JPS63228957A - Rotor for superconducting rotary electric machine - Google Patents

Rotor for superconducting rotary electric machine

Info

Publication number
JPS63228957A
JPS63228957A JP62058746A JP5874687A JPS63228957A JP S63228957 A JPS63228957 A JP S63228957A JP 62058746 A JP62058746 A JP 62058746A JP 5874687 A JP5874687 A JP 5874687A JP S63228957 A JPS63228957 A JP S63228957A
Authority
JP
Japan
Prior art keywords
helium
mounting shaft
coil
rotor
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62058746A
Other languages
Japanese (ja)
Inventor
Akinori Ueda
明紀 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62058746A priority Critical patent/JPS63228957A/en
Publication of JPS63228957A publication Critical patent/JPS63228957A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To permit the prevention of the damage of welded parts on a helium outer tube without spoiling the flow of liquid helium, necessary for the cooling of a superconducting field coil, by a method wherein both ends of the helium outer tube are engaged with a coil mounting shaft while the engaging parts are welded. CONSTITUTION:A rotor is constituted by a method wherein both ends of a helium outer tube 6 are engaged with a coil mounting shaft 2 and the engaging parts are welded while a helium flow passage 22 is formed between the outer surface of a wedge 17 and the helium outer tube 6 and axial grooves 24 as well as circumferential grooves 25, which intersect with slots 16, are formed. According to this constitution, liquid helium, from helium distributing groove 3, flows to outer helium passages 22 through the axial grooves 24 and the circumferential grooves 25. The liquid helium in the outer helium passage 22 flows from the gaps between mutual wedges 17 through the upper radial hole 21b of an insulating spacer 21 and cools a superconducting field coil 3. The liquid helium, whose temperature has risen by cooling the superconducting field coil 3, passes through a lower radial hole 21a and the helium flow passage hole 20 of the slots, then, flows out to a liquid helium reservoir 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導回転電機の回転子に関し、さらに詳
しくいうと、コイル取付軸の表面に形成されたスロット
に収納された超電導界磁コイルをウェッジで保持し、コ
イル取付@1(の外周側にヘリウム外筒を有する超可、
尋回転軍機の回転子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rotor for a superconducting rotating electric machine, and more specifically, a superconducting field coil housed in a slot formed on the surface of a coil mounting shaft. It is held with a wedge and has a helium outer cylinder on the outer periphery of the coil installation @1 (super-possible).
It concerns the rotor of a rotary military aircraft.

〔従来の技術〕[Conventional technology]

従来この種の回転子として第7し1〜第11図に示す特
開昭57−202852号公報に記載されたものがある
。第7図において、トルクチューブ(1)の中央部を形
成するコイル取付軸(2)に超電導界磁コイル(3)が
固定されている。トルクチューブ(1)とコイル取付軸
(2)は常温ダンパ(4)で囲繞されている。常温ダン
パ(4)とコイル取付軸(2)の間には低温ダンパ(5
)が配設されている。(6)および(7)はコイル取付
軸(2)のそれぞれ外周部および側面部に取り付けられ
たヘリウム外筒およびヘリウム端板で、(6a)はヘリ
ウム外筒のコイル取付軸(2)への溶接部である。駆動
側、反駆動側の端部軸(8)、(9)の軸受(1o)で
軸支されている。(11)は界磁電流供給用のスリップ
リングである。トルクチューブ(1)には熱交換器(1
2)が形成あるいは配設されている。(13)は側部輻
射シールド、(14)は真空部である。
Conventionally, this type of rotor is described in Japanese Patent Application Laid-Open No. 57-202852 as shown in FIGS. 7-1 to 11. In FIG. 7, a superconducting field coil (3) is fixed to a coil mounting shaft (2) forming the center portion of a torque tube (1). The torque tube (1) and the coil mounting shaft (2) are surrounded by a normal temperature damper (4). A low temperature damper (5) is installed between the room temperature damper (4) and the coil mounting shaft (2).
) are provided. (6) and (7) are the helium outer cylinder and helium end plate attached to the outer periphery and side surface of the coil mounting shaft (2), respectively, and (6a) is the helium outer cylinder attached to the coil mounting shaft (2). This is the welding part. It is supported by bearings (1o) of the drive side and non-drive side end shafts (8) and (9). (11) is a slip ring for supplying field current. The torque tube (1) is equipped with a heat exchanger (1
2) is formed or arranged. (13) is a side radiation shield, and (14) is a vacuum part.

