曲はトルクチューブ(1)に形成或いは配置され
ている熱交換器、(至)は側部輻射シールド、(J4は
真空部である。
Conventionally, as a rotor of this type, for example, Japanese Patent Application Laid-Open No. 57-2287
No. 2 (ζ) is disclosed, and its configuration is shown in Figure 8. In Figure 8, 11) is a torque tube,
(2) is the coil mounting shaft that forms the center of the torque tube U), (3) is the superconducting field coil fixed to the coil mounting shaft (2), and (4) is the torque tube (1) and coil mounting A room-temperature damper surrounding the shaft (2), (5) a low-temperature damper disposed between the room-temperature damper (4) and the coil mounting shaft (2), and (6) and (7) the coil mounting shaft (
Helium outer cylinder and helium end plate attached to the outer periphery and side surface of 2), (8) and (9) are drive side and non-drive side end shafts, respectively, uq is these end shafts + 8), +9
), aη is a slip ring for supplying field current, curve is the heat exchanger formed or placed on the torque tube (1), (to) is the side radiation shield, (J4 is the vacuum part It is.

上記構成からなる超電導回転機の回転子においては、コ
イル取付軸(2)1こ配設されている超電導界磁コイル
(3)を極低温に冷却することにより、電気抵抗を零の
状態とし、励81損失をなくすことにより、この超電導
界磁コイル(3〕に強力な磁界を発生させ、固定子(図
示せず)に交流電力を発生させる。この超電導界磁コイ
ル(3〕を極低温に冷却、保持するために液体ヘリウム
を反駆動側端部軸(9)の中央部から導入管(図示せず
)を通じ、ヘリウム外筒(6)、ヘリウム端板(7)に
より形成される液体ヘリウム容器部に供給する一方、回
転子内部を真空部414)により高真空に保つと共に、
極低温の超電導界磁コイル(3)及びコイル取付軸(2
)に回転トルクを伝えるトルクチューブ(1)を薄肉円
筒とし、且つ熱交換器(2)を設け、このトルクチュー
ブ(υを通じ極低温部に侵入する熱を極力減らす構造が
最も一般的である。さらに、側面からの輻射(こより侵
入する熱を低減するため、側部輻射シールド四が設けら
れている。
In the rotor of the superconducting rotating machine having the above configuration, the electrical resistance is brought to zero by cooling the superconducting field coil (3) disposed on one coil mounting shaft (2) to an extremely low temperature. By eliminating excitation 81 loss, a strong magnetic field is generated in this superconducting field coil (3), and AC power is generated in the stator (not shown).This superconducting field coil (3) is heated to an extremely low temperature. In order to cool and maintain liquid helium, the liquid helium is introduced from the center of the non-drive side end shaft (9) through an introduction pipe (not shown), and the liquid helium formed by the helium outer cylinder (6) and the helium end plate (7) is introduced. While supplying to the container section, the inside of the rotor is maintained at a high vacuum by the vacuum section 414),
Cryogenic superconducting field coil (3) and coil mounting shaft (2)
The most common structure is to use a thin-walled cylindrical torque tube (1) that transmits rotational torque to the torque tube (υ) and a heat exchanger (2) to reduce as much as possible the heat that enters the cryogenic region through the torque tube (υ). Furthermore, side radiation shields 4 are provided to reduce heat entering from the sides.

一方、常温ダンパ(4)及び低温ダンパ(5)は、固定
子からの高調波磁界をシールドし、超電導界磁コイル(
3)を保護すると共に、電力系統のしよう乱による回転
子振動を減衰させる機能を有する一方、常温ダンパ(4
)は真空外筒としての機能、低温ダンパはヘリウム容器
部への輻射シールドとしての機能を兼ねる方式が一般的
である。なお第8図においては、回転子内部のヘリウム
導入、排出系を構成する配管類及び回転子fこ接続され
ているヘリウム導入、排出装置は省略した。
On the other hand, the normal temperature damper (4) and the low temperature damper (5) shield the harmonic magnetic field from the stator, and the superconducting field coil (
3) and has the function of damping rotor vibrations caused by disturbances in the power system.
) generally functions as a vacuum outer cylinder, and the low-temperature damper also functions as a radiation shield for the helium container. In FIG. 8, the piping constituting the helium introduction and discharge system inside the rotor and the helium introduction and discharge device connected to the rotor are omitted.

