JPS63201003A - Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production - Google Patents

Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production

Info

Publication number
JPS63201003A
JPS63201003A JP2978487A JP2978487A JPS63201003A JP S63201003 A JPS63201003 A JP S63201003A JP 2978487 A JP2978487 A JP 2978487A JP 2978487 A JP2978487 A JP 2978487A JP S63201003 A JPS63201003 A JP S63201003A
Authority
JP
Japan
Prior art keywords
solid solution
oxide
soln
particles
compound oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2978487A
Other languages
Japanese (ja)
Inventor
Seishi Nagasawa
長沢 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2978487A priority Critical patent/JPS63201003A/en
Publication of JPS63201003A publication Critical patent/JPS63201003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce the title plate-shaped compound oxide and fine particles having fine and uniform particle size by mixing a coprecipitate produced from solns. of compds. of each compositional elements and a precipitating agent with a soln. of a water-soluble flux material, then separating deposit from the mixture. CONSTITUTION:A coprecipitate is formed by mixing a soln. of compds. of each compositional element constituting a compound oxide and its solid soln. with a precipitating agent. A liquid mixture of the obtd. precipitate with a soln. of a water-soluble flux material is dried. Then, the mixture is heated at above the m.p. of the flux material, and deposited crystal particles of the solid soln. of the oxide are removed after separating from the flux material. Suitable compds. of each compositional element to be used for the production of the compound oxide and crystal particles of its solid soln. are zirconium oxychloride, yttrium chloride, aluminium trichloride, etc., and suitable precipitating agents to be used for the coprecipitation of these compds. are lithium hydroxide, sodium hydroxide, ammonium carbonate, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微細で均一な粒径を有する板状の形状を有す
る複合酸化物及びその固溶体結晶微粒子並びにその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a complex oxide having a plate-like shape with a fine and uniform particle size, solid solution crystal fine particles thereof, and a method for producing the same.

(従来の技術) 複合酸化物及びその固溶体粉末は例えば加工用工具及び
軸受等の構造材料の原料として、或いは例えばフェライ
ト、誘電体、圧電体等の機能性材料の原料として用いら
れており、特にこれら材料の特性の向上を計るために複
合酸化物及びその固溶体粉末の粒径を微細にしようとす
る方法が行われている。例えば複合酸化物及びその固溶
体を構成する各成分元素の酸化物の温合および加熱処理
を繰り返し行った後、粉砕機によって微粉砕する固相法
、複合酸化物及びその固溶体を構成する各成分元素の酸
化物を水等の溶剤に溶解させた溶液と沈澱剤とを混合し
て共沈させ得られた沈澱物を乾燥して微粉末を得る液相
法が知られている。
(Prior Art) Composite oxides and solid solution powders thereof are used as raw materials for structural materials such as processing tools and bearings, or as raw materials for functional materials such as ferrite, dielectrics, and piezoelectrics. In order to improve the properties of these materials, methods are being used to reduce the particle size of composite oxides and solid solution powders thereof. For example, the solid phase method involves repeatedly heating and heating the oxides of each component element that makes up the composite oxide and its solid solution, and then finely pulverizes it using a crusher; A liquid phase method is known in which a fine powder is obtained by co-precipitating a solution of an oxide dissolved in a solvent such as water with a precipitant and drying the resulting precipitate.

(発明が解決しようとする問題点) しかしながら、前記従来の固相法は、複合酸化物及びそ
の固溶体の生成を各成分元素の酸化物の混合および加熱
処理の繰り返しによって行うので、製造効率が極めて悪
く、また粉砕機によって微粉砕するのでし、均一で微細
な粒子に粉砕することが極めて困難であるという問題が
ある。また液相法の場合は、得られた沈澱物は非晶−に
生成され易いので結晶化させるために加熱処理を必要と
するが加熱処理中に粉末が凝集したり、或いは粒成長を
生じたりるする等の不都合を有する。
(Problems to be Solved by the Invention) However, in the conventional solid-phase method, the production efficiency is extremely low because the composite oxide and its solid solution are produced by repeatedly mixing the oxides of each component element and heat treatment. Moreover, since it is finely pulverized using a pulverizer, it is extremely difficult to pulverize it into uniform, fine particles. In addition, in the case of the liquid phase method, the obtained precipitate is likely to be amorphous, so heat treatment is required to crystallize it, but the powder may aggregate or grain growth may occur during the heat treatment. This has disadvantages such as