上記構成からなる超電導回転電機の回転子においては、
コイル取付軸(2)に配設されている超電導界磁コイル
(3)を律低扇に冷却することにより、電気抵抗を苓の
状態として励磁損失をなくすことにより、8醋、導界磁
コイル(3)に強力な磁界を発生させ、固定子(図示せ
ず)に交流電力を発生させる。
In the rotor of the superconducting rotating electric machine having the above configuration,
By cooling the superconducting field coil (3) disposed on the coil mounting shaft (2) into a low-temperature fan, the electric resistance is reduced to a constant state and excitation loss is eliminated. (3) A strong magnetic field is generated in the stator (not shown) to generate alternating current power.

この超電導界磁コイル(3)を極低温に冷却、保持する
ために液体ヘリウムを反駆動側端部I41(9)の中央
部から導入管(図示せず)を通じ、ヘリウム外筒(6)
、ヘリウム端板(7)により形成される液体へりラム溜
り(15)に供給する一方、回転子内部を真空部(14
)により高真空に保つとともに、極低温の超電導界磁コ
イル(3)およびコイル取付軸(2)K回転トルクを伝
えるトルクチューブ(1)を薄肉円筒とし、かつ、熱交
換器(12)を設けてトルクチューブ(1)を通じ極低
温部に侵入する熱を極力減らすようにしている。さらに
、側面からの輻射により侵入する熱を低減するため、側
部輻射シールド(13)が設けらねでいる。
In order to cool and maintain this superconducting field coil (3) at an extremely low temperature, liquid helium is introduced into the helium outer cylinder (6) from the center of the non-drive side end I41 (9) through an introduction pipe (not shown).
, the liquid helium is supplied to the ram reservoir (15) formed by the helium end plate (7), while the inside of the rotor is supplied to the vacuum section (14).
) to maintain a high vacuum, the ultra-low temperature superconducting field coil (3) and the coil mounting shaft (2). This is to reduce as much as possible the heat that enters the cryogenic part through the torque tube (1). Further, a side radiation shield (13) is provided to reduce heat entering due to radiation from the sides.

一方、常温ダンパ(4)および低温夕°ンパ(5)は、
固定子からの高調波磁界をシールドし、超電導界磁コイ
ル(3)を保護するとともに、電力系統のしよう乱によ
る回転子振動を減衰させる機能を有するほか、常温ダン
パ(4)は真空外筒としての機能、低温ダンパ(5)は
ヘリウム容器部への輻射シールドとしての機能を兼ねて
いる。なお、第7図においては、回転子内部のヘリウム
導入、排出系を構成する配管類および回転子に接続され
ているヘリウム導入、排出装置は省略した。
On the other hand, the room temperature damper (4) and the low temperature damper (5) are
In addition to shielding harmonic magnetic fields from the stator and protecting the superconducting field coil (3), it also has the function of damping rotor vibrations caused by disturbances in the power system.The normal temperature damper (4) also functions as a vacuum outer cylinder. The low-temperature damper (5) also serves as a radiation shield for the helium container. In addition, in FIG. 7, piping constituting a helium introduction and discharge system inside the rotor and a helium introduction and discharge device connected to the rotor are omitted.

超電導界磁コイル(3)は、第8図に示すように、直線
部(3a)と端部(3b)とからなっている。
As shown in FIG. 8, the superconducting field coil (3) consists of a straight portion (3a) and an end portion (3b).

第9図に示すように、超電導界磁コイル(3)は、コイ
ル取付−H(2)の表面に形成されたスロット(16)
内に収納され、ウェッジ(17)でスロット(16)内
に固定される。スロット(16)相互間にはティース(
18)が形成されている。(19)は軸端ヘリウム流路
穴である。
As shown in Figure 9, the superconducting field coil (3) has a slot (16) formed on the surface of the coil mounting H (2).
and is secured within the slot (16) with a wedge (17). There are teeth (
18) is formed. (19) is a shaft end helium channel hole.

