JPS62252907A - Manufacture of barium ferrite fine particle for magnetic recording - Google Patents

Manufacture of barium ferrite fine particle for magnetic recording

Info

Publication number
JPS62252907A
JPS62252907A JP61096507A JP9650786A JPS62252907A JP S62252907 A JPS62252907 A JP S62252907A JP 61096507 A JP61096507 A JP 61096507A JP 9650786 A JP9650786 A JP 9650786A JP S62252907 A JPS62252907 A JP S62252907A
Authority
JP
Japan
Prior art keywords
barium
dissolved
magnetic recording
polyvalency
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61096507A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61096507A priority Critical patent/JPS62252907A/en
Publication of JPS62252907A publication Critical patent/JPS62252907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain cubic barium hexaferrite having 0.07-0.08mum of mean particle diameter by agitating polyvalency alcohol in which salt is dissolved and polyvalency alcohol in which small oxide alkali is dissolved, water-heat- treating the mixture, cleaning and drying its precipitate, surface treating it, and heat treating it. CONSTITUTION:Polyvalency alcohol solution in which iron and barium are dissolved and polyvalency alcohol solution in which hydroxide alkali having an equivalent or more with respect to the total amount of the iron and the barium are dissolved are mixed and agitated. Produced slurry is filled in an autoclave, and treated at 120-250 deg.C. Obtained precipitate is separated, cleaned and dried. The product is dipped in aqueous solution of silicon salt or aluminum salt, surface-treated, and then heattreated at 600-1000 deg.C. Thus, cubic barium hexaferrite having 0.07-0.08mum of mean particle diameter is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録用の微粒子状バリウムフェライトの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing fine particulate barium ferrite for magnetic recording.

〔従来の技術〕[Conventional technology]

バリウムフェライトは、従来より永久磁石材料として広
く使用されているが、近年垂直磁気記録方式が提唱され
てから、高密度磁気記録材料として一躍注目をされてき
た。
Barium ferrite has been widely used as a permanent magnet material, but since the perpendicular magnetic recording method was proposed in recent years, it has suddenly attracted attention as a high-density magnetic recording material.

バリウムフェライト磁性粉末は、塗布型垂直磁気記録媒
体としての使用が可能なため、これまでの塗布技術が活
用でき且つ酸化物であるので安定であるというメリット
はあるが、保磁力が50000e以上あるので、これを
磁気記録用に使用するためには保磁力を20000e以
下に抑える必要がある。
Since barium ferrite magnetic powder can be used as a coated perpendicular magnetic recording medium, it has the advantage of being able to utilize conventional coating techniques and being stable since it is an oxide. In order to use this for magnetic recording, it is necessary to suppress the coercive force to 20,000e or less.

この保磁力制御方法として、鉄の一部をフパルトやチタ
ンなどで置換する方法も提案されている(特開昭56−
149328号公報)。
As a method for controlling this coercive force, a method has also been proposed in which part of the iron is replaced with fupartite, titanium, etc.
149328).

これまでに知られているバリウムフェライト磁性粉末の
製造方法としては、1)固相反応法、2)共沈加熱度応
性、3)フラックス法、4〕ガラス結晶化法、5)溶融
塩法、等があるがいずれも欠点があり、垂直磁気記録材
料としては満足できる材料と云えるに至っていない。
So far known methods for producing barium ferrite magnetic powder include 1) solid phase reaction method, 2) co-precipitation thermoresponsiveness, 3) flux method, 4] glass crystallization method, 5) molten salt method, However, all of them have drawbacks and cannot be said to be a material that is satisfactory as a perpendicular magnetic recording material.

即ち1)の方法は1000 C以上の高温焼成である為
粒子的焼結が著しく、粒子が粗大化し、形状も不規則で
ある。2)の方法は共沈物を高温で反応成長する時に一
部粒子が部分的に焼結・凝集することが避けられない。
That is, since method 1) involves high-temperature firing at 1000 C or higher, particle sintering is significant, resulting in coarse particles and irregular shapes. In method 2), it is inevitable that some particles will partially sinter and agglomerate when the coprecipitate is reacted and grown at a high temperature.

3)の方法は大きい粒子しか得られない。4)の方法は
マ) IJラックスして使用している酸化ホウ素の量が
多く、完全な除去が困難でしかも収率が悪くコスト高と
なる。5)の方法は粒径が0.1μm以上のものしか得
られず、垂直磁気記録用として大きすぎる。
Method 3) yields only large particles. In method 4), the amount of boron oxide used as IJ lux is large, making it difficult to completely remove it and resulting in poor yield and high cost. Method 5) can only yield particles with a particle size of 0.1 μm or more, which is too large for perpendicular magnetic recording.