第9図は第8図[−1X線における断面図、即ち。FIG. 9 is a cross-sectional view taken along the -1 X line of FIG.

特開昭57−202852号公報に示されたものであり
This is disclosed in Japanese Unexamined Patent Publication No. 57-202852.

(2)はコイル取付軸、(3)は超電導界磁コイル、(
6)はヘリウム外筒、a!9は液体ヘリウムの液溜め部
、 C1lはヘリウム蒸気空間、αηはコイル取付軸(
2)に形成された超電導界磁コイル(3)を収納するス
ロット。
(2) is the coil mounting shaft, (3) is the superconducting field coil, (
6) is a helium cylinder, a! 9 is the liquid helium reservoir, C1l is the helium vapor space, αη is the coil mounting shaft (
A slot for housing the superconducting field coil (3) formed in 2).

(財)は超電導界磁コイル(3)を固定するウェッジ、
 Qlは超電導界磁コイル(3)とウェッジ(ト)との
間に挿入されたつめものであり2例えば円形状の貫通孔
(19a)を有している。■はコイル取付軸(2)とヘ
リウム外筒(6)との間に設けられたヘリウム流路、■
ηは液間め部QFjとスロットαηの底部とに連通して
設けられたコイル取付軸ヘリウム流通孔である。尚。
(Foundation) is a wedge that fixes the superconducting field coil (3),
Ql is a plug inserted between the superconducting field coil (3) and the wedge (g), and has, for example, a circular through hole (19a). ■ is a helium flow path provided between the coil mounting shaft (2) and the helium outer cylinder (6), ■
η is a coil mounting shaft helium flow hole provided in communication with the liquid gap QFj and the bottom of the slot αη. still.

図示しないが超電導界磁コイル(3)とスロットα力面
との間はヘリウムの流通を防げないように絶縁されてい
る。
Although not shown, the superconducting field coil (3) and the slot α force surface are insulated so that helium flow cannot be prevented.

一般的に超電導回転電機においては、超電導界磁コイル
の極低温冷却をいかにして行なうかという点に重要な技
術問題がある。超電導界磁コイルを超電導状態にするた
めには、超電導遷移温度以下lこ冷却することが必要で
あり、現在ではヘリウムを冷却媒体として絶対温度IK
ないし20Kfζ保持することが行なわれている。一方
、このような極低温状態においては超電導界磁コイルの
比熱が極めて小さくなっているため、超電導界磁コイル
内の微少な発熱あるいは超電導界磁コイルへの僅かな侵
入熱量によって超電導界磁コイルの温度が上昇し超電導
遷移温度を越える恐れが常に存在する。従って、超電導
界磁コイル内の微少な発熱あるいは超電導界磁コイ、ル
への僅かな侵入熱量をいかに速かに除去して超電導界磁
コイルの温度上昇をおさえるかが超電導回転電機の設計
上の重要なポイントとなる。
Generally speaking, in superconducting rotating electric machines, there is an important technical problem in how to cool the superconducting field coil to a cryogenic temperature. In order to bring a superconducting field coil into a superconducting state, it is necessary to cool it below the superconducting transition temperature.
It is practiced to maintain the temperature between 20Kfζ and 20Kfζ. On the other hand, in such extremely low temperature conditions, the specific heat of the superconducting field coil is extremely small, so the superconducting field coil may be damaged due to minute heat generation within the superconducting field coil or a small amount of heat entering the superconducting field coil. There is always a risk that the temperature will rise and exceed the superconducting transition temperature. Therefore, in the design of superconducting rotating electric machines, it is important to suppress the temperature rise of the superconducting field coils by quickly removing the minute amount of heat generated within the superconducting field coils or the slight amount of heat entering the superconducting field coils. This is an important point.

次に冷却動作を第10図に基づいて説明する。Next, the cooling operation will be explained based on FIG.