超電導界磁コイル(3)の冷却流路は、第10図に示す
ように、液体ヘリウム溜り(15)、コイル取付軸(2
)に形成されたスロット部ヘリウム流路穴(20)、超
電、導界磁コイル(3)とスロット(16)の間隙を埋
める絶縁スペーサ(21)に形成された液体ヘリウム流
路用の下部半径方向穴(21a)、上部半径方向穴(2
1b)がらなっている。上部半径方向穴(21b)は、
隣りあう2つのウェッジ(17)の間隙に一致するよう
調整されており、コイル取付[+411 (2)とヘリ
ウム外筒(6)で囲まれる外径側ヘリウム流路(22)
に連通している。
As shown in Fig. 10, the cooling channel of the superconducting field coil (3) consists of a liquid helium reservoir (15), a coil mounting shaft (2
) Helium flow path hole (20) formed in the slot part, lower part for liquid helium flow path formed in the insulating spacer (21) that fills the gap between the superconducting and conducting field coil (3) and the slot (16) Radial hole (21a), upper radial hole (2
1b). The upper radial hole (21b) is
It is adjusted to match the gap between two adjacent wedges (17), and the helium channel (22) on the outer diameter side is surrounded by the coil installation [+411 (2) and the helium outer cylinder (6)].
is connected to.

コイル取付軸(2)に形成された軸端ヘリウム流路穴(
19)は、第11図に示すように、コイル取付軸(2)
内径側の液体ヘリウム溜り(15)とコイル取付軸(2
)の外径側ヘリウム流路(22)を連通している。
The shaft end helium channel hole (
19) is the coil mounting shaft (2) as shown in Fig. 11.
Liquid helium reservoir (15) on the inner diameter side and coil mounting shaft (2)
) is in communication with the helium flow path (22) on the outer diameter side.

ここで、超電導回転電機においては、超電、導界研コイ
ルの極低温冷却をいかにして行うかという点に重要な技
術問題がある。超電導界磁コイルを超電導状態にするた
めに、超電導遷移温度以下に冷却することが必要であり
、現在ではヘリウム冷却媒体として、絶対温度1にない
し20kに保持することが行われている。一方、かかる
極低温状態においては、超電、導界磁コイルの比熱が極
めて小さくなっているため、超電導界磁コイル内の微少
な発熱、あるいは超電導界磁コイルへのわずかな侵入熱
量によって、超電導界磁コイルの温度が上昇し、超電導
遷移温度を越える恐れが常に存在する。したがって、超
電導界磁コイル内の微少な発熱、あるいは超電導界磁コ
イルへのわずかな侵入熱量をいかに速やかに除去し、も
って超電導界磁コイルの温度上昇をおさえるかが、超電
導回転電機の設計上重要なポイントとなる。
Here, in superconducting rotating electric machines, there is an important technical problem in how to perform cryogenic cooling of superconductor and conductor coils. In order to bring a superconducting field coil into a superconducting state, it is necessary to cool it below the superconducting transition temperature, and currently, helium is used as a cooling medium to maintain the absolute temperature at an absolute temperature of 1 to 20 K. On the other hand, in such extremely low-temperature conditions, the specific heat of the superconducting field coil is extremely small, so the superconducting There is always a risk that the temperature of the field coil will rise and exceed the superconducting transition temperature. Therefore, in the design of superconducting rotating electric machines, it is important to quickly remove the minute amount of heat generated within the superconducting field coil or the slight amount of heat entering the superconducting field coil, thereby suppressing the temperature rise of the superconducting field coil. This is a great point.

次に、上記従来装置の動作について説明する。Next, the operation of the above conventional device will be explained.

