JPS62247505A - Manufacture of finely divided particle of barium ferrite for magnetic recording - Google Patents

Manufacture of finely divided particle of barium ferrite for magnetic recording

Info

Publication number
JPS62247505A
JPS62247505A JP61091006A JP9100686A JPS62247505A JP S62247505 A JPS62247505 A JP S62247505A JP 61091006 A JP61091006 A JP 61091006A JP 9100686 A JP9100686 A JP 9100686A JP S62247505 A JPS62247505 A JP S62247505A
Authority
JP
Japan
Prior art keywords
precipitate
barium
solution
dissolved
polyhydric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61091006A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61091006A priority Critical patent/JPS62247505A/en
Publication of JPS62247505A publication Critical patent/JPS62247505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a superior barium ferrite for magnetic recording by a method wherein a polyhydric alcohole solution, wherein salts of iron barium and the like are dissolved, and polyhydric alcohole solution, wherein alkali hydroxide is dissolved, are reacted with each other, precipitate is separated and, after alkali hydroxide is added, the precipitate is subjected to a surface treatment and is treated by heating. CONSTITUTION:A polyhydric alcohole solution, wherein iron, barium and so on are dissolved, and a polyhydric alcohole solution, wherein alkali hydroxide of an equivalent or more to the total amount of iron, barium and so on is dissolved, are reacted with each other at 120-200 deg.C and precipitate produced is separated. Alkali hydroxide is added to the precipitate obtained in such a way that 7-11 mol become excessive per 1 (l), the precipitate is charged in an autoclave and is treated by heating at 120-250 deg.C and the precipitate produced is separated, cleansed and dried. The product is dipped into a solution of silicate or aluminate, subjected to a surface treatment, and then treated by heating at 600-1000 deg.C. As the polyhydric alcohole, ethylene glycol, polyethylene glycol, propylene glycol, glycerine other than nitrate and so on are desirable.

Description

【発明の詳細な説明】 本発明は、磁気記録用の微粒子状バリウムフェライトの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing fine particulate barium ferrite for magnetic recording.

〔従来の技術〕[Conventional technology]

バリウムフェライトは、従来より永久磁石材料として広
く使用されているが、近年垂直磁気記録方式が提唱され
てから、高密度磁気記録材料として一躍注百3されてき
た。
Barium ferrite has been widely used as a permanent magnet material, but since the perpendicular magnetic recording method was proposed in recent years, it has suddenly become popular as a high-density magnetic recording material.

バリウムフェライト磁性粉末は、塗布型垂直磁気記録媒
体としての使用が可能なため、これまでの塗布技術が活
用でき且つ酸化物であるので安定であるというメリット
はあるが、保磁力が5ooooθ以上あるので、これを
磁気記録用に使用するためには保磁力を20000s以
下に抑える必要がある。
Barium ferrite magnetic powder can be used as a coated perpendicular magnetic recording medium, so it has the advantage of being able to utilize conventional coating techniques and being stable because it is an oxide. In order to use this for magnetic recording, it is necessary to suppress the coercive force to 20,000 s or less.

この保磁力制御方法として、鉄の一部をコバルトやチタ
ン等で置換する方法も提案されている(特開昭56−1
49328号公報)。
As a method for controlling this coercive force, a method has also been proposed in which part of the iron is replaced with cobalt, titanium, etc. (Japanese Patent Laid-Open No. 56-1
49328).

これまでに知られているバリウムフェライト磁性粉末の
製造方法としては、1)固相反応法、2)共沈加熱反応
法、3)フラックス法、4)ガラス点があり、垂直磁気
記録材料としては満足できる材料と云えるに至っていな
い。
So far, known methods for producing barium ferrite magnetic powder include 1) solid phase reaction method, 2) co-precipitation heating reaction method, 3) flux method, and 4) glass point method.As a perpendicular magnetic recording material, It cannot be said that the material is satisfactory.