超電導界磁コイル(3)内の微少発熱、あるいは超電導
界磁コイル(3)への僅かな熱侵入によって生じた熱は
、超電導界磁コイル(3)の周囲の鎮かな間隙に存在し
ているヘリウムに吸収される。吸熱により膨張し密度が
小さくなったヘリウムは、遠心力場の自然対流によって
コイル取付軸(2)のヘリウム流通孔ンηを経て液溜め
部Q5iζ出る。一方、超電導界磁コイル(3)回りで
生ずるヘリウム不足は、ヘリウム流路四からウェッジ(
ト)の隙間及びつめもの09の貫通孔(19a)を通っ
て超胤導界磁コイル(3)回りに流入するヘリウムによ
って補われる。吸熱膨張したヘリウムは、液龍め部(7
)において、その一部が蒸発すること1こよって冷却さ
れる。冷却されたヘリウムは、別のコイル取付軸ヘリウ
ム流通孔G11lから超電導界磁コイル(3)の周囲に
入り込み、さらにつめものαりの貫通孔(19a)及び
ウェッジ(ト)の隙間を通りヘリウム減路(7)に出る
0 以上のように円滑な自然循環を行なうことにより、超電
導界磁コイル(3)の冷却が行なわれ、超電導界磁コイ
ル(3)を超電導遷移温度以下に保っているO 〔発明が解決しようとする問題点〕 従来は上記のように構成されており、ウェッジα榎及び
つめものα窃の部分のヘリウム通路は第10図で示され
るように他の部分に比べ狭くなっており、この箇所でヘ
リウムの流通が制限されていた。
The heat generated by slight heat generation within the superconducting field coil (3) or by slight heat intrusion into the superconducting field coil (3) exists in a quiet gap around the superconducting field coil (3). Absorbed by helium. Helium, which expands due to heat absorption and has a reduced density, exits the liquid reservoir Q5iζ through the helium flow hole η of the coil mounting shaft (2) due to the natural convection of the centrifugal force field. On the other hand, the helium shortage that occurs around the superconducting field coil (3) is caused by the helium channel 4 being connected to the wedge (
This is supplemented by helium flowing around the superconducting field coil (3) through the gap in g) and the through hole (19a) of the pawl 09. The endothermically expanded helium flows into the liquid dragon part (7
), a portion of it evaporates (1) and is thereby cooled. The cooled helium enters around the superconducting field coil (3) from another coil mounting shaft helium flow hole G11l, and further passes through the gap between the through hole (19a) and the wedge (g) of the pawl, and the helium is reduced. By performing the smooth natural circulation as described above, the superconducting field coil (3) is cooled, and the O that exits the path (7) is kept below the superconducting transition temperature. [Problems to be solved by the invention] Conventionally, the structure is as described above, and the helium passages in the wedge α and the claw parts are narrower than other parts, as shown in FIG. The flow of helium was restricted at this location.

つめものα呻の貫通孔(19a)のうち、ウェッジα呻
相互間の隙に開口するものは一部であり、開口していな
い貫通孔αのを出たヘリウムはウェッジ(ト)とつめも
のQlとの間のわずかな隙を流れることになる。
Some of the through holes (19a) in the opening of the clamp α open into the gap between the wedges α, and the helium that exits through the through hole α that is not open is between the wedge (g) and the clamp. It will flow through the slight gap between it and Ql.

従来の構成では超電導界磁コイル(3)の冷却が悪くな
っているという大きな問題があり、それにより常電導遷
移が発生して発電機の機能を停止する可能性が高かった
In the conventional configuration, there was a major problem in that the superconducting field coil (3) was poorly cooled, and as a result, there was a high possibility that normal conduction transition would occur and the generator would stop functioning.

この発明は上記のような問題点を解消するためになされ
たもので、超電導界磁コイルの熱除去を円滑(こ行い、
常電導遷移を起こさない超電導回転電機の回転子を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems.
The objective is to obtain a rotor for a superconducting rotating electric machine that does not cause normal conduction transition.

