JPS62250674A - Manufactire of semiconductor device - Google Patents

Manufactire of semiconductor device

Info

Publication number
JPS62250674A
JPS62250674A JP9555586A JP9555586A JPS62250674A JP S62250674 A JPS62250674 A JP S62250674A JP 9555586 A JP9555586 A JP 9555586A JP 9555586 A JP9555586 A JP 9555586A JP S62250674 A JPS62250674 A JP S62250674A
Authority
JP
Japan
Prior art keywords
photoresist
gate
layer
gaas
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9555586A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishiuchi
石内 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9555586A priority Critical patent/JPS62250674A/en
Publication of JPS62250674A publication Critical patent/JPS62250674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a semiconductor device having a small gate length and a small gate resistance by a method wherein an insulating film is spread on a semiconductor substrate, photoresists of two layers are connected further thereon, an opening is made in the insulating film by dry etching, the photoresist fo the upper layer is removed by an 02 asher, and a gete metal is connected on the whole surface. CONSTITUTION:A silicon exide film 2 is formed on a GaAs substrate 1 by a CVD method. Next, a modified layer 4 is formed on the surface of a photoresist, and a positive-type photoresist 5 is formed thereon by a spin-coating method. Thereafter a region 6 wherein a gate is to be formed is exposed, the photoresist 5 of the upper layer is developed, and the modified layer 4 of the surface is removed by oxygen plasma. Moreover, after a photoresist 3 of the lower layer is developed, an opening is perforated in the silicon oxide film 2 by etching so as to expose the GaAs surface 1, the upper-layer resist 5 is removed by oxygen plasma, and then aluminum 7 is connected as a gate metal on the whole surface by a vacuum evaporation method. GaAs FET having a gate formed has sufficiently small gate length and obtains an excellent RF characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置、特にガリウムヒ素電界効果型ト
ランジスタ(GaAs FIT)のゲート電極の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a gate electrode of a semiconductor device, particularly a gallium arsenide field effect transistor (GaAs FIT).

〔従来の技術〕[Conventional technology]

従来、この桟の短ゲート長のゲートを有するGaAa 
FETの製造方法は、一層のホトレジストをホトリソグ
ラフィーを用いてゲート形成予定地を開口し、GaAs
表面を露出した後ゲート金属を被着し、リフトオフ法に
よりゲートを形成する方法が一般にとられている。
Conventionally, GaAa having a gate with a short gate length on this crosspiece
The FET manufacturing method is to open a layer of photoresist using photolithography to form a gate, and then deposit GaAs.
Generally, a method is used in which a gate metal is deposited after exposing the surface and a gate is formed by a lift-off method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のゲート形成法では、以下の様な欠点があ
る。即ち、ゲート長短縮に伴うゲート抵抗の増大が、G
aAa FETの雑音特性等に悪影響を及ぼすことであ
る。例えばゲート断面が長方形と仮定した場合、ゲート
金属厚が同じであれば、ゲート長とゲート抵抗は反比例
の関係となる。
The conventional gate forming method described above has the following drawbacks. In other words, the increase in gate resistance due to the shortening of the gate length
aAa This has an adverse effect on the noise characteristics of the FET. For example, assuming that the gate cross section is rectangular, the gate length and gate resistance are inversely proportional if the gate metal thickness is the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるゲート電極の製造方法は、半導体基板上に
絶縁膜を被着する工程と、さらにその上に上層のホトレ
ジストが、下層のホトレジストよりも現像液への溶解速
度が遅い、二層のホトレジストを被着し、その溶解速度
の違いにより、二層のホトレジスト膜の断面形状を逆階
段状にする工程と、絶縁膜をドライエッチによりエツチ
ング開口し、半導体表面を露出する工程と、さらに上層
のホトレジストを02アッシャ−により除去し、しかる
後にゲート金属を全面に被着する工程を含むことを特徴
とし、下層のホトレジストと絶縁膜の断面形状が階段状
となるため、ゲート金属の断面形状がT型とすることが
でき、従ってゲート長を短かくなおかつゲート抵抗も小
さい半導体を提供することができる。
The method for manufacturing a gate electrode according to the present invention includes the steps of depositing an insulating film on a semiconductor substrate, and further forming a two-layer photoresist layer on which the upper layer photoresist has a slower dissolution rate in a developer than the lower layer photoresist. The second step is to make the cross-sectional shape of the two-layer photoresist film into a reverse staircase shape due to the difference in dissolution rate, the second step is to dry-etch the insulating film to expose the semiconductor surface, and the second step is to make the upper layer The feature is that it includes a step of removing the photoresist using an 02 asher and then depositing the gate metal on the entire surface, and since the cross-sectional shape of the underlying photoresist and the insulating film is step-like, the cross-sectional shape of the gate metal is T. Therefore, it is possible to provide a semiconductor having a short gate length and low gate resistance.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