即ち1)の方法は1000 C以上の高温焼成である為
粒子内焼結が著しく、粒子が粗大化し形状も不規則であ
る。2)の方法は共沈物を高温で反応成長する時に一部
の粒子が部分的に焼結凝集゛することが避けられない。
That is, since method 1) involves firing at a high temperature of 1000 C or more, intra-particle sintering is significant, resulting in coarse particles and irregular shapes. In method 2), when the coprecipitate is reacted and grown at high temperature, it is inevitable that some particles will partially sinter and agglomerate.

3)の方法は大きい粒子しか得られない。4)の方法は
マトリックスとして使用している酸化ホウ素の量が多く
、完全な除去が困難でしかも収率が悪くコスト高となる
。5)の方法は粒径が0.1μm以上のものしか得られ
ず、垂直磁気記録用として大きすぎる。
Method 3) yields only large particles. Method 4) uses a large amount of boron oxide as a matrix, making it difficult to completely remove it and resulting in poor yield and high cost. Method 5) can only yield particles with a particle size of 0.1 μm or more, which is too large for perpendicular magnetic recording.

これは垂直磁気記録ではサブミクロンの記録周波長をね
らっている為粒子径は0.1μm以下の粒径制御が必要
であることから何れの提案も好ましい方法とは云えない
。又、上記製造法以外に水熱合成法が古くから知られて
おり、溶液中にて直接バリウムフェライト結晶が得られ
ることから粒子相互の焼結がなく、また比較的揃った粒
子が得られる等利点が多く有力なプロセスの一つとなっ
ている。
Since perpendicular magnetic recording aims at a submicron recording wavelength, it is necessary to control the particle size to 0.1 μm or less, so none of the proposals can be said to be a preferable method. In addition to the above production method, a hydrothermal synthesis method has been known for a long time, and since barium ferrite crystals can be obtained directly in a solution, there is no mutual sintering of particles, and relatively uniform particles can be obtained. It has many advantages and is one of the most powerful processes.

しかし従来提案されているプロセスでは、六角板状で粒
子サイズの揃った0、1μm以下のバリウムフェライト
を合成することは難しく、まして高密度記録をねらった
更に微細化した粒子例えば0.05μmレベルの粒子を
つくることは困難である等の問題点があった。
However, with the processes proposed so far, it is difficult to synthesize barium ferrite with a hexagonal plate shape and uniform grain size of 0.1 μm or less, and even more so with even finer particles, such as 0.05 μm level, aimed at high-density recording. There were problems such as difficulty in making particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記の欠点がなく優れた磁気記録用バ
リウムフェライトを製造する方法を提供することにある
An object of the present invention is to provide a method for producing an excellent barium ferrite for magnetic recording without the above-mentioned drawbacks.

(問題点を解決するための手段〕 鉄及びバリウム等の塩を溶解した多価アルコール溶液と
、上記鉄とバリウム等の合計量に対し7、当量以上の水
酸化アルカIJ ’r溶解した多価アルコール溶液とを
120〜200C好ましくは120〜170Cの温度範
囲で攪拌しながら反応させ、生成する沈殿を例えば濾過
、イオン水洗浄を行なって分離する第一工程と、第一工
程で得られた沈殿に1l当り7〜11モル過剰となるよ
うに水酸化アルカリを添加してオートクレーブに装入し
120〜250Cで水熱処理し生成する沈殿を分離して
洗浄、乾燥する第二工程と、第二工程産出物をケイ素塩
又はアルミニウム塩の水溶液に浸漬して表面処理したの
ち600〜1000 t11’好ましくは700〜85
0Cで加熱処理する第三工程とよりなる六方晶バリウム
フェライト微粒子の製造方法である。
(Means for solving the problem) A polyhydric alcohol solution in which iron, barium, etc. A first step in which the alcohol solution is reacted with stirring at a temperature range of 120 to 200C, preferably 120 to 170C, and the resulting precipitate is separated by, for example, filtration or washing with ionized water, and the precipitate obtained in the first step. a second step in which alkali hydroxide is added in an excess of 7 to 11 moles per liter, the mixture is charged into an autoclave, and the resulting precipitate is hydrothermally treated at 120 to 250 C, and the resulting precipitate is separated, washed, and dried; 600-1000 t11' preferably 700-85 after surface treatment by immersing the product in an aqueous solution of silicon salt or aluminum salt
This is a method for producing hexagonal barium ferrite fine particles, which includes a third step of heat treatment at 0C.