これは垂直磁気記録ではサブミクロンの記録周波長をね
らっている為粒子径を0.1μm以下に粒径制御するこ
とが必要であることから、何れの提案も好ましい方法と
は云えない。
Since perpendicular magnetic recording aims at a submicron recording wavelength, it is necessary to control the particle size to 0.1 μm or less, so none of the proposals can be said to be a preferable method.

又、上記製造法以外に水熱合成法が古くから知られてお
り、溶液中にて直接バリウムフェライト結晶が得られる
ことから粒子相互の焼結がなく、また比較的揃った粒子
が得られる等、利点が多く有力なプロセスの一つとなっ
ている。
In addition to the above production method, a hydrothermal synthesis method has been known for a long time, and since barium ferrite crystals can be obtained directly in a solution, there is no mutual sintering of particles, and relatively uniform particles can be obtained. It has many advantages and has become one of the most popular processes.

しかし、従来提案されているプロセスでは、六角板状で
粒子サイズの揃った0、1μm以下のバリウムフェライ
トを合成することは難しく、まして高密度記録を狙った
更に微細化した粒子例えば0.05μmレベルの粒子を
つくることは困難である等の問題点があった。
However, with the processes proposed so far, it is difficult to synthesize barium ferrite with a hexagonal plate shape and uniform particle size of 0.1 μm or less, and even more so, it is difficult to synthesize barium ferrite with a uniform grain size of 0.1 μm or less. There were problems such as difficulty in making particles of

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記の欠点がなく優れた磁気記録用バ
リウムフェライトを製造する方法を提供することにある
An object of the present invention is to provide a method for producing an excellent barium ferrite for magnetic recording without the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

鉄及びバリウム等の塩を溶解した多価アルコール溶液と
、上記鉄とバリウム等の合計量に対し、当量以上の水酸
化アルカリを溶解した多価アルコール溶液とを混合して
攪拌し、これをオートクレーブに装入して120〜25
0 ?Z’で水熱処理し、生成する沈殿を分離して洗浄
、乾燥する第一工程と、第一工程で得られた沈殿をケイ
素塩又はアルミニウム塩の水溶液に浸漬して表面処理し
たのち600〜1000 Cで加熱処理する第二工程と
よりなる六方晶バリウムフェライト微粒子の製造方法で
ある。
A polyhydric alcohol solution in which salts such as iron and barium are dissolved and a polyhydric alcohol solution in which alkali hydroxide is dissolved in an amount equal to or more than the total amount of iron and barium, etc. are mixed and stirred, and the mixture is placed in an autoclave. 120-25
0? A first step of hydrothermal treatment with Z', separating the generated precipitate, washing and drying, and a surface treatment of the precipitate obtained in the first step by immersing it in an aqueous solution of silicon salt or aluminum salt. This is a method for producing hexagonal barium ferrite fine particles, which comprises a second step of heat treatment with C.

〔作用〕[Effect]

本発明の方法において使用する鉄(Fel)及びバリウ
ム(Ball)は、夫々公知の硫酸塩、硝酸塩、塩化物
、水酸化物等であり、水酸化アルカリとしては、水酸化
ナトリウム、水酸化カリウム等が好ましいが何れも多価
アルコールに可溶のものを使用する。
Iron (Fel) and barium (Ball) used in the method of the present invention are known sulfates, nitrates, chlorides, hydroxides, etc., respectively, and the alkali hydroxides include sodium hydroxide, potassium hydroxide, etc. It is preferable to use one that is soluble in polyhydric alcohol.

多価アルコールとしては特定されないが、エチレングリ
フール、ぎリエチレングリコール、ポリプロピレングリ
フール、プ四ピレングリコール、硝酸塩以外のグリセリ
ン等が好ましい。
Although not specified as the polyhydric alcohol, ethylene glyfur, glyethylene glycol, polypropylene glycol, tetrapyrene glycol, glycerin other than nitrates, and the like are preferred.

本発明の方法において、第一工程の水熱処理温度を12
0〜250C好ましくは200〜260Cとする理由は
、これ以下では反応速度が遅く且つ粗粒となる傾向を示
し、これ以上でも粒子成長により目的の微粒子状バリウ
ムフェライトが得られない為である。第二工程で加熱処
理する前に沈殿の表面処理する理由は、熱処理によって
粒子同志が融着して粗大化するの3防ぐためである。
In the method of the present invention, the hydrothermal treatment temperature in the first step is 12
The reason why the temperature is set to 0 to 250C and preferably 200 to 260C is that if the temperature is lower than this, the reaction rate is slow and the grains tend to become coarse, and if the temperature is higher than this, the target fine-grained barium ferrite cannot be obtained due to particle growth. The reason why the surface of the precipitate is treated before the heat treatment in the second step is to prevent particles from fusing together and becoming coarse due to the heat treatment.