〔問題点を解結するための手段〕[Means for solving problems]

この発明に係る超電導回転電機の回転子は、ウェッジの
FA電導界磁コイル側の面に溝を設けたものである。
The rotor of the superconducting rotating electric machine according to the present invention has grooves provided on the surface of the wedge on the FA conductive field coil side.

〔作用〕[Effect]

この発明における超電導回転電機の回転子は。 The rotor of the superconducting rotating electrical machine in this invention is:

ウェッジの超電導界磁コイル側の面1こ設けた溝により
、ヘリウムの流通性が良くなり超電導界磁コイルの熱除
去を円滑に行え、超電導界磁コイルの性能が向上する。
The groove provided on one surface of the wedge on the superconducting field coil side improves the flow of helium, allowing smooth heat removal from the superconducting field coil, and improving the performance of the superconducting field coil.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図〜第4図において、 t2) 、 (3) 、 ((
1) 、 05〜0η、σ1〜12υは上述した従来の
回転子の構成と同様である。(2)は超電導界磁コイル
(3)を固定するウェッジ、に)はこのウェッジ(イ)
の超電導界磁コイル(3)側の面に設けられた溝であり
、つめもの09の貫通孔α0とウェッジに)相互間の隙
間と連通しており。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In Figures to Figure 4, t2), (3), ((
1), 05~0η, and σ1~12υ are similar to the configuration of the conventional rotor described above. (2) is the wedge that fixes the superconducting field coil (3), and (2) is this wedge (A).
It is a groove provided on the surface of the superconducting field coil (3) side, and communicates with the gap between the through hole α0 of the pawl 09 and the wedge).

図は一例として軸方向及び幅方向に設けられている。尚
、つめもの(6)の貫通孔(19a)は幅方向中心部だ
けでなく1幅方向の溝@に相対する位置にも設けた場合
を示している。次に動作について説明する。超電導界磁
コイル(3)内の微少発熱、あるいは超電導界磁コイル
(3)への僅かな熱侵入によって生じた熱は、超電導界
磁コイル(3)の周囲の僅かな間隙に存在しているヘリ
ウムをこ吸収される。吸熱により膨張し密度が小さくな
ったヘリウムは、遠心力場の自然対流によってコイル取
付軸ヘリウム流通孔C2])を経て液溜め部(ハ)に出
る。一方、超電導界磁コイル(3)回りで生ずるヘリウ
ム不足は、ヘリウム流路(7)からウェッジ(イ)相互
間の隙間、ウェッジ勾の溝(2)及びつめものα呻の貫
通孔(19a)を経て超電導界磁コイル(3)回りに流
入するヘリウムによって補われる。吸熱膨張したヘリウ
ムは、液溜め部(ト)沓こおいて、その一部が蒸発する
ことによって冷却されたヘリウムは、別のコイル取付軸
ヘリウム通孔蛤ηから超電導界磁コイル(3)の周囲に
入り込み、さらにつめものαりの貫通孔(19a) 、
ウェッジ(イ)の溝に)及びウェッジに)相互間の隙間
を通りヘリウム流路(7)に出る。このようにウェッジ
(イ)の溝四を通してヘリウムの流通がなされるので、
超電導界磁コイル(3)の冷却回路の流路抵抗が減少し
The figure is provided in the axial direction and the width direction as an example. Note that the through hole (19a) of the pawl (6) is shown not only at the center in the width direction but also at a position opposite to the groove in one width direction. Next, the operation will be explained. Heat generated by slight heat generation within the superconducting field coil (3) or by slight heat intrusion into the superconducting field coil (3) exists in a small gap around the superconducting field coil (3). Helium is absorbed. The helium, which expands due to heat absorption and has a reduced density, exits to the liquid reservoir (c) through the coil mounting shaft helium flow hole C2] due to the natural convection of the centrifugal force field. On the other hand, the helium shortage that occurs around the superconducting field coil (3) is caused by the helium flow path (7), the gap between the wedges (a), the wedge slope groove (2), and the through hole (19a) of the clasp. This is supplemented by helium flowing around the superconducting field coil (3) through the The endothermically expanded helium is collected in the liquid reservoir (G), and the helium, which has been cooled by evaporation, is transferred from the helium hole η of another coil mounting shaft to the superconducting field coil (3). A through-hole (19a) that goes into the surrounding area and is even more closed.
It passes through the gap between the wedge (a) and the wedge) and exits to the helium flow path (7). In this way, helium flows through the groove 4 of the wedge (a), so
The flow path resistance of the cooling circuit of the superconducting field coil (3) is reduced.