本発明は、凝集することなく他の原料と均一に混合出来
、構造材料或いは機能性材料として用いたとき材料の特
性を向上させることが出来る均一な結晶構造である板状
複合酸化物及びその固溶体結晶微粒子並びにその製造方
法を提供することを目的とする。
The present invention provides plate-like composite oxides and solid solutions thereof, which have a uniform crystal structure that can be uniformly mixed with other raw materials without agglomeration, and can improve the properties of materials when used as structural materials or functional materials. The object of the present invention is to provide crystalline fine particles and a method for producing the same.

(問題点を解決するための手段) 本発明考は、前記目的を達成する板状複合酸化物及びそ
の固溶体結晶微粒子の製造方法について鋭意検討の結果
、複合酸化物、及びその固溶体を構成する各成分元素の
化合物の溶液と沈澱剤との混合によって得られた沈澱物
と、フラックス剤水溶液とを混合し、乾燥後混合物を加
熱処理を施すことによって板状の形状を有する複合酸化
物及びその固溶体微粒子が得られるという知見を得た。
(Means for Solving the Problems) The present invention was developed as a result of intensive studies on a method for producing a plate-like composite oxide and its solid solution crystal fine particles that achieve the above-mentioned objects. A composite oxide having a plate-like shape and a solid solution thereof can be obtained by mixing a precipitate obtained by mixing a solution of a compound of a component element with a precipitant and an aqueous solution of a fluxing agent, and heating the mixture after drying. We obtained the knowledge that fine particles can be obtained.

本発明はかかる知見に基づきなされたものであって、第
1発明は複合酸化物及びその固溶体としての板状複合酸
化物及びその固溶体結晶微粒子である。
The present invention has been made based on such knowledge, and the first invention is a plate-shaped composite oxide and solid solution crystal fine particles thereof as a composite oxide and its solid solution.

第2発明は第1発明の板状複合酸化物及びその固溶体結
晶微粒子の製造方法として、複合酸化物及びその固溶体
を構成する各成分元素の化合物の溶液と沈澱剤とを混合
して共沈させ、得られた沈澱物と水溶性フラックス剤溶
液とを混合した混合液を乾燥し、得られた混合物をフラ
ックス剤の融点以上で加熱し、析出した複合酸化物及び
その固溶体結晶粒子を7ラツクス剤から分離、除去する
ことを特徴とする。
The second invention is a method for producing the plate-like composite oxide and its solid solution crystal fine particles of the first invention, which comprises mixing a solution of a compound of each component element constituting the composite oxide and its solid solution with a precipitating agent to co-precipitate. The mixed solution of the obtained precipitate and the water-soluble fluxing agent solution is dried, the obtained mixture is heated above the melting point of the fluxing agent, and the precipitated composite oxide and its solid solution crystal particles are mixed with the fluxing agent. It is characterized by separating and removing from.

本発明の複合酸化物及びその固溶体結晶粒子の製造に用
いる各成分元素の化合物は、オキシ塩化ジルコニウム、
塩化イツトリウム、四塩化チタン、三塩化アルミニウム
、五塩化ニオブ、五塩化タンタル、塩化亜鉛等任意であ
り、これら化合物の共沈に用いる沈澱剤は、水酸化リチ
ウム、水酸化ナトリウム、水酸化カリウム、アンモニア
水、炭酸アンモニウム等が任意である。
The compounds of each component element used in the production of the composite oxide and its solid solution crystal particles of the present invention include zirconium oxychloride,
Yttrium chloride, titanium tetrachloride, aluminum trichloride, niobium pentachloride, tantalum pentachloride, zinc chloride, etc. are optional. Precipitating agents used for coprecipitation of these compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonia. Water, ammonium carbonate, etc. are optional.