第二工程で使用するケイ素塩とアルミニウム塩は特定さ
れないが夫々公知のオルトケイ酸ナトリウム、メタケイ
酸ナトリウム、メタケイ酸カワウム、ケイ素のアルフキ
シト、硝酸、硫酸、塩化物等のアルミニウム塩、アルミ
ニウムのアルフキシト等が好ましい。
The silicon salts and aluminum salts used in the second step are not specified, but may include known sodium orthosilicate, sodium metasilicate, kawaium metasilicate, silicon alfuxite, aluminum salts such as nitric acid, sulfuric acid, chloride, aluminum alfuxite, etc. preferable.

加熱処理は600〜1000 C好ましくは700〜8
50Cで空気中で行なう。600tll’IX下では未
反応の酸化鉄(Cubic )が生成したり、製品が非
晶質となり、1000 C以上では粒子が粗大化する。
Heat treatment at 600-1000 C, preferably 700-8
Performed in air at 50C. At 600 tll'IX, unreacted iron oxide (Cubic) is generated or the product becomes amorphous, and at 1000 C or higher, the particles become coarse.

本発明法によれば、平均粒径が0.1μm以下の分散性
の良い六方晶バリウムフェライト、又はフェライトの一
部をフバルト、チタン等に置換したバリウムフェライト
が安定して得られる。
According to the method of the present invention, a well-dispersed hexagonal barium ferrite having an average particle size of 0.1 μm or less, or barium ferrite in which a part of the ferrite is replaced with fuvardium, titanium, etc., can be stably obtained.

〔実施例〕〔Example〕

以下実施例について説明する。 Examples will be described below.

実施例1 塩化第二鉄219 g CFe01 ・6M Olo、
81モル)と塩化バリウム14 g(BaC4、0,0
67モル)とをエチレングリコール11に溶解し、これ
に水酸化ナトリウム40 g (1,0モル)をプロビ
レングリコール11に溶解した溶液を添加し、500 
rpri+で40分間攪拌し、生成したスラリーをオー
トクレーブに装入し、オートクレーブに付属の攪拌器で
攪拌しながら230Cで3時間処理し、生成した沈殿を
吸引濾過器により濾過、温水洗浄、アルコール処理を行
なったのち真空乾燥した。
Example 1 Ferric chloride 219 g CFe01 ・6M Olo,
81 mol) and 14 g of barium chloride (BaC4, 0,0
67 mol) was dissolved in ethylene glycol 11, and a solution of 40 g (1.0 mol) of sodium hydroxide dissolved in propylene glycol 11 was added thereto.
Stir with rpri+ for 40 minutes, charge the generated slurry into an autoclave, and treat at 230C for 3 hours while stirring with the stirrer attached to the autoclave.The generated precipitate is filtered with a suction filter, washed with hot water, and treated with alcohol. After that, it was vacuum dried.

得られた沈殿は、0.3重量%の水ガラスを含む水溶液
に40分間浸漬したのち固液分離して沈殿ひ乾燥し、次
いでsoo t:’に保持したマツフル炉で1時間加熱
処理した。
The obtained precipitate was immersed in an aqueous solution containing 0.3% by weight of water glass for 40 minutes, separated into solid and liquid, precipitated and dried, and then heated in a Matsufuru furnace maintained at soot:' for 1 hour.

こうして得られた製品の化学組成は螢光Xa分析、粒子
状態は透過型電子顕微鏡(以下TEMと略称する)、比
表面積はBET法、同定はX線回折により夫々測定した
ところFe/B&のモル比は12.1、TEM観察によ
り粒径は0.06〜0.09μm1比表面積は47.3
 m 7gのシャープな六方晶バリウムへキサフェライ
ト単−相のものであり磁気記録用として好適のものであ
った。
The chemical composition of the thus obtained product was determined by fluorescent Xa analysis, the particle state by transmission electron microscopy (hereinafter referred to as TEM), the specific surface area by BET method, and the identification by X-ray diffraction. The ratio is 12.1, the particle size is 0.06 to 0.09 μm by TEM observation, and the specific surface area is 47.3.
It was a single phase of sharp hexagonal barium hexaferrite with a weight of 7 g, and was suitable for magnetic recording.

実施例2 オートクレーブの水熱処理を170 cで5時間、マツ
フル炉における加熱処理をc+o’o c 1時間どし
た以外、は実施例1と同様にして、フェライトの製品を
製造したところFe/Eaのモル比は12.05、粒径
は0.07〜0.08μm比表面積49.1 m 7g
の六方晶バリウムへキサフェライトであった。
Example 2 A ferrite product was manufactured in the same manner as in Example 1, except that the hydrothermal treatment in the autoclave was performed at 170 C for 5 hours and the heat treatment in the Matsufuru furnace was changed to C + O'C for 1 hour. Molar ratio is 12.05, particle size is 0.07-0.08 μm, specific surface area: 49.1 m, 7 g
It was hexagonal barium hexaferrite.