ヘリウム流量が増大すると共につめものQlの貫通孔(
19a)を通るヘリウム流量のアンバランスもなくなり
、円滑なヘリウムの自然循環を行うことができ、超電導
界磁コイル(3)の効率的冷却が行え。
As the helium flow rate increases, the through hole of the closure Ql (
There is no imbalance in the flow rate of helium passing through the coil 19a), allowing smooth natural circulation of helium and efficient cooling of the superconducting field coil (3).

超電導界磁コイル(3)を超電導遷移温度以下に保って
いる。即ち、超電導界磁コイル(3)から熱を吸収した
高温のヘリウムが超電導界磁コイル(3)の周囲に滞留
することがなくなり、常電導遷移が発生することがなく
1発電機の機能を停止することもない。
The superconducting field coil (3) is kept below the superconducting transition temperature. In other words, the high-temperature helium that absorbed heat from the superconducting field coil (3) no longer stays around the superconducting field coil (3), and the function of the generator 1 is stopped without normal conduction transition occurring. There's nothing to do.

尚、上記実施例ではウェッジ(2)に設けた溝(4)を
軸方向と幅方向とに設けた場合について述べたが、第5
図〜第7図に示すように、ウェッジに)の幅方向にのみ
溝■を設けてもよく、この場合、ヘリウムは第7図に示
すように溝(イ)を幅方向に流れてウェッジ勾とコイル
取付軸(2)との間に流入してつエツジ長手方向に流れ
、ウェッジ磐相互間の隙間に至る。また、ウェッジ(2
)に設けた溝(財)を軸方向のみに設けるようにしても
よく、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, the case where the groove (4) provided in the wedge (2) was provided in the axial direction and the width direction was described, but the fifth embodiment
As shown in Figures to Figure 7, grooves (2) may be provided in the wedge only in the width direction of (2). In this case, helium flows in the width direction through the grooves (A) as shown in Figure 7, and the helium flows along the wedge slope. and the coil mounting shaft (2), flows in the longitudinal direction of the wedge, and reaches the gap between the wedge stones. Also, wedge (2
) may be provided only in the axial direction, and the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、ウェッジの超電導界磁コ
イル側の面に溝を形成したことにより。
As explained above, this invention is achieved by forming grooves on the surface of the wedge on the side of the superconducting field coil.

ヘリウムの流通性が良くなり超電導界磁コイルの熱除去
を円滑に行え、超電導界磁コイルの性能向上が図れ、信
頼性の高い超電導回転電機の回転子を得ることができる
The flowability of helium is improved, heat can be removed smoothly from the superconducting field coil, the performance of the superconducting field coil can be improved, and a highly reliable rotor of a superconducting rotating electric machine can be obtained.