また複合酸化物及びその固溶体を構成する各成分元素の
化合物の溶液と沈澱剤とを混合して共沈させ、沈澱物を
生成させる方法としては特に限定がなく、いわゆる液相
法の中で従来から行われている共沈法或いはアルコキシ
ド法のいずれの方法であってもよい。また共沈して生成
された沈澱物は非品性、結晶性のいずれの状態であって
もよい。特に高純度で均一な板状の結晶微粒子を得たい
場合には、共沈して生成される沈澱粒子の一次粒子径を
出来る限り小径に生成するようにすればよい。複合酸化
物及びその固溶体を構成する各成分元素の化合物の溶液
と沈澱剤とを混合して共沈させ沈澱物を生成させる際沈
澱物の生成と共に塩が生成されるので、この生成塩を本
発明の製造方法で用いる水溶性フラックス剤として利用
すれば結晶微粒子の製造過程で生成塩の分離、除去工程
が不要となって能率よく製造出来る。また水溶性フラッ
クス剤としては特に限定はなく、得られる複合酸化物及
びその固溶体との反応性が極めて低くかつ不活性であっ
て、少なくとも温度1000℃以下で溶融する低融点で
あり、融点以上の処理111のときの蒸気圧が1#ll
llHg以下の低圧である等を考慮することが好ましく
、例えば塩化リチウム、塩化ナトリウム等の塩化物、硫
酸リチウム、硫酸ナトリウム等の硫酸塩を用いる。沈澱
物と水溶性フラックス剤水溶液とを混合した混合液を乾
燥する方法としてはスプレードライヤ法等のいずれの方
法でもよく、特に高純度で均一な板状複合酸化物及びそ
の固溶体結晶微粒子を得たい場合にはフラックス剤が沈
澱物の一次粒子を均一に被覆するような乾燥手段を用い
るとよい。
In addition, there is no particular limitation on the method of mixing a solution of the compound of each component element constituting the composite oxide and its solid solution with a precipitant and co-precipitating it to produce a precipitate. Either the coprecipitation method or the alkoxide method, which has been carried out since 1999, may be used. Further, the precipitate produced by coprecipitation may be in either a non-quality state or a crystalline state. In particular, if it is desired to obtain highly pure and uniform plate-shaped crystalline fine particles, the primary particle diameter of the precipitated particles produced by coprecipitation may be made as small as possible. When a solution of a compound of each component element constituting a complex oxide and its solid solution is mixed with a precipitant to produce a precipitate by co-precipitation, a salt is produced along with the precipitate. If it is used as a water-soluble fluxing agent in the production method of the invention, the process of separating and removing formed salts during the production process of crystalline fine particles becomes unnecessary and production can be carried out efficiently. The water-soluble fluxing agent is not particularly limited, and must have extremely low reactivity with the resulting composite oxide and its solid solution, be inert, have a low melting point that melts at least at a temperature of 1000°C or lower, and have a temperature higher than the melting point. The vapor pressure during process 111 is 1#ll
It is preferable to consider a low pressure of 11 Hg or less, and for example, chlorides such as lithium chloride and sodium chloride, and sulfates such as lithium sulfate and sodium sulfate are used. Any method such as a spray dryer method may be used to dry the mixed solution of the precipitate and the aqueous solution of the water-soluble fluxing agent, especially when it is desired to obtain a highly pure and uniform plate-shaped composite oxide and its solid solution crystal fine particles. In this case, it is preferable to use a drying method that uniformly coats the primary particles of the precipitate with the fluxing agent.

沈澱物とフラックス剤との混合物の加熱処理温度を7ラ
ツクス剤の融点以上とするのは、沈澱物を7ラツクス剤
に十分溶解せしめるためである。そして加熱処理温度は
高いほど高結晶性でかつ粒径の大きな酸化物固溶体結晶
粒子が析出されるので、加熱処理温度を十分に低(押え
れば粒径が0.11Lm以下の板状複合酸化物及びその
固溶体結晶微粒子を得ることができる。また昇温速度は
特に限定はないが、降温速度は該速度を遅くすれば析出
酸化物固溶体結晶粒子の径は大きくなり、逆に該速度を
早くすれば該析出粒子の径は小さくなるので、得られた
板状酸化物固溶体結晶粒子の用途に対応させて適宜調整
する。
The reason why the heat treatment temperature of the mixture of the precipitate and the fluxing agent is set above the melting point of the 7lux agent is to ensure that the precipitate is sufficiently dissolved in the 7lux agent. The higher the heat treatment temperature is, the more oxide solid solution crystal particles with higher crystallinity and larger particle size will be precipitated. Although there is no particular limitation on the temperature increase rate, the diameter of the precipitated oxide solid solution crystal particles will increase if the temperature decrease rate is slowed down; This will reduce the diameter of the precipitated particles, so it should be adjusted as appropriate depending on the use of the obtained plate-shaped oxide solid solution crystal particles.

