JPS62213558A - Rotor of superconducting rotary electric machine - Google Patents

Rotor of superconducting rotary electric machine

Info

Publication number
JPS62213558A
JPS62213558A JP61056323A JP5632386A JPS62213558A JP S62213558 A JPS62213558 A JP S62213558A JP 61056323 A JP61056323 A JP 61056323A JP 5632386 A JP5632386 A JP 5632386A JP S62213558 A JPS62213558 A JP S62213558A
Authority
JP
Japan
Prior art keywords
helium
coil
superconducting
field coil
mounting shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61056323A
Other languages
Japanese (ja)
Inventor
Toshiki Hirao
平尾 俊樹
Akinori Ueda
明紀 上田
Hidenao Hatanaka
畑中 英直
Susumu Maeda
進 前田
Koichi Oshita
幸一 大下
Mitsuhiro Uchida
内田 満広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61056323A priority Critical patent/JPS62213558A/en
Publication of JPS62213558A publication Critical patent/JPS62213558A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To smoothly remove the heat of a superconducting field coil by forming an axial slot bottom groove communicating with a coil mounting shaft helium flowing hole in the bottom of the slot. CONSTITUTION:The rotor of a superconductive rotary electric machine is composed of a coil mounting shaft 2 having a helium flowing hole 23, a superconducting field coil 3, a helium outer cylinder 6, a wedge 19 and upper, lower filler 20, 21. In this case, an axial slot bottom groove 24 communicating with the hole 23 is formed in the bottom of a slot 17 formed in the shaft 2. Thus, the heat of the coil 3 is efficiently cooled by the helium flow rate increased by the slot bottom groove 24. Further, insulating creeping distance is increased in the difference between the width of the groove 24 and the diameter of the hole 23 to improve the dielectric strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超電導回転電機の回転子の構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to the structure of a rotor of a superconducting rotating electric machine.

〔従来の技術〕[Conventional technology]

従来この種の回転子として例えば特開昭57−2287
2号公報に開示されたものがあり、その構成を第4図に
示す。第4図において、(1)はトルクチューブ、(2
)はトルクチューブ(1)の中央部を形成するコイル取
付軸、(3)はコイル取付軸(2)に固定されている超
電導界磁コイル、(4)はトルクチューブ(1)とコイ
ル取付軸(2)を囲繞する常温ダンパ、(5)はこの常
温ダンパ(4)とコイル取付軸(2)の間に配設されて
いる低温ダンパ、(6)及び(7)はコイル取付軸(2
)の夫々外周部及び側面部に取り付けられたヘリウム外
筒−ヘリウム端板、(8)及び(9)は夫々駆動側、反
駆動側端部軸、Q(Iはこれらの端部軸(sl + (
9)を軸支する軸受1(ロ)は界磁電流供給用のスリッ
プリング、(6)はトルクチューブ(1)に形成或いは
配置されている熱交換器%(2)は側部輻射シールド、
α4は真空部である。
Conventionally, as a rotor of this type, for example, Japanese Patent Application Laid-Open No. 57-2287
There is one disclosed in Publication No. 2, and its configuration is shown in FIG. In Figure 4, (1) is the torque tube, (2
) is the coil mounting shaft that forms the center of the torque tube (1), (3) is the superconducting field coil fixed to the coil mounting shaft (2), and (4) is the torque tube (1) and the coil mounting shaft. (2) is a room temperature damper that surrounds the coil mounting shaft (2), (5) is a low temperature damper that is disposed between this room temperature damper (4) and the coil mounting shaft (2), and (6) and (7) are the coil mounting shaft (2).
) is attached to the outer periphery and side surface of the helium outer cylinder-helium end plate, (8) and (9) are the drive side and non-drive side end shafts, respectively, Q (I is these end shafts (sl + (
9) is a slip ring for supplying field current, (6) is a heat exchanger formed or placed on the torque tube (1), and (2) is a side radiation shield.
α4 is a vacuum part.