〔作用〕[Effect]

本発明の方法において使用する鉄(FoI)及びバリウ
ム(Ball)は、夫々公知の硫酸塩、硝酸塩、塩化物
、水酸化物等であり、水酸化アルカリとしては、水酸化
ナトリウム、水酸化カリウム等が好ましいが何れも多価
アルコールに可溶のものを使用する。
Iron (FoI) and barium (Ball) used in the method of the present invention are known sulfates, nitrates, chlorides, hydroxides, etc., and the alkali hydroxides include sodium hydroxide, potassium hydroxide, etc. It is preferable to use one that is soluble in polyhydric alcohol.

多価アルコールとしては特定されないが、エチレングリ
フール、ポリエチレングリコール、ポリプロピレングリ
フール、プロピレングリコール、硝酸塩以外のグリセリ
ン等が好ましい。
Although the polyhydric alcohol is not specified, ethylene glyfur, polyethylene glycol, polypropylene glyfur, propylene glycol, glycerin other than nitrate, and the like are preferred.

本発明法において、第一工程の反応温度を120由は、
これ以下では反応速度が遅いだけでなく粗粒となる傾向
があり、これ以上の温度としても特に顕著な効果を示さ
ないだけでなく多価アルコールの蒸気圧が高くなって耐
圧用の容器が必要となる0 このようにして得られた沈殿物を第二工程でオートクレ
ーブ中にて120〜250Cの温度範囲で水熱処理する
理由は、水熱処理することによって分散性の良い沈殿と
するためである。この処理温度が120C以下では反応
が遅く実用的でない。又、250C以上としても格別の
効果は認められない。
In the method of the present invention, the reaction temperature in the first step is 120 mm.
Below this temperature, not only is the reaction rate slow, but the particles tend to become coarse, and even if the temperature is higher than this, not only does it not show any remarkable effect, but the vapor pressure of the polyhydric alcohol becomes high, requiring a pressure-resistant container. 0 The reason why the precipitate thus obtained is hydrothermally treated in the autoclave at a temperature range of 120 to 250 C in the second step is to form a precipitate with good dispersibility by the hydrothermal treatment. If the treatment temperature is below 120C, the reaction is too slow to be practical. Further, even if the temperature is 250C or higher, no particular effect is observed.

オートクレーブ処理に際して水酸化アルカリを過剰に7
モル以上好ましくは11モル以下存在せしめて処理する
理由は、上記の過剰アルカリ濃度が7モル以下では生成
する沈殿の粒度が粗大となり、又11モルを超えるとア
ルカリ水溶液の粘度が高くなるためか同様に微細粒子が
得られ難いからである0 第三工程で加熱処理する前に沈殿の表面処理す2厘山?
−)  舶hn厘?−シっで餉工ロ+講で鵬至1プ如大
化するのを防ぐためである。
Excessive amount of alkali hydroxide during autoclaving
The reason why the treatment is carried out in the presence of mol or more, preferably 11 mol or less, is because if the excess alkali concentration is 7 mol or less, the particle size of the formed precipitate becomes coarse, and if it exceeds 11 mol, the viscosity of the alkaline aqueous solution increases. This is because it is difficult to obtain fine particles in the third step.2.
-) Shipping? - This is to prevent Peng Zhi from becoming one puyo great in Shidde Cake Techniques + Ko.