(実施例) 次に本発明の板状複合酸化物及び固溶体結晶微粒子の製
造方法の具体的な実施例を比較例と・共に、説明する。
(Example) Next, specific examples of the method for producing the plate-like composite oxide and solid solution crystal fine particles of the present invention will be described together with comparative examples.

実施例1 オキシ塩化ジルコニウム (ZrOCj!28)+20
第1稀元素@製、純度99.0%)  0.1iol 
と、オキシ塩化ジルコニウム中の酸化ジルコニウム(Z
rOz)1 、 Omo l に対して酸化イツトリウ
ム(Yz(h)換算で1.0iol 、2.01110
1.3.0nol 、4.O+aol 、5、Omo1
%の塩化イツトリウム (YCj!3、信越化学■製、
純度9つ、9%)とに純水200−を加えて夫々の水溶
液を調整した。次に各水溶液に試薬特級の水酸化リチウ
ム水溶液(Limit・H2O、関東化学■製、純度9
5.0%0.2m01)1000−を加えて共沈させて
夫々の沈澱物を得た。尚この時のpH値を測定した所9
.0であった。更に各沈澱物に試薬特級の塩化リチウム
(L i C1、関東化学■製、純度99.0%)を0
.2s+olを加え溶解させ十分に攪拌混合した後スプ
レードライヤー法によって乾燥して夫々の粉末状混合物
を得た。次に各乾燥混合粉末5gを夫々別個のアルミナ
ルツボに入れ電気炉にて温度800℃で1時間加熱処理
を施した後常温まで冷却した。尚この加熱処理前後にお
ける昇温速度及び降温速度を夫々300℃/時間とした
。続いて常温まで冷却された各熱処理物に純水を添加し
てフラックス剤 (LiCjりのみを溶出せしめ、これ
を遠心分離機にて析出酸化物固溶体結晶粒子を分離した
Example 1 Zirconium oxychloride (ZrOCj!28)+20
1st Rare Element @, purity 99.0%) 0.1iol
and zirconium oxide in zirconium oxychloride (Z
Yttrium oxide (1.0iol, 2.01110 in terms of Yz(h)) per Omol
1.3.0nol, 4. O+aol, 5, Omo1
% yttrium chloride (YCj!3, manufactured by Shin-Etsu Chemical,
(purity: 9%, 9%) and 200% pure water were added to prepare respective aqueous solutions. Next, add a reagent-grade lithium hydroxide aqueous solution (Limit H2O, manufactured by Kanto Kagaku ■, purity 9) to each aqueous solution.
5.0% 0.2m01) 1000- was added and coprecipitated to obtain each precipitate. The pH value measured at this time was 9.
.. It was 0. Furthermore, 0% of reagent grade lithium chloride (L i C1, manufactured by Kanto Kagaku ■, purity 99.0%) was added to each precipitate.
.. After adding and dissolving 2s+ol and thoroughly stirring and mixing, the mixtures were dried by a spray dryer method to obtain respective powder mixtures. Next, 5 g of each dry mixed powder was placed in separate aluminum crucibles, heated in an electric furnace at a temperature of 800° C. for 1 hour, and then cooled to room temperature. Note that the temperature increase rate and temperature decrease rate before and after this heat treatment were each 300° C./hour. Subsequently, pure water was added to each heat-treated product cooled to room temperature to elute only the fluxing agent (LiCj), and the precipitated oxide solid solution crystal particles were separated using a centrifuge.

更に分離された酸化物固溶体結晶粒子を純水にて数回繰
り返し洗浄し結晶粒子表面に残留せるフラックス剤を除
去した。次に洗浄された結晶粒子を温度100℃で3時
間乾燥した。
Furthermore, the separated oxide solid solution crystal particles were washed several times with pure water to remove the fluxing agent remaining on the surface of the crystal particles. Next, the washed crystal particles were dried at a temperature of 100° C. for 3 hours.