上記構成からなる超電導回転機の回転子においては、コ
イル取付軸(2)に配設されている超電導界磁コイル(
3)を極低温に冷却することにより、電気抵抗を零の状
態とし、励磁損失をなくすことにより、この超電導界磁
コイル(3)に強力な磁界を発生させ、固定子(図示せ
ず)に交流電力を発生させる。この超電導界磁コイル(
3)を極低温に冷却、保持するために液体ヘリウムを反
駆動側端部軸(9)の中央部から導入管(図示せず)を
通じ、ヘリウム外筒(6)、ヘリウム端板(7)により
形成される液体ヘリウム容器部に供給する一方、回転子
内部を真空部α4により高真空に保つと共に、極低温の
超電導界磁コイ〃(3)及びコイル取付軸(2)に回転
トルクを伝えるトルクチューブ(1)を薄肉円筒とし1
且つ熱交換器(2)を設け、このトルクチューブ(1)
を通じ極低温部に侵入する熱を極力減らす構造が最も一
般的である・さらに、側面からの輻射により侵入する熱
を低減するため箋側部輻射シールド四が設けられている
In the rotor of the superconducting rotating machine having the above configuration, the superconducting field coil (
3) to an extremely low temperature, the electrical resistance becomes zero, and excitation loss is eliminated, thereby generating a strong magnetic field in this superconducting field coil (3), which is applied to the stator (not shown). Generates alternating current power. This superconducting field coil (
3) In order to cool and maintain the liquid helium at an extremely low temperature, liquid helium is passed from the center of the non-drive side end shaft (9) through an introduction pipe (not shown) to the helium outer cylinder (6) and the helium end plate (7). While supplying liquid helium to the liquid helium container formed by Use the torque tube (1) as a thin-walled cylinder 1
In addition, a heat exchanger (2) is provided, and the torque tube (1)
The most common structure is to reduce as much as possible the heat that penetrates into the cryogenic part through the heat sink.Furthermore, a side radiation shield is provided to reduce the heat that penetrates from the side by radiation.

一方、常温ダンパ(4)及び低温ダンパ(5)は、固定
子からの高調波磁界をシールドし、超電導界磁コイル(
3)を保護すると共に、電力系統のしよう乱による回転
子振動を減衰させる機能を有する一方、常温ダンパ(4
)は真空外筒としての機能、低温ダンパはヘリウム容器
部への輻射シールドとしての機納を兼ねる方式が一般的
である。なお第4図においては、回転子内部のヘリウム
導入、排呂系を構成する配管類及び回転子に接続されて
いるヘリウム導入−排出装置は省略した。
On the other hand, the normal temperature damper (4) and the low temperature damper (5) shield the harmonic magnetic field from the stator, and the superconducting field coil (
3) and has the function of damping rotor vibrations caused by disturbances in the power system.
) generally functions as a vacuum outer cylinder, and the low-temperature damper also serves as a radiation shield for the helium container. In addition, in FIG. 4, the helium introduction inside the rotor, the piping constituting the exhaust system, and the helium introduction/discharge device connected to the rotor are omitted.

第5図は第4図v−v線における断面図、即ち一特開昭
57−202852号公報に示されたものであり、(2
)はコイル取付軸、(3)は超電導界磁コイル、(6)
はヘリウム外筒、(2)は液体ヘリウムの液溜め部、α
6はヘリウム蒸気空間、αηはコイル取付軸(2)に形
成された超電導界磁コイA/ (3)を収納するスロッ
ト、(ト)はスロット(ロ)内の両サイドに配設された
サイドつめもの、(2)は超電導界磁コイル(3]を固
定するウェッジ1翰、(財)は超電導界磁コイル(3)
の外周面)内周面にそれぞれ接する上部つめもの1下部
つめものであり、それぞれ例えば円形状の貫通孔(20
a)。
FIG. 5 is a cross-sectional view taken along line v-v in FIG.
) is the coil mounting shaft, (3) is the superconducting field coil, (6)
is the helium outer cylinder, (2) is the liquid helium reservoir, α
6 is a helium vapor space, αη is a slot that accommodates the superconducting field coil A/ (3) formed on the coil mounting shaft (2), and (G) is a side provided on both sides of the slot (B). (2) is a wedge that fixes the superconducting field coil (3); (Foundation) is the superconducting field coil (3)
The upper pawls and the lower pawls are in contact with the inner circumferential surface of
a).

(21a 、)を有している。に)はコイル取付軸(2
)とヘリウム外筒(6)との間に設けられたヘリウム流
路、に)は液溜め部(イ)とスロット(ロ)の底部とに
連通して設けられたコイル取付軸ヘリウム流通孔である
(21a,). ) is the coil mounting shaft (2
) and the helium outer cylinder (6), and (b) is a coil mounting shaft helium flow hole provided in communication with the liquid reservoir (a) and the bottom of the slot (b). be.