超電導界磁コイル(3)内の倣少な発熱、あるいは超電
導界磁コイル(3)へのわずかな侵入熱が生じると、こ
の熱は導体の周囲に存在しているヘリウムに吸収される
。熱を吸収したヘリウムは膨張し、密度が小さくなるの
で、遠心力場の自然対流により、絶縁スペーサ(21)
の下部半径方向穴(21a)を通り抜け、コイル取付軸
(2)に加工されたヘリウム流路穴(20)を通じて、
液体ヘリウム溜り(15)に出る。この熱を吸収したヘ
リウムは、液体ヘリウム溜り(15)において、一部蒸
発することによって熱を放散する。一方、超電導界磁コ
イル(3)の周りで生じる液体ヘリウムの不足は、液体
ヘリウム溜り(15)から軸端ヘリウム流路穴(19)
および外径側ヘリウム流路(22)を経路して、ウェッ
ジ(17)相互間の間隙を通じ、絶縁スペーサ(21)
の上部半径方向穴(21b)から流入する液体ヘリウム
によって補われる。このような自然循環を行うことによ
って超電導界磁コイル(3)の冷却が行われる。
When a small amount of heat is generated within the superconducting field coil (3) or a slight amount of heat intrudes into the superconducting field coil (3), this heat is absorbed by the helium existing around the conductor. Helium that absorbs heat expands and becomes less dense, so the natural convection of the centrifugal force field causes the insulating spacer (21) to
through the lower radial hole (21a) and through the helium channel hole (20) machined in the coil mounting shaft (2).
Exit to the liquid helium pool (15). The helium that has absorbed this heat dissipates heat by partially evaporating in the liquid helium reservoir (15). On the other hand, the shortage of liquid helium that occurs around the superconducting field coil (3) is caused by the liquid helium reservoir (15) flowing through the shaft end helium channel hole (19).
and an insulating spacer (21) through the gap between the wedges (17) through the helium flow path (22) on the outer diameter side.
is supplemented by liquid helium flowing from the upper radial hole (21b) of the radial hole (21b). By performing such natural circulation, the superconducting field coil (3) is cooled.

〔発明が解決しようとする問題点1 以上のような従来の超電導回転mtbの回転子では、外
径側ヘリウム流路(22)を形成するため、ヘリウム外
筒(6)はその両端でコイル取付軸(2)に溶接で固定
されるが、他の部分はコイル取付軸とは隙間を持ってい
る。このため、落雷等による系統短絡事故で回転子に巨
大な過渡トルクが加わった場合、ヘリウム外筒(6)と
コイル取付軸(2)の間で異なるねじり振動を発生し、
ヘリウム外筒(6)の両端のコイル取付軸への溶接部(
6a)に破損を生じ、ヘリウム容器内部の液体ヘリウム
が真空部(14)へ漏れ出ることにより、真空度が低下
する。そうすると、極低温部に侵入する熱が増加し、超
重、導界磁コイル(3)の温度が上昇し、超電導遷移温
度を越え、超重、4界磁コイル(3)がクエンチするこ
とにより、超電、導回転電機の運転が不能となる恐れが
あるという問題点があった。
[Problem to be solved by the invention 1 In the rotor of the conventional superconducting rotary mtb as described above, in order to form the helium channel (22) on the outer diameter side, the helium outer cylinder (6) has coils attached at both ends. It is fixed to the shaft (2) by welding, but there is a gap between the other parts and the coil mounting shaft. Therefore, when a huge transient torque is applied to the rotor due to a system short circuit accident caused by lightning, etc., different torsional vibrations are generated between the helium outer cylinder (6) and the coil mounting shaft (2).
Welded parts (
6a) and the liquid helium inside the helium container leaks into the vacuum section (14), resulting in a decrease in the degree of vacuum. As a result, the heat entering the cryogenic part increases, the temperature of the super-heavy conductive field coil (3) rises, exceeding the superconducting transition temperature, and the super-heavy four-field coil (3) quenches. There is a problem in that there is a possibility that the operation of the electrically conductive rotating electric machine may become impossible.