GaAs基板上1に、シリコン酸化膜2をCVD法によ
り1,500X被着する。次に、ポジ型ホトレジスト(
AZ1350J)3をスピンコード法で約1.0 μm
被着し、フレオンガス及び水素ガスによるドライエッチ
を行うことでこのホトレジスト表面に変成層4を形成す
る。続いてポジ型ホトレジスト(AZ2400)5をス
ピンコード法で約0.5μm被着する(第2図)。その
後ゲート形成予定地6の露光を行い、AZ2401 現
像液で上層のホトレジスト(AZ2400)5を現像し
た後、酸素プラズマによりAZ135QJ表面の変成層
4を除去する(第3図)さらにAZfll像液により下
層のホトレジスト3(AZ1350J)t−現像した後
さらKAZ2401 現像液ニ浸ス。コノ時下層ノAz
1350J3ノAz2401現像液への溶解速度が速い
ため、シリコン酸化膜2g出抜0AZ1350J3 と
AZ24005 (7)断面形状は第4図の如く逆階段
状となる(第4図)。しかる後7レオンガスと水素ガス
によるドライエッチにてシリコン酸化膜2をエツチング
開口し、GaAs表面1を露出させる(第5図)。
A silicon oxide film 2 is deposited at 1,500× on a GaAs substrate 1 by CVD. Next, apply a positive photoresist (
AZ1350J)3 to approximately 1.0 μm using spin code method
A metamorphic layer 4 is formed on the surface of the photoresist by dry etching using Freon gas and hydrogen gas. Subsequently, a positive photoresist (AZ2400) 5 is deposited to a thickness of about 0.5 μm using a spin code method (FIG. 2). Thereafter, the gate formation area 6 is exposed, and the upper layer photoresist (AZ2400) 5 is developed with an AZ2401 developer, and the metamorphic layer 4 on the AZ135QJ surface is removed using oxygen plasma (Fig. 3). After developing Photoresist 3 (AZ1350J), immerse it in KAZ2401 developer. Kono time lower layer Az
Since the rate of dissolution of 1350J3 into the AZ2401 developer is fast, the cross-sectional shape of the 2g silicon oxide film (0AZ1350J3 and AZ24005) becomes a reverse staircase shape as shown in FIG. 4 (FIG. 4). Thereafter, the silicon oxide film 2 is etched open by dry etching using 7 Leon gas and hydrogen gas, and the GaAs surface 1 is exposed (FIG. 5).

次[cII素プラズマにより上層レジス) (AZ24
00)5を除去した後全面にゲート金属としてアルミニ
ウム7を真空蒸着法によ#)0.5μm被着する(第6
図)。
Next [upper layer resist by cII elementary plasma] (AZ24
00) After removing 5, 0.5 μm of aluminum 7 is deposited as a gate metal on the entire surface by vacuum evaporation method (#6)
figure).

次に有機溶剤により下層レジストAZ1350J3を除
去することで余分なアルミニウムをリフトオフする(第
7図)。
Next, excess aluminum is lifted off by removing the lower resist AZ1350J3 with an organic solvent (FIG. 7).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によってゲート形成を行った
GaAs FETはゲート長も十分短く、しかもゲート
の断面積が広く従りてゲート抵抗も小さく、非常に良好
なRF’特性を得ることができる。
As explained above, the GaAs FET whose gate is formed according to the present invention has a sufficiently short gate length, a wide cross-sectional area of the gate, and a low gate resistance, and can obtain very good RF' characteristics.