一般的に超電導回転電機においては、超電導界磁コイル
の極低温冷却をいかにして行なうかという点に重要な技
術問題がある。超電導界磁コイルを超電導状態にするた
めには、超電導遷移温度以下に冷却することが必要であ
り、現在ではヘリウムを冷却媒体として絶対温度IKな
いし20Kに保持することが行なわれている。一方、こ
のような極低温状態においては超電導界磁コイルの比熱
が極めて小さくなっているため1超電導界磁コイル内の
微少な発熱あるいは超電導界磁コイルへの僅かな侵入熱
量によって超電導界磁コイルの温度が上昇し超電導遷移
温度を越える恐れが常に存在する。従って、超電導界磁
コイル内の微少な発熱あるいは超電導界磁コイルへの僅
かな侵入熱量をいかに速かに除去して超電導界磁コイル
の温度上昇をおさえるかが超電導回転電機の設計上の重
要なデイントとなる。
Generally speaking, in superconducting rotating electric machines, there is an important technical problem in how to cool the superconducting field coil to a cryogenic temperature. In order to bring a superconducting field coil into a superconducting state, it is necessary to cool it below the superconducting transition temperature, and currently, helium is used as a cooling medium to maintain the absolute temperature at an absolute temperature of IK to 20K. On the other hand, in such extremely low temperature conditions, the specific heat of the superconducting field coil is extremely small, so the superconducting field coil may be damaged due to minute heat generation within one superconducting field coil or a small amount of heat entering the superconducting field coil. There is always a risk that the temperature will rise and exceed the superconducting transition temperature. Therefore, it is important in the design of superconducting rotating electric machines how to quickly remove the minute amount of heat generated within the superconducting field coil or the slight amount of heat entering the superconducting field coil to suppress the temperature rise of the superconducting field coil. Becomes a daint.

次に冷却動作を第6図に基づいて説明する。超電導界磁
コイル(3)内の微少発熱、あるいは超電導界磁コイル
(3)への僅かな熱侵入によって生じた熱は、超電導界
磁コイ/L’ (3)の周囲の僅かな間隙に存在してい
るヘリウムに吸収される。吸熱により膨張し密度が小さ
くなったヘリウムは、遠心力場の自然対流によって下部
つめもの(2)の貫通孔(21a)を通り抜け、コイル
取付軸(2)のヘリウム流通孔(至)を経て液溜め部(
ハ)に出る。一方、超電導界磁コイ/1/ (3)回り
で生ずるヘリウム不足は、ヘリウム流路(イ)からウェ
ッジ011の隙間及び上部つめものに)の貫通孔(20
a)を通って超電導界磁コイル(3)回りに流入するヘ
リウムによって補われる。吸熱膨張したヘリウムは、液
溜め部(至)において、その一部が蒸発することによっ
て冷却される。冷却されたヘリウムは1別のコイル取付
軸ヘリウム流通孔(イ)から下部つめもの(2)の貫通
孔(21a)を経て超電導界磁コイル(3)の周囲に入
り込み、さらに上部つめもの(ホ)の貫通孔(20a)
及びウェッジ01の隙間を通りヘリウム流路(イ)に出
る。
Next, the cooling operation will be explained based on FIG. Heat generated by slight heat generation within the superconducting field coil (3) or slight heat intrusion into the superconducting field coil (3) exists in a small gap around the superconducting field coil/L' (3). It is absorbed by helium. The helium, which expands due to heat absorption and becomes less dense, passes through the through hole (21a) of the lower parter (2) due to the natural convection of the centrifugal force field, passes through the helium flow hole (toward) of the coil mounting shaft (2), and becomes liquid. Reservoir (
appear in c). On the other hand, the helium shortage that occurs around superconducting field coil /1/ (3) is caused by the through hole (20
It is supplemented by helium flowing around the superconducting field coil (3) through a). The endothermically expanded helium is cooled by evaporating a portion of it in the liquid reservoir. The cooled helium enters around the superconducting field coil (3) from the helium flow hole (a) on another coil mounting shaft through the through hole (21a) of the lower pawl (2), and then flows into the upper pawl (housing). ) through hole (20a)
It passes through the gap between wedge 01 and exits to the helium flow path (a).