得られた結晶粒子をX線回折法により分析した結果酸化
ジルコニウムと酸化イツトリウムとから成る固溶体(Z
rY205)の結晶微粒子であることが確認された。ま
たX線回折法の回折図形において、単斜晶型ジルコニア
(′Pa化シリコニウム粒子中の酸化イツトリウム含有
口が少ない場合の結晶構造を示す)の回折面(11T)
の回折ピーク強度と、正方晶若しくは立方晶型ジルコニ
ア(酸化シリコニウム粒子中の酸化イツトリウム含有量
が多い場合の結晶構造を示す)の回折面(111)の回
折ピーク強度とを比較して酸化シリコニウムに対する酸
化イツトリウムの添加量の夫々について正方晶型の含有
率を調べた。
Analysis of the obtained crystal particles by X-ray diffraction revealed that a solid solution (Z) consisting of zirconium oxide and yttrium oxide
rY205) was confirmed to be crystal fine particles. In addition, in the diffraction pattern of the X-ray diffraction method, the diffraction surface (11T) of monoclinic zirconia (which shows the crystal structure when there are few yttrium oxide-containing holes in the siliconium oxide particles)
Compare the diffraction peak intensity of the diffraction peak intensity of 111 with that of the diffraction plane (111) of tetragonal or cubic zirconia (which shows the crystal structure when the yttrium oxide content is high in the silicon oxide particles). The tetragonal content was investigated for each amount of yttrium oxide added.

その結果を第1図に示す。The results are shown in FIG.

またこの結晶粒子を透過型電子顕微鏡(倍率so、 o
oo倍)で観察した所第2図示のように粒径が0.1〜
0.2μmの均一な板状結晶微粒子が得られたことが確
認さ机た。
In addition, these crystal particles were examined using a transmission electron microscope (magnification: so, o
As shown in the second figure, the particle size is 0.1~
It was confirmed that uniform plate-like crystal fine particles of 0.2 μm were obtained.

比較例 酸化ジルコニウム(Zr O2、第−稀元素@J製、純
度99.9%)  0.1iolと、酸化ジルコニウム
(Zr02 )1.0iolに対して 1 、 Omo
 1%、2.Omo1%、3.Omo1%、4.Omo
1%、5 、 Ono 1%の酸化イツトリウム(Yz
(h、信越化学@製、純度999%)と、試薬特級の塩
化リチウム (LiCj!。
Comparative Example: 0.1 iol of zirconium oxide (ZrO2, manufactured by rare element@J, purity 99.9%) and 1.0 iol of zirconium oxide (Zr02), Omo
1%, 2. Omo1%, 3. Omo1%, 4. Omo
1%, 5, Ono 1% yttrium oxide (Yz
(h, manufactured by Shin-Etsu Chemical @, purity 999%) and reagent-grade lithium chloride (LiCj!.

関東化学■製、純度99.0%)  0.3iol と
を水を媒体としてボールミルにて混合した後、混合物を
温度120℃で24時間乾燥した。そして得られた各乾
燥混合物粉末の加熱処理以降の処理を実施例1と同様の
処理を行って酸化ジルコニウムと酸化イツトリウムとか
ら成る固溶体の結晶粒子を得た。
(manufactured by Kanto Kagaku ■, purity 99.0%)) were mixed in a ball mill using water as a medium, and then the mixture was dried at a temperature of 120° C. for 24 hours. The heat treatment and subsequent treatments of each of the obtained dry mixture powders were performed in the same manner as in Example 1 to obtain crystal particles of a solid solution consisting of zirconium oxide and yttrium oxide.

得られた結晶粒子のX線回折を行い、その回折図形に基
づいて実施例1と同様の酸化ジルコニウムに対する酸化
イツトリウムの含有率を調べた。その結果を第1図に示
す。
The obtained crystal particles were subjected to X-ray diffraction, and based on the diffraction pattern, the content of yttrium oxide to zirconium oxide as in Example 1 was determined. The results are shown in FIG.

この結晶粒子を透過型電子類Wl鏡で観察した所粒径は
O13μm前後であった。
When this crystal grain was observed with a transmission type electron Wl mirror, the grain size was approximately 13 μm.

第1図の如〈実施例1は比較例に比して酸化ジルコニウ
ムに対する酸化イツトリウムの添加量が少量であっても
両酸化物が溶は合って均一な結晶構造の固溶体を形成す
ることが出来ることが確認された。
As shown in Figure 1, in Example 1, even if the amount of yttrium oxide added to zirconium oxide is small compared to the comparative example, both oxides can dissolve and form a solid solution with a uniform crystal structure. This was confirmed.