この発明はかかる問題点を解決するためになされたもの
で、超電導界磁コイルの冷却に必要な液体ヘリウムの流
れを損うことなく、かつ、系統事故に起因するヘリウム
外筒の溶接部破損を防止することができる超電導回転電
機の回転子を得ることを目的とする。
This invention was made in order to solve these problems, and it is possible to prevent damage to the welded part of the helium outer cylinder due to system accidents without impairing the flow of liquid helium necessary for cooling the superconducting field coil. The purpose is to obtain a rotor for a superconducting rotating electrical machine that can prevent the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超電導回転電機の回転子は、ヘリウム外
筒の両端部をコイル取付軸に嵌合し、かつ、嵌合部を溶
接するとともに、ウェッジ外表面とヘリウム外筒間にヘ
リウム流路を形成し、さらに、コイル取付軸の表面に、
スロットと交差してヘリウム流路を形成する溝が設けら
れている。
In the rotor of a superconducting rotating electric machine according to the present invention, both ends of a helium outer cylinder are fitted to a coil mounting shaft, the fitting parts are welded, and a helium flow path is formed between the outer surface of the wedge and the helium outer cylinder. Formed, and furthermore, on the surface of the coil mounting shaft,
A groove is provided that intersects the slot and forms a helium flow path.

〔作 用〕[For production]

この発明においては、ヘリウム外筒とコイル取付軸との
結合が強化され、系統事故に除して両者は一体としてね
じり撮動を呈する。また、ウェッジ外表面とヘリウム外
筒間のヘリウム流路およびコイル取付軸表面の溝による
ヘリウム流路により、超電導界磁コイルの冷却に必要な
液体ヘリウムの流れが確保される。
In this invention, the connection between the helium outer cylinder and the coil mounting shaft is strengthened, and the two exhibit torsional motion as a unit in the event of a system accident. Furthermore, the flow of liquid helium necessary for cooling the superconducting field coil is ensured by the helium flow path between the outer surface of the wedge and the helium outer cylinder and the helium flow path formed by the groove on the surface of the coil mounting shaft.

〔実施例〕〔Example〕

第1図〜第4図はこの発明の一実施例を示し、第1図に
おいて、ヘリウム外筒(6)はコイル取付軸(2)に焼
嵌められており、その両端に液体ヘリウムが真空部(1
4)に洩れるのを防ぐための溶接部(6b)を有する。
FIGS. 1 to 4 show an embodiment of the present invention. In FIG. 1, a helium outer cylinder (6) is shrink-fitted to a coil mounting shaft (2), and liquid helium is injected into a vacuum section at both ends of the helium outer cylinder (6). (1
4) has a welded part (6b) to prevent leakage.

第2図において、(23)は円周方向に加工されたヘリ
ウム分配溝であり、液体ヘリウム溜り(15)から流出
した液体ヘリウムは、軸端ヘリウム流路穴(19)を通
り、ヘリウム分配溝(23)へ流れ込む。
In Fig. 2, (23) is a helium distribution groove machined in the circumferential direction, and the liquid helium flowing out from the liquid helium reservoir (15) passes through the shaft end helium channel hole (19) and passes through the helium distribution groove. (23).

第3図において、ウェッジ(17)の頂部をティース(
18)の頂部よりも内方に位置させ、ウェッジ(17)
の外表面とヘリウム外筒(6)の間に外径側ヘリウム流
路(22)が形成されている。また、コイル取付軸(2
)の表面に、スロット(16)と交差する軸方向溝(2
4)と円周方向溝(25)が形成されている。
In Figure 3, the top of the wedge (17) is attached to the teeth (
Wedge (17)
An outer helium flow path (22) is formed between the outer surface of the helium cylinder (6) and the helium outer cylinder (6). In addition, the coil installation shaft (2
) is provided with an axial groove (2) intersecting the slot (16).
4) and a circumferential groove (25) are formed.

その他、第7図〜第11図におけると同一符号は同一部
分であり、説明を省略する。
In addition, the same reference numerals as in FIGS. 7 to 11 indicate the same parts, and the explanation will be omitted.