以上のように円滑な自然循環を行なうことにより、超電
導界磁コイル(3)の冷却が行なわれ、超電導界磁コイ
# (3)を超電導遷移温度以下に保っている。
By performing the smooth natural circulation as described above, the superconducting field coil (3) is cooled, and the superconducting field coil # (3) is kept below the superconducting transition temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超電導回転電機の回転子において、超電導界磁コ
イlL/(3)に開口しているヘリウム入出口の間隔が
広いため、第6図に示すように入出口近傍と、入出口か
ら離れた位置とでは、ヘリウム流路の長さに大きな差が
あり冷却条件も異なる。超電導界磁コイ/l/ (3)
の発熱が入出口から離れた位置テ起これば、熱を吸収し
たヘリウムがコイル取付軸ヘリウム流通孔(ホ)を経て
液溜め部(イ)へすみやかに流出することが困難となり
1超電導界磁コイル(3]の温度が上昇し、超電導臨界
温度を超えて常電導遷移が発生し、発電機の機能を停止
する可能性が高かった。そこで、コイル取付軸ヘリウム
流通孔(至)の間隔を狭めることが考えられるが、コイ
ル取付軸(2)の強度低下、切削加工時間の増大等のた
め、製作コストが高くなる問題点がある。
In the rotor of a conventional superconducting rotating electrical machine, the helium inlet and outlet openings in the superconducting field coil lL/(3) are spaced widely, so as shown in Fig. Depending on the location, there is a large difference in the length of the helium flow path, and the cooling conditions also differ. Superconducting field coil/l/ (3)
If heat generation occurs at a location away from the inlet/outlet, it will be difficult for the helium that has absorbed the heat to quickly flow out through the coil mounting shaft helium flow hole (e) to the liquid reservoir (a), causing the superconducting field There was a high possibility that the temperature of the coil (3) would rise, exceeding the superconducting critical temperature and causing a normal conduction transition, causing the generator to stop functioning.Therefore, the spacing of the helium flow holes (to) on the coil mounting shaft was changed. Although it is conceivable to narrow it down, there is a problem that the manufacturing cost increases due to a decrease in the strength of the coil mounting shaft (2), an increase in cutting time, etc.

この発明は上記のような問題点を解消するためになされ
たもので、超電導界磁コイルの熱除去を円滑に行い1常
電導遷移を起こさない超電導回転電機の回転子を得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a rotor for a superconducting rotating electrical machine that smoothly removes heat from a superconducting field coil and does not cause normal conduction transition. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超電導回転電機の回転子は、スロットの
底部にコイル取付軸ヘリウム流通孔と連通ずる軸方向の
スロット底溝を設けたものである。
The rotor of a superconducting rotating electric machine according to the present invention is provided with an axial slot bottom groove communicating with a coil mounting shaft helium flow hole at the bottom of the slot.

〔作用〕[Effect]

この発明における超電導回転電機の回転子は、スOット
の底部に設けたコイル取付軸ヘリウム流通孔と連通ずる
スロット底溝により、ヘリウムの流通性が良くなり超電
導界磁コイルの熱除去を円滑に行え、超電導界磁コイル
の性能が向上する。
The rotor of the superconducting rotating electrical machine in this invention has a slot bottom groove that communicates with the coil mounting shaft helium flow hole provided at the bottom of the slot, which improves helium flow and facilitates heat removal from the superconducting field coil. This improves the performance of superconducting field coils.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図、第2図において、(21、+3) 、 (6) 、
 019〜@は上述した従来の回転子の構成と同様であ
る。(財)はスロットα力の底部に形成されたコイル取
付軸ヘリウム流通孔(2)と連通ずる軸方向のスロット
底溝である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In Figure 2, (21, +3), (6),
019 to @ have the same structure as the conventional rotor described above. (Incorporated) is an axial slot bottom groove that communicates with the coil mounting shaft helium flow hole (2) formed at the bottom of the slot α force.