第三工程で使用するケイ素塩とアルミニウム塩は特定さ
れないが夫々公知のオルトケイ酸ナトリウム、メタケイ
酸ナトリウム、メタケイ酸カリウム、ケイ素のアルコキ
シド、硝酸、硫酸、塩化物等のアルミニウム塩、アルミ
ニウムのアルコキシド等が好ましい。熱処理は600〜
1ooo r好ましくは700〜850 t:で空気中
で行なう。600C以下では未反応の酸化鉄(Cubi
c )が生成したり、製品が非晶質となり、1000 
C以上では粒子が粗大化する。
The silicon salts and aluminum salts used in the third step are not specified, but include known sodium orthosilicate, sodium metasilicate, potassium metasilicate, silicon alkoxides, nitric acid, sulfuric acid, aluminum salts such as chlorides, aluminum alkoxides, etc. preferable. Heat treatment is 600~
It is carried out in air at 100 m, preferably 700 to 850 m. Below 600C, unreacted iron oxide (Cubi
c) may be generated or the product may become amorphous, resulting in
If it exceeds C, the particles become coarse.

本発明法によれば、平均粒径が0.1μm以下の分散性
の良い六方晶バリウムフェライト、又はフェライトの一
部をフバルト、チタン等に置換したバリウムフェライト
が安定して得られる。
According to the method of the present invention, a well-dispersed hexagonal barium ferrite having an average particle size of 0.1 μm or less, or barium ferrite in which a part of the ferrite is replaced with fuvardium, titanium, etc., can be stably obtained.

〔実施例〕〔Example〕

以下実施例について説明する。 Examples will be described below.

実施例1 塩化第二鉄219g(FeC13・6H20,0,81
モル)と塩化バリウム14 g (B aOl 2.0
.067モル)とをエチレングリコール11に溶解し、
これに水酸化ナトリウム42 g (1,05モル)コ
エチレンクリコール2.51に溶解した溶液を添加し、
攪拌を450 rpmで30分間170Cにて保持して
行なったのち室温まで放冷し、生成した沈殿を濾過洗浄
して分離した。
Example 1 219 g of ferric chloride (FeC13.6H20,0,81
mol) and 14 g barium chloride (BaOl 2.0
.. 067 mol) in ethylene glycol 11,
To this was added a solution of 42 g (1.05 mol) of sodium hydroxide dissolved in 2.51 g of coethylene glycol,
After stirring at 450 rpm and maintaining the temperature at 170C for 30 minutes, the mixture was allowed to cool to room temperature, and the precipitate formed was separated by filtration and washing.

次に第一工程で得られた沈殿は、アルカリ濃度が17当
り10モルとなる量の水酸化ナトリウム水溶液11l添
付してオートクレーブに装入し、オートクレーブに付属
の攪拌器で攪拌しながら240Cで3時間水熱処理を行
ない、生成した沈殿を吸引濾過器により分離したのち温
水洗浄、アルコール処理を行なったのち真空乾燥した。
Next, the precipitate obtained in the first step was charged into an autoclave with 11 liters of aqueous sodium hydroxide solution in an amount such that the alkali concentration was 10 moles per 17, and heated at 240C for 3 hours while stirring with the stirrer attached to the autoclave. Hydrothermal treatment was performed for a period of time, and the resulting precipitate was separated using a suction filter, washed with hot water, treated with alcohol, and then dried in vacuum.

こうして得られたフェライト粉末は、0.3重量%の水
ガラス水溶液に30分間浸漬したのち吸引濾過により沈
殿を分離し、次いでsoo t:”に保持したマツフル
炉に入れ1時間熱処理した。
The thus obtained ferrite powder was immersed in a 0.3% by weight aqueous water glass solution for 30 minutes, and the precipitate was separated by suction filtration.Then, the powder was placed in a Matsufuru furnace maintained at soot temperature and heat-treated for 1 hour.