以上の構成により、ヘリウム分配溝(23)からの液体
ヘリウムは、軸方向溝(24)、円周方向溝(25)を
通り、外形側ヘリウム流路(22)に流れる。また、第
4図に示すように、外径側ヘリウム流路(22)の液体
ヘリウムは、ウェッジ07)相互間の隙間から絶縁スペ
ーサ(21)の上部半径方向穴(21b)を通り、超電
導界磁コイル(3)部へ流入し、超電導界磁コイル(3
)を冷却する。超電導界磁コイル(3)を冷却して温度
上昇した液体ヘリウムは、絶縁スペーサ(21)の下部
半径方向穴(21a)、スロット部ヘリウム流路穴(2
0)を通り、液体ヘリウム溜り(15)へ流出する。
With the above configuration, liquid helium from the helium distribution groove (23) passes through the axial groove (24) and the circumferential groove (25), and flows into the external helium flow path (22). Furthermore, as shown in FIG. 4, the liquid helium in the outer helium flow path (22) passes through the gap between the wedges 07) through the upper radial hole (21b) of the insulating spacer (21), and passes through the superconducting field. It flows into the magnetic coil (3) section, and the superconducting field coil (3)
) to cool down. The liquid helium whose temperature has increased by cooling the superconducting field coil (3) flows through the lower radial hole (21a) of the insulating spacer (21) and the helium channel hole (2) in the slot portion.
0) and flows out into the liquid helium reservoir (15).

なお、コイル取付軸(2)とヘリウム外筒(6)の嵌め
あいは冷し嵌めとしてもよく、同様の効果が得られる。
Note that the coil attachment shaft (2) and the helium outer cylinder (6) may be fitted by cold fitting, and the same effect can be obtained.

第5図は他の実施例であり、コイル取付[!II(2)
表面端部のティース(18)頂部にスロット(16)と
交差する軸方向溝(26)でなるヘリウム流路を設けた
もので、ヘリウム分配7g (23)からの液体ヘリウ
ムは、軸方向溝(Z6)を通り、ウェッジ(17)とヘ
リウム外筒(6)間に形成された外径側ヘリウム流路(
22)に流れる。その他の動作は前出の実施例と同様で
ある。
Figure 5 shows another embodiment, in which the coil is installed [! II (2)
A helium flow path consisting of an axial groove (26) intersecting with the slot (16) is provided at the top of the teeth (18) at the surface end, and the liquid helium from the helium distribution 7g (23) flows through the axial groove ( Z6), and the outer helium flow path (
22). Other operations are similar to those in the previous embodiment.

第6図はさらに他の実施例であり、コイル取付軸(2)
の表面に、スロット(16)と交差するスパイラルm(
27)を形成してなるもので、ヘリウム分配g(23)
からの液体ヘリウムは、スパイラル溝(27)でなるヘ
リウム流路を辿り、外径側ヘリウム流路(22)に流れ
る。その他の動作は前出の実施例と同様である。
Figure 6 shows yet another embodiment, in which the coil mounting shaft (2)
On the surface of the spiral m (
27), and helium distribution g(23)
The liquid helium from the helium flow path follows the helium flow path formed by the spiral groove (27) and flows into the outer helium flow path (22). Other operations are similar to those in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、ヘリウム外筒
は、その両端でコイル取付軸に嵌合、溶接されているの
で、落雷等の系統短絡事故で回転子に巨大な過渡トルク
が加わり回転子にねじり振動が発生しでも、ヘリウム外
筒とコイル取付軸は一体として挙動し、ヘリウム外筒の
両端のコイル取付軸との溶接部に剪断力が加わらない。
As explained above, according to the present invention, the helium outer cylinder is fitted and welded to the coil mounting shaft at both ends, so that in the event of a short-circuit accident such as a lightning strike, a huge transient torque is applied to the rotor causing it to rotate. Even if torsional vibration occurs in the coil, the helium outer cylinder and the coil mounting shaft behave as one, and no shearing force is applied to the welds between the helium outer cylinder and the coil mounting shaft at both ends.

したがって、溶接部破損の恐れはなく、液体ヘリウムの
漏れを生じることのない信頼性の高い回転子を得ること
ができる。
Therefore, there is no fear of damage to the welds, and a highly reliable rotor that does not leak liquid helium can be obtained.