【図面の簡単な説明】 第1図、第2図はこの発明の一実施例による超電導回転
電機の回転子におけるウェッジを示す平面図、正面図、
第8図はこの発明に係るスロット部を示す断面図、第4
図はこの発明lζ係わるヘリウムの流れを示す断面図、
第5図、第6図はこの発明の他の実施例による超電導回
転電機の回転子におけるウェッジを示す平面図、正面図
、第7図はこの発明の他の実施例に係るスロット部を示
す断面図、第8図は一般的な超電導回転電機の回転子の
全体概念を示す断面図、第9図は第8図IX−[線にお
ける断面図、第10図は従来の超電導回転電機の回転子
におけるヘリウムの流れを示す断面図である。 図において、(2)はコイル取付軸、(3)は超電導界
磁コイル、Qηはスロット、@はウェッジ、卿は溝であ
る。 並2図中同一符号は同−又は相当部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 and 2 are a plan view and a front view showing a wedge in a rotor of a superconducting rotating electric machine according to an embodiment of the present invention,
FIG. 8 is a cross-sectional view showing the slot portion according to the present invention;
The figure is a sectional view showing the flow of helium related to this invention,
5 and 6 are a plan view and a front view showing a wedge in a rotor of a superconducting rotating electric machine according to another embodiment of the present invention, and FIG. 7 is a cross section showing a slot portion according to another embodiment of the present invention. 8 is a sectional view showing the overall concept of a rotor of a general superconducting rotating electric machine, FIG. 9 is a sectional view taken along line IX-[ in FIG. 8, and FIG. 10 is a rotor of a conventional superconducting rotating electric machine. FIG. 3 is a cross-sectional view showing the flow of helium in FIG. In the figure, (2) is a coil mounting shaft, (3) is a superconducting field coil, Qη is a slot, @ is a wedge, and IR is a groove. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)軸表面に軸方向のスロットが複数形成されたコイ
ル取付軸、このコイル取付軸に形成されたスロットに収
納される超電導界磁コイル、この超電導界磁コイルを固
定するウェッジを備えたものにおいて、上記ウェッジの
上記超電導界磁コイル側の面に溝を形成したことを特徴
とする超電導回転電機の回転子。
(1) A coil mounting shaft with multiple axial slots formed on the shaft surface, a superconducting field coil housed in the slot formed in this coil mounting shaft, and a wedge for fixing this superconducting field coil. A rotor for a superconducting rotating electrical machine, characterized in that grooves are formed on the surface of the wedge on the side of the superconducting field coil.
(2)溝は軸方向及び幅方向に形成されていることを特
徴とする特許請求の範囲第1項記載の超電導回転電機の
回転子。
(2) A rotor for a superconducting rotating electric machine according to claim 1, wherein the grooves are formed in the axial direction and the width direction.
(3)溝は幅方向に形成されていることを特徴とする特
許請求の範囲第1項記載の超電導回転電機の回転子。
(3) A rotor for a superconducting rotating electrical machine according to claim 1, wherein the grooves are formed in the width direction.
(4)溝は軸方向に形成されていることを特徴とする特
許請求の範囲第1項記載の超電導回転電機の回転子。
(4) A rotor for a superconducting rotating electric machine according to claim 1, wherein the grooves are formed in the axial direction.
JP61056330A 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine Pending JPS62213565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056330A JPS62213565A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056330A JPS62213565A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPS62213565A true JPS62213565A (en) 1987-09-19

Family

ID=13024178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056330A Pending JPS62213565A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS62213565A (en)

Similar Documents

Publication Publication Date Title
US5140204A (en) Heat pipes for cooling pole windings of salient pole machines
JP2003079100A (en) Counterflow stator ventilation system for superconductive synchronous machine
US4386289A (en) Device for cooling a superconducting field winding and a damper shield of the rotor of an electric machine
US4396847A (en) Arrangement for cooling a super conducting field winding and a damper shield of the rotor of an electric machine
JPS6118349A (en) Rotor of superconductive rotary electric machine
JPS62213565A (en) Rotor of superconducting rotary electric machine
US2417686A (en) Dynamoelectric machine
JPH0452712B2 (en)
JPS62213562A (en) Rotor of superconducting rotary electric machine
JPS62213564A (en) Rotor of superconducting rotary electric machine
JPS62213557A (en) Rotor of superconducting rotary electric machine
JPH0524745B2 (en)
JPS62213558A (en) Rotor of superconducting rotary electric machine
JPS62213563A (en) Rotor of superconducting rotary electric machine
JPH0524746B2 (en)
JPS62213553A (en) Rotor of superconducting rotary electric machine
JPS62213554A (en) Rotor of superconducting rotary electric machine
JPS62213561A (en) Rotor of superconducting rotary electric machine
JPS62250866A (en) Rotor of superconducting rotary electric machine
JPS62213546A (en) Rotor of superconducting rotary electric machine
JPS62250865A (en) Rotor of superconducting rotary electric machine
JP2543869B2 (en) Superconducting rotor
JPH0561869B2 (en)
JPS589567A (en) Rotor for superconducting rotary electric machine
JP2675030B2 (en) Superconducting rotor