次の動作について説明する。超電導界磁コイル(3)内
の微少発熱、あるいは超電導界磁コイル(3)への僅か
な熱侵入によって生じた熱は、超電導界磁コイ/L’ 
(3)の周囲の僅かな間隙に存在しているヘリウムに吸
収される。吸熱により膨張し密度が小さくなったヘリウ
ムは、遠心力場の自然対流によって下部つめもの(2)
の貫通孔(21a)に入り、スロット底溝(ハ)を軸方
向に通ってコイル取付軸ヘリウム流通孔(至)を経て液
溜め部(至)に出る。一方、超電導界磁コイル(3)回
りで生ずるヘリウム不足は、ヘリウム流路に)からウェ
ッジ(至)の隙間及び上部つめもの(1)の貫通孔(2
0a)を通り、超電導界磁コイ/L/(3)回りに流入
するヘリウムによって補われる。吸熱膨張したヘリウム
は、液溜め部(ト)において、その一部が蒸発すること
によって冷却される。冷却されたヘリウムは、別のコイ
ル取付軸ヘリウム流通孔(至)からスロット底溝(ハ)
の軸方向に通り、下部つめもの(2)の貫通孔(21a
)を経て超電導界磁コイル(3)の周囲に入り込み、さ
らに上部つめもの(ホ)の貫通孔(2Oa)及びウェッ
ジQ嗜の隙間を通りヘリウム流路(2)に出る。このよ
うにスロット底溝(財)により超電導・界磁コイル(3
)の発熱部付近のヘリウム流量が増大すると共に円滑な
ヘリウムの自然循環を行うことができ、超電導界磁コイ
ル(3)の効率的冷却が行なえ、超電導界磁コイル(3
)を超電導遷移温度以下に保っている。即ち、超電導界
磁コイル(3)がら熱を吸収した高温のヘリウムが超電
導界磁コイル(3)の周囲に滞溜することがなくなり、
常電導遷移が発生することがなく、発電機の機能を停止
することもない。
The following operation will be explained. The heat generated by slight heat generation within the superconducting field coil (3) or by slight heat intrusion into the superconducting field coil (3) is transferred to the superconducting field coil/L'
It is absorbed by the helium that exists in the small gap around (3). The helium expands due to heat absorption and its density decreases, and the natural convection of the centrifugal force field causes the helium to expand into the lower part (2).
The liquid enters the through hole (21a), passes through the slot bottom groove (c) in the axial direction, passes through the coil mounting shaft helium flow hole (end), and exits to the liquid reservoir (end). On the other hand, the helium shortage that occurs around the superconducting field coil (3) is caused by the gap from the helium flow path (to the wedge) and the through hole (2) of the upper pawl (1).
0a) and is supplemented by helium flowing around the superconducting field coil /L/(3). The endothermically expanded helium is cooled by partially evaporating in the liquid reservoir (g). The cooled helium flows from the helium flow hole (to) on another coil mounting shaft to the slot bottom groove (c).
The through hole (21a) of the lower pawl (2) passes in the axial direction of the
), it enters around the superconducting field coil (3), and then exits to the helium channel (2) through the through hole (2Oa) of the upper pawl (e) and the gap between the wedge Q-hole. In this way, the superconducting field coil (3
) increases the flow rate of helium near the heat generating part of the superconducting field coil (3), and enables smooth natural circulation of helium, allowing efficient cooling of the superconducting field coil (3).
) is kept below the superconducting transition temperature. In other words, high-temperature helium that has absorbed heat from the superconducting field coil (3) does not accumulate around the superconducting field coil (3).
Normal conduction transitions do not occur and the generator does not stop functioning.