以上本発明の実施例として特定な材料、特定の条件下で
説明したが、本技術思想からもこれらに限定される事な
く、例えばGaAsに限らずシリコンや他の半導体の製
造方法にも適用されることは言うまでもない。
Although the embodiments of the present invention have been described using specific materials and specific conditions, the technical concept of the present invention is not limited thereto, and can be applied to methods of manufacturing not only GaAs but also silicon and other semiconductors. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるゲート近傍の縦断面図、第2図乃
至第6図は本発明の一実施例の各工程断面図である。 l・・・・・・QaAs、2・・・・・・シリコン酸化
膜、3・・・・・・AZ1350J、4 ・−・・−A
Z1350J’&成m、5 、、・、、−AZ2400
.6・・・・・・ゲート形成予定地、7・・・・・・ア
ルミニウム。 代理人 弁理士  内 原   −1、日    、、
。 茅 4I!1 斗 5 回 茅 AI!r
FIG. 1 is a longitudinal cross-sectional view of the vicinity of the gate according to the present invention, and FIGS. 2 to 6 are cross-sectional views of each process in an embodiment of the present invention. 1...QaAs, 2...Silicon oxide film, 3...AZ1350J, 4...-A
Z1350J'& Narumi, 5,..., -AZ2400
.. 6... Planned site for gate formation, 7... Aluminum. Agent Patent Attorney Uchihara -1, Japan.
. Kaya 4I! 1 Do 5 Kaya AI! r

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁膜を被着する工程と、さらにその上
に上層のホトレジストが、下層のホトレジストよりも現
像液への溶解速度が遅い、二層のホトレジスト膜を被着
し、その溶解速度の違いにより、該ホトレジスト膜の断
面形状を逆階段状にする工程と、絶縁膜をドライエッチ
によりエッチング開口し、半導体表面を露出する工程と
、さらに上層のホトレジストをO_2アッシャーにより
除去し、しかる後にゲート金属を全面に被着する工程を
含むことを特徴とする半導体装置の製造方法。
The process involves depositing an insulating film on the semiconductor substrate, and then depositing a two-layer photoresist film on top of which the upper photoresist has a slower dissolution rate in a developing solution than the lower photoresist. Depending on the difference, there is a step to make the cross-sectional shape of the photoresist film into a reverse step-like shape, a step to dry-etch the insulating film to expose the semiconductor surface, and a step to remove the upper layer of photoresist using O_2 asher, and then remove the gate. A method for manufacturing a semiconductor device, comprising a step of depositing metal on the entire surface.
JP9555586A 1986-04-23 1986-04-23 Manufactire of semiconductor device Pending JPS62250674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9555586A JPS62250674A (en) 1986-04-23 1986-04-23 Manufactire of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9555586A JPS62250674A (en) 1986-04-23 1986-04-23 Manufactire of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62250674A true JPS62250674A (en) 1987-10-31

Family

ID=14140825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9555586A Pending JPS62250674A (en) 1986-04-23 1986-04-23 Manufactire of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62250674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110751A (en) * 1990-02-26 1992-05-05 Rohm Co., Ltd. Method of manufacturing a compound semiconductor device
JPH0689907A (en) * 1991-05-28 1994-03-29 Hughes Aircraft Co Method for formation of t-shaped gate structure on microelectronic-device substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110751A (en) * 1990-02-26 1992-05-05 Rohm Co., Ltd. Method of manufacturing a compound semiconductor device
JPH0689907A (en) * 1991-05-28 1994-03-29 Hughes Aircraft Co Method for formation of t-shaped gate structure on microelectronic-device substrate

Similar Documents

Publication Publication Date Title
JPS6355208B2 (en)
US3518084A (en) Method for etching an opening in an insulating layer without forming pinholes therein
JPS6216534B2 (en)
JPS62250674A (en) Manufactire of semiconductor device
JPS6222463B2 (en)
EP0332680B1 (en) Process of forming a t-gate metal structure on a substrate
JP3071481B2 (en) Method for forming GaAs device and T-shaped gate electrode
JP2664736B2 (en) Method for forming electrode for semiconductor device
JPS6120334A (en) Manufacture of semiconductor device
JPH0365893B2 (en)
KR100564746B1 (en) Method for fabricating T gate in a compound semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JP3131016B2 (en) Method of forming negative resist pattern
JPH03147338A (en) Manufacture of semiconductor device
JPS61263179A (en) Manufacture of josephson junction element
JPS6257221A (en) Minute-pattern forming method
JPS6390171A (en) Manufacture of field effect transistor
JPS6237972A (en) Metal-electrode forming method
JPS6025277A (en) Manufacture of semiconductor device
JPS6354776A (en) Manufacture of semiconductor device
JPH02138751A (en) Manufacture of semiconductor device
JPS62234333A (en) Formation of mask for processing fine groove
JPH05335339A (en) Method of forming t-shaped gate electrode
JPH045834A (en) Manufacture of semiconductor device
JPH10242168A (en) Method of forming microgate electrode