また、ヘリウム外筒とウェッジ間に外径側ヘリウム流路
を設け、かつ、コイル取付軸表面にスロットと交差する
溝を設けたので、コイル取付軸内径側の液体ヘリウム溜
りより軸端ヘリウム流路穴、ヘリウム分配信を通りコイ
ル取付軸外径側へ流出した渾、体ヘリウムは、コイル取
付軸表面の溝から外径側ヘリウム流路を通り、スロット
内に収納された超電、導界磁コイルへ円滑に流れ、超電
導界磁コイルを効果的に冷却し、クエンチを防止するこ
とができる。
In addition, a helium flow path on the outer diameter side is provided between the helium outer cylinder and the wedge, and a groove that intersects with the slot is provided on the surface of the coil mounting shaft. The helium that flows out to the outer diameter side of the coil mounting shaft through the hole and helium distribution passes through the groove on the surface of the coil mounting shaft and the helium flow path on the outer diameter side, and passes through the superelectric and conductive field magnet stored in the slot. It flows smoothly to the coil, effectively cooling the superconducting field coil and preventing quenching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の縦断面図、第2図は第1
図のtt−n線に沿う平面での断面図、第3図は第1図
のもののコイル取付軸の斜視図、第4図は第1図のIV
−IV線に沿う平面での断面図、第5図、第6図はそれ
ぞれ他の実施例のコイル取付軸の斜視図、第7図は従来
の超電導回転電機の回転子の縦断面図、第8図は第7図
における超電導界磁コイルの斜視図、第9図は第7図に
おけるコイル取付軸の斜視図、第10図は第7図のX−
X線に沿う平面での断面図、第11図は第7図の)(−
M線に沿う平面での断面図である。 (2)・・コイル取付軸、(3)・・超電導界磁コイル
、(6)・・ヘリウム外筒、(6b)・・溶接部、(1
5)@番液体ヘリウム溜り、(16)・・スロット。 (17)−・ウェッジ、(18)・拳ティース−(19
)・・軸端ヘリウム流路穴、(20)・Φスロット部(
25)・・円周方向溝、(26)・・軸方内薄、(27
)@・スパイラル溝。 なお、各図中、同一符号は同−又は相当部分を示す。 16    スロ・、ト 17    ウェ、、シ・ 22、外役傅すヘソウ匂え路 24、軸方向溝 25  ° 門問方向溝 26: 卯方町真 27  スハ゛イラル;蕗 扇8図
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, and FIG.
Figure 3 is a perspective view of the coil mounting shaft of Figure 1, Figure 4 is the IV of Figure 1
5 and 6 are respectively perspective views of coil mounting shafts of other embodiments, and FIG. 7 is a vertical sectional view of a rotor of a conventional superconducting rotating electrical machine. Fig. 8 is a perspective view of the superconducting field coil in Fig. 7, Fig. 9 is a perspective view of the coil mounting shaft in Fig. 7, and Fig. 10 is a perspective view of the superconducting field coil in Fig. 7.
A cross-sectional view on a plane along the X-ray, Figure 11 is of Figure 7) (-
FIG. 3 is a cross-sectional view taken on a plane along line M. (2)...Coil mounting shaft, (3)...Superconducting field coil, (6)...Helium outer cylinder, (6b)...Welded part, (1
5) @Liquid helium reservoir, (16)...slot. (17) - Wedge, (18) Fist Teeth - (19
)... Helium flow path hole at the shaft end, (20), Φ slot part (
25)...Circumferential groove, (26)...Axial inner thinness, (27
)@・Spiral groove. In each figure, the same reference numerals indicate the same or corresponding parts. 16 slot, 17 wa,, shi, 22, 24, axial groove 25°, gate direction groove 26: Ugatacho Shin 27 spiral;

Claims (5)