また、第8図に示すように下部つめもの(ハ)の厚さを
Aとし、下部つめもの(2)の貫通孔(21a)の径と
スロット底溝■の幅との差をBとすると、絶縁沿面距離
はA+Bである。従って、スロット底溝(2)の幅とコ
イル取付軸ヘリウム流通孔(至)の径との差すだけ絶縁
沿面距離が増大し、絶縁耐力が向上する。
Further, as shown in Fig. 8, if the thickness of the lower pawl (C) is A, and the difference between the diameter of the through hole (21a) of the lower pawl (2) and the width of the slot bottom groove ■ is B, then , the insulation creepage distance is A+B. Therefore, the insulation creepage distance is increased by the difference between the width of the slot bottom groove (2) and the diameter of the helium flow hole (to) the coil mounting shaft, and the dielectric strength is improved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、スロットの底部にコイル
取付軸ヘリウム流通孔と連通ずる軸方向ノスロット底溝
を形成したことにより、ヘリウムの流通性が良くなり超
電導界磁コイルの熱除去を円滑に行え、超電導界磁コイ
ルの性能向上が図れ、信頼性の高い超電導回転電機の回
転子を得ることができる。
As explained above, this invention has an axial slot bottom groove that communicates with the coil mounting shaft helium flow hole at the bottom of the slot, thereby improving helium flow and smoothing heat removal from the superconducting field coil. Therefore, the performance of the superconducting field coil can be improved, and a highly reliable rotor of a superconducting rotating electric machine can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による超電導回転電機の回
転子におけるスロット部を示す断面図、第2図はこの発
明に係わるヘリウムの流れを示す断面図、第3図はこの
発明に係わる絶縁特性を説明するためのスロット部を示
す断面図、第4図は一般的な超電導回転電機の回転子の
全体概念を示す断面図、第5図は第4図v−v線におけ
る断面図、第6図は従来の超電導回転電機の回転子にお
けるヘリウムの流れを示す断面図である。 図において、(2)はコイル取付軸、(3)は超電導界
磁コイル、αηはスロット、(財)はスロット底溝であ
る。 尚、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a slot portion in a rotor of a superconducting rotating electric machine according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the flow of helium according to the present invention, and FIG. 4 is a sectional view showing the overall concept of a rotor of a general superconducting rotating electrical machine; FIG. 5 is a sectional view taken along line v-v in FIG. 4; FIG. 6 is a cross-sectional view showing the flow of helium in the rotor of a conventional superconducting rotating electric machine. In the figure, (2) is the coil mounting shaft, (3) is the superconducting field coil, αη is the slot, and (F) is the slot bottom groove. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] コイル取付軸に設けられたスロット内に収納される超電
導界磁コイル、上記スロットから上記コイル取付軸中心
へ半径方向に貫通して設けられたコイル取付軸ヘリウム
流通孔を備えたものにおいて、上記スロットの底部に上
記コイル取付軸ヘリウム流通孔と連通して設けられた軸
方向のスロット底溝を備えたことを特徴とする超電導回
転電機の回転子。
A superconducting field coil housed in a slot provided in a coil mounting shaft, and a coil mounting shaft provided with a helium flow hole extending radially from the slot to the center of the coil mounting shaft, wherein the slot A rotor for a superconducting rotating electric machine, comprising an axial slot bottom groove provided in a bottom portion thereof in communication with the coil mounting shaft helium flow hole.
JP61056323A 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine Pending JPS62213558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056323A JPS62213558A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056323A JPS62213558A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPS62213558A true JPS62213558A (en) 1987-09-19

Family

ID=13023964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056323A Pending JPS62213558A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS62213558A (en)

Similar Documents

Publication Publication Date Title
US5140204A (en) Heat pipes for cooling pole windings of salient pole machines
JPH04229049A (en) Liquid cooling of rotor for electric machine
US4076988A (en) Superconducting dynamoelectric machine having a liquid metal shield
US3745389A (en) Supercooled dynamo electric machines
JP2004328995A (en) Superconducting multipole electric machine
US4386289A (en) Device for cooling a superconducting field winding and a damper shield of the rotor of an electric machine
KR910005112B1 (en) Liquid cooled static excitation system for a dynamoelectric machine
JP5043955B2 (en) Superconducting synchronous motor
EP4156469A1 (en) Electric motor cooling with oscillating heat pipes
JP2004112967A (en) Cooling structure for rotary electric machine
JPS62213558A (en) Rotor of superconducting rotary electric machine
JPS62213557A (en) Rotor of superconducting rotary electric machine
JPH0452712B2 (en)
JPS62213562A (en) Rotor of superconducting rotary electric machine
JPH0524746B2 (en)
JPH0524745B2 (en)
JPS62213564A (en) Rotor of superconducting rotary electric machine
JPH10285906A (en) Rotor of superconductive dynamoelectric machine
JPS62213565A (en) Rotor of superconducting rotary electric machine
JPS62213546A (en) Rotor of superconducting rotary electric machine
JPS62213553A (en) Rotor of superconducting rotary electric machine
JPH0561869B2 (en)
JPS589567A (en) Rotor for superconducting rotary electric machine
JPS63198574A (en) Superconducting rotor
JP2603002B2 (en) Superconducting rotating electric machine rotor