得られた微粒子の化学組成は、螢光X線分析、粒子状態
は透過型電子顕微鏡(以下TEMと称す)、同定はX線
回折、粒子の比表面積はBET法により夫々測定したと
ころ、Fe/Baのモル比は12.1、TKMによる観
察から平均粒径は0.08#mでよく分散した六方晶粒
子で比表面積は48.7 m 7gと満足するに足る性
状のバリウムへキサフェライトが得られた。
The chemical composition of the obtained fine particles was determined by fluorescent X-ray analysis, the particle state by transmission electron microscopy (hereinafter referred to as TEM), the identification by X-ray diffraction, and the specific surface area of the particles by BET method. The molar ratio of Ba is 12.1, and as observed by TKM, barium hexaferrite has satisfactory properties such as well-dispersed hexagonal particles with an average particle size of 0.08 #m and a specific surface area of 48.7 m and 7 g. Obtained.

実施例2 第一工程の反応温度を140C,第二工程のオートクレ
ーブ処理を280C’、マツフル炉による沈殿の熱処理
温度を850Cとし、Ba、F”eの原料を硝酸塩とし
た以外は実施例1と同様にしてフェライトを製造し、そ
の物性を測定したところ、Fe/Baのモル比は11.
8、TEM観察による平均粒径0.09μmでよく分散
した六方晶バリウムへキサフェライトであり、比表面積
は43 m 7gと充分な物性の製品であった。
Example 2 Same as Example 1 except that the reaction temperature in the first step was 140C, the autoclave treatment in the second step was 280C', the heat treatment temperature for precipitation in a Matsufuru furnace was 850C, and nitrate was used as the raw material for Ba and F''e. When ferrite was manufactured in the same manner and its physical properties were measured, the Fe/Ba molar ratio was 11.
8. It was a well-dispersed hexagonal barium hexaferrite with an average particle size of 0.09 μm as determined by TEM observation, and the product had sufficient physical properties with a specific surface area of 43 m 7 g.

比較例 第一工程の処理を115Cで2時間とした以外は実施例
1と同様に処理したところ0.1μm以下のバリウムフ
ェライトは得られなかった。
Comparative Example When the same process as in Example 1 was carried out except that the first step was carried out at 115C for 2 hours, barium ferrite of 0.1 μm or less was not obtained.

〔発明の効果〕〔Effect of the invention〕

平均粒径0.05〜0.8μmの範囲の六方晶バリウム
フェライトを効率良く得ることができる。
Hexagonal barium ferrite having an average particle size in the range of 0.05 to 0.8 μm can be efficiently obtained.