【特許請求の範囲】[Claims] (1)表面に超電導界磁コイルを収納したスロットが形
成されているコイル取付軸と、前記超電導界磁コイルを
前記スロット内に保持しているウェッジと、前記コイル
取付軸に両端部で嵌合、溶接されているヘリウム外筒と
を備え、前記ウェッジ外表面と前記ヘリウム外筒間に外
径側ヘリウム流路を形成し、かつ、前記コイル取付軸の
表面に前記スロットと交差してヘリウム流路をなす溝を
形成してなる超電導回転電機の回転子。
(1) A coil mounting shaft that has a slot formed on its surface that accommodates the superconducting field coil, a wedge that holds the superconducting field coil in the slot, and a wedge that fits into the coil mounting shaft at both ends. a welded helium outer cylinder, forming a helium flow path on the outer diameter side between the wedge outer surface and the helium outer cylinder, and forming a helium flow path on the surface of the coil mounting shaft intersecting with the slot. The rotor of a superconducting rotating electric machine is formed by forming grooves that form a path.
(2)コイル取付軸表面に、軸方向溝と円周方向の溝と
を形成した特許請求の範囲第1項記載の超電導回転電機
の回転子。
(2) A rotor for a superconducting rotating electric machine according to claim 1, wherein an axial groove and a circumferential groove are formed on the surface of the coil mounting shaft.
(3)コイル取付軸の端部表面に軸方向溝を形成した特
許請求の範囲第1項記載の超電導回転電機の回転子。
(3) A rotor for a superconducting rotating electric machine according to claim 1, wherein an axial groove is formed on the end surface of the coil mounting shaft.
(4)コイル取付軸表面にスパイラル溝を形成した特許
請求の範囲第1項記載の超電導回転電機の回転子。
(4) A rotor for a superconducting rotating electric machine according to claim 1, wherein a spiral groove is formed on the surface of the coil mounting shaft.
(5)コイル取付軸とヘリウム外筒との嵌合が、焼嵌め
および冷し嵌めのいずれかによる特許請求の範囲第1項
記載の超電導回転電機の回転子。
(5) A rotor for a superconducting rotating electric machine according to claim 1, wherein the coil mounting shaft and the helium outer cylinder are fitted by either shrink fitting or cold fitting.
JP62058746A 1987-03-16 1987-03-16 Rotor for superconducting rotary electric machine Pending JPS63228957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62058746A JPS63228957A (en) 1987-03-16 1987-03-16 Rotor for superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058746A JPS63228957A (en) 1987-03-16 1987-03-16 Rotor for superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPS63228957A true JPS63228957A (en) 1988-09-22

Family

ID=13093100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058746A Pending JPS63228957A (en) 1987-03-16 1987-03-16 Rotor for superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS63228957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280771A (en) * 1993-03-29 1994-10-04 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Cooling method for crow pole type electric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280771A (en) * 1993-03-29 1994-10-04 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Cooling method for crow pole type electric motor

Similar Documents

Publication Publication Date Title
US4123676A (en) Rotor member for superconducting generator
US4076988A (en) Superconducting dynamoelectric machine having a liquid metal shield
US4152609A (en) Rotor member for superconducting generator
US4439701A (en) Rotor of a superconductive rotary electric machine
JPS6118349A (en) Rotor of superconductive rotary electric machine
US4442369A (en) Rotor of a superconductive rotary electric machine
US4649303A (en) Rotor for a superconducting rotating electric machine
JPS63228957A (en) Rotor for superconducting rotary electric machine
US4739202A (en) Superconducting electric rotary machine having grooved insulation for carrying coolant
JPS63228961A (en) Rotor for superconducting rotary electric machine
JPS62213546A (en) Rotor of superconducting rotary electric machine
JPS63228964A (en) Rotor for superconducting rotary electric machine
JPH0561869B2 (en)
JP2603002B2 (en) Superconducting rotating electric machine rotor
JPS589567A (en) Rotor for superconducting rotary electric machine
JPH0524746B2 (en)
JPH0524745B2 (en)
JP2586067B2 (en) Rotor of superconducting rotating electric machine and method of manufacturing the same
JPS62213559A (en) Rotor of superconducting rotary electric machine
JPS62213561A (en) Rotor of superconducting rotary electric machine
GB1564646A (en) Cryogenically cooled electrical apparatus
JPS62213554A (en) Rotor of superconducting rotary electric machine
JPS62213547A (en) Rotor of superconducting rotary electric machine
JPS62213562A (en) Rotor of superconducting rotary electric machine
JPS62213549A (en) Rotor of superconducting rotary electric machine