比較例 オートクレーブによる水熱処理を2600とした以外は
実施例1と同様に処理したところ、粒子の粒径は0.1
μm以上と粗大で比表面積は31.2m/gに留まった
Comparative Example The same process as in Example 1 was carried out except that the hydrothermal treatment in an autoclave was changed to 2600°C, and the particle size was 0.1.
It was coarse and had a specific surface area of 31.2 m/g.

〔発明の効果〕〔Effect of the invention〕

平均粒径0.07〜0.08μm程度の六方晶バリウム
へキサフェライトを効率良く製造することができる。
Hexagonal barium hexaferrite having an average particle size of about 0.07 to 0.08 μm can be efficiently produced.

手続補正書 昭和61年9月10日Procedural amendment September 10, 1986

Claims (1)

【特許請求の範囲】[Claims] (1)鉄及びバリウム等を溶解した多価アルコール溶液
と上記の鉄とバリウム等の合計量に対し、当量以上の水
酸化アルカリを溶解した多価アルコール溶液とを混合し
て攪拌し、生成するスラリーをオートクレーブに装入し
て120〜250℃で処理し、得られた沈殿を分離して
洗浄、乾燥する第一工程と、第一工程産出物をケイ素塩
又はアルミニウム塩の水溶液に浸漬して表面処理し、次
いで600〜1000℃で加熱処理する第二工程とより
なることを特徴とする磁気記録用バリウムフェライト微
粒子の製造方法。
(1) A polyhydric alcohol solution in which iron, barium, etc. are dissolved and a polyhydric alcohol solution in which alkali hydroxide is dissolved in an amount equal to or more than the total amount of iron, barium, etc. are mixed and stirred to generate. A first step of charging the slurry into an autoclave and treating it at 120 to 250°C, separating, washing and drying the obtained precipitate, and immersing the product of the first step in an aqueous solution of silicon salt or aluminum salt. A method for producing barium ferrite fine particles for magnetic recording, comprising a second step of surface treatment and then heat treatment at 600 to 1000°C.
JP61096507A 1986-04-25 1986-04-25 Manufacture of barium ferrite fine particle for magnetic recording Pending JPS62252907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096507A JPS62252907A (en) 1986-04-25 1986-04-25 Manufacture of barium ferrite fine particle for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096507A JPS62252907A (en) 1986-04-25 1986-04-25 Manufacture of barium ferrite fine particle for magnetic recording

Publications (1)

Publication Number Publication Date
JPS62252907A true JPS62252907A (en) 1987-11-04

Family

ID=14167033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096507A Pending JPS62252907A (en) 1986-04-25 1986-04-25 Manufacture of barium ferrite fine particle for magnetic recording

Country Status (1)

Country Link
JP (1) JPS62252907A (en)

Similar Documents

Publication Publication Date Title
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
JPH0624977B2 (en) Needle-shaped titanium dioxide and method for producing the same
JPS62252907A (en) Manufacture of barium ferrite fine particle for magnetic recording
JP2528462B2 (en) Method for producing sodium hexatitanate fine particle powder
JPH04280815A (en) Fine particulate alkali titanate and its production
JPH04362012A (en) Production of high-dispersive magnesium hydroxide
JPH09235119A (en) Aqueous sol of low-active zirconia and production thereof
JPS62252909A (en) Manufacture of barium ferrite fine particle for magnetic recording
JPS62209807A (en) Preparation of barium ferrite particulate for magnetic recording
JPS62252908A (en) Manufacture of barium ferrite fine particle for magnetic recording
JPS61141625A (en) Production of barium ferrite powder
CN112374515B (en) Alpha-aluminum oxide material prepared by using double-component nucleating agent, preparation method thereof and nucleating agent
JP2981858B2 (en) Process for producing pure magnesium pyroborate needles and fibrous magnesium pyroborate
JPS62247505A (en) Manufacture of finely divided particle of barium ferrite for magnetic recording
JPS62252324A (en) Production of fine barium ferrite powder
JPS63201003A (en) Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production
JPS61186221A (en) Production of fine powder of lead-containing oxide
JPS62206804A (en) Manufacture of barium ferrite superfine particle for magnetic recording
JPS6086024A (en) Production of titanic acid salt
JPS62209808A (en) Preparation of barium ferrite particulate for magnetic recording
JPS62282419A (en) Manufacture of barium ferrite minute particles for magnetic recording
JPS62206803A (en) Manufacture of barium ferrite fine particle for magnetic recording
JPH072598A (en) Production of acicular titanium oxide
JPS61295237A (en) Production of barium ferrite powder