出願人  住友金属鉱山株式会社 手続補正書 昭和61年9月1o日 1、下件の表示 昭和61年特 許 願第091006号3、 補正をす
る者 事件とめ関係 出 願 人 住 所  東京都港区新橋5丁目11番3号氏 名(名
称)住友金属鉱山株式会社 4、代理人 住 所  東京都新宿区新宿1丁目12−15(2) 
 同 10頁1行の「0.8μm」を「o、osμm」
と訂正する。
Applicant: Sumitomo Metal Mining Co., Ltd. Procedural Amendment dated September 1, 1986 1, Indication below Patent Application No. 091006 No. 091006 of 1988 3, Person filing the amendment: Filing Address: Minato-ku, Tokyo 5-11-3, Shinbashi Name: Sumitomo Metal Mining Co., Ltd. 4, Agent address: 1-12-15 (2) Shinjuku, Shinjuku-ku, Tokyo
``0.8μm'' in the first line of page 10 is ``o, osμm''.
I am corrected.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄及びバリウム等を溶解した多価アルコール溶液
と、上記の鉄とバリウム等の合計量に対し、当量以上の
水酸化アルカリを溶解した多価アルコール溶液とを12
0〜200℃で反応させ生成する沈殿を分離する第一工
程と、第一工程で得られた沈殿に、1l当り7〜11モ
ル過剰となるように水酸化アルカリを添加してオートク
レーブに装入し120〜250℃で水熱処理し生成した
沈殿を分離して、洗浄、乾燥する第二工程と、第二工程
産出物をケイ素塩又はアルミニウム塩の水溶液に浸漬し
て表面処理し、次いで600〜1000℃で加熱処理す
る第三工程とよりなることを特徴とする磁気記録用バリ
ウムフェライト微粒子の製造方法。
(1) A polyhydric alcohol solution in which iron, barium, etc. are dissolved, and a polyhydric alcohol solution in which alkali hydroxide is dissolved in an amount equal to or more than the total amount of iron, barium, etc. mentioned above.
The first step is to separate the precipitate produced by the reaction at 0 to 200°C, and to the precipitate obtained in the first step, alkali hydroxide is added in an excess of 7 to 11 moles per liter, and the mixture is charged into an autoclave. The second step is to separate the precipitate produced by hydrothermal treatment at 120 to 250°C, wash and dry it, and the product of the second step is surface treated by immersing it in an aqueous solution of silicon salt or aluminum salt. A method for producing barium ferrite fine particles for magnetic recording, comprising a third step of heat treatment at 1000°C.
JP61091006A 1986-04-18 1986-04-18 Manufacture of finely divided particle of barium ferrite for magnetic recording Pending JPS62247505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091006A JPS62247505A (en) 1986-04-18 1986-04-18 Manufacture of finely divided particle of barium ferrite for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091006A JPS62247505A (en) 1986-04-18 1986-04-18 Manufacture of finely divided particle of barium ferrite for magnetic recording

Publications (1)

Publication Number Publication Date
JPS62247505A true JPS62247505A (en) 1987-10-28

Family

ID=14014421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091006A Pending JPS62247505A (en) 1986-04-18 1986-04-18 Manufacture of finely divided particle of barium ferrite for magnetic recording

Country Status (1)

Country Link
JP (1) JPS62247505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105595B1 (en) 2008-08-13 2012-01-18 주식회사 이엠따블유 Manufacture method of ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105595B1 (en) 2008-08-13 2012-01-18 주식회사 이엠따블유 Manufacture method of ferrite

Similar Documents

Publication Publication Date Title
US5635154A (en) Process for producing fine metal oxide particles
KR100691908B1 (en) Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
US6811758B1 (en) Precipitation process
JP4281943B2 (en) Method for producing plate-like alumina particles
JP2013522151A (en) Crystalline cerium oxide and method for producing the same
JPS62247505A (en) Manufacture of finely divided particle of barium ferrite for magnetic recording
Darab et al. Continuous hydrothermal processing of nano-crystalline particulates for chemical-mechanical planarization
US5432137A (en) Process for producing a highly crystalline, fine α-alumina powder
JPH06329411A (en) Production of flaky transition alumina
CN112723331A (en) Preparation method of high-purity nanometer neodymium phosphate powder
JPH04280815A (en) Fine particulate alkali titanate and its production
JP2767484B2 (en) Method for producing particulate metal oxide
JPS6345118A (en) Production of sintered abrasive alumina grain
JPH04260612A (en) Production of fine alpha-alumina powder
JP3884860B2 (en) Method for producing magnetic powder
JPH04238814A (en) Preparation of titanate of bi- or tri-valent cation
JPH10212124A (en) Synthetic chalco alumite type compound and its production
JPS62252908A (en) Manufacture of barium ferrite fine particle for magnetic recording
JPS627633A (en) Plate goethite and preparation of the same
JPS62252907A (en) Manufacture of barium ferrite fine particle for magnetic recording
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JP2001270714A (en) Method for producing yag fine powder
JPS62128924A (en) Production of zirconium oxide series fine powder
JP2685687B2 (en) Method for producing rare earth element oxide particles
JPS62252909A (en) Manufacture of barium ferrite fine particle for magnetic recording