従って本発明品の酸化物固溶体は高純度の結晶から成る
微粒子であり、個々の粒子は凝集することなく分離、独
立しているので、加工用工具及び軸受等の構造材料の原
料、或いはフェライト、誘導体、圧電体等の機能性材料
の原料に用いたときは他の原料と容易に分散出来て混合
された材料が得られ、かつ機械強度等のような特性を高
めることが出来る。また粒子の形状が板状のため粒子配
向が可能になり、特性に軸異方性がある圧電体のような
材料には、著しく圧電特性の改善を図れる。
Therefore, the oxide solid solution of the present invention is a fine particle made of high-purity crystals, and each particle is separated and independent without agglomeration, so it can be used as a raw material for structural materials such as processing tools and bearings, or as a raw material for ferrite, When used as a raw material for functional materials such as dielectrics and piezoelectric materials, it can be easily dispersed and mixed with other raw materials to obtain a mixed material, and can improve properties such as mechanical strength. Furthermore, since the particles have a plate-like shape, particle orientation is possible, and the piezoelectric properties of materials such as piezoelectric bodies that have axial anisotropy can be significantly improved.

実施例2 実施例1と同様の材料を用い、加熱処理条件を温度10
0℃で1時間加熱とし、また加熱処理前後における昇温
速度を300℃/時間とし、降温速度を700℃/時間
とした以外は実施例1と同様の処理を行って、酸化ジル
コニウム・酸化イツトリウム固溶体の板状結晶微粒子を
得た。
Example 2 Using the same materials as in Example 1, the heat treatment conditions were set to a temperature of 10
Zirconium oxide and yttrium oxide were treated in the same manner as in Example 1, except that heating was carried out at 0°C for 1 hour, and the temperature increase rate before and after the heat treatment was 300°C/hour, and the temperature cooling rate was 700°C/hour. A solid solution of plate-like crystal fine particles was obtained.

得られた結晶微粒子を透過型電子顕微鏡(倍率ioo、
ooo倍)で観察した所第3図示のように粒径は100
〜200人で均一であった。
The obtained crystalline fine particles were subjected to a transmission electron microscope (magnification: IOO,
As shown in the third diagram, the particle size was 100
There was a uniformity of ~200 people.

実施例3 オキシ塩化ジルコニウム(ZrOC1281120、第
−稀元素■製、純度99.0%)  0.1mol と
、四塩化チタン(TiCム、大阪チタン■製、純度99
,9%)0.1101と純水200mを加えて水溶液を
調整した。本水溶液に試薬特級の水酸化リチウム水溶液
(LtOt)lhO、関東化学H製、純度99.0%、
0.6mol)100G−を加えて共沈させて沈澱物を
得た。尚この時の011値を測定した所1.0であった
Example 3 Zirconium oxychloride (ZrOC1281120, manufactured by Rare Element ■, purity 99.0%) 0.1 mol and titanium tetrachloride (TiC, manufactured by Osaka Titanium ■, purity 99)
, 9%) 0.1101 and 200 m of pure water were added to prepare an aqueous solution. This aqueous solution contains reagent grade lithium hydroxide aqueous solution (LtOt) lhO, manufactured by Kanto Kagaku H, purity 99.0%,
0.6 mol) 100G- was added thereto for coprecipitation to obtain a precipitate. The 011 value measured at this time was 1.0.

本沈澱物に試薬特級の塩化リチウム(LiC1!、関東
化学■製、純度99,0%)  0.4molを加え溶
解させ充分に攪拌混合した優、スプレードライヤー法に
よって乾燥して粉末状混合物を得た。次に本乾燥混合粉
末をアルミナルツボに入れ電気炉にて温度700℃で1
時間加熱処理を施した優常温まで冷却した。尚この加熱
処理前後における昇温速度及び降温速度を夫々300℃
/時間とした。続いて常温まで冷却された熱処理物に純
水を添加してフラックス剤(LiCj )のみを溶出せ
しめ、これを遠心分離機にて析出酸化物固溶体結晶粒子
を分離し、該粒子を純水にて数回繰り返し洗浄し、結晶
粒子表面に残留せるフラックス剤を除去した。そして洗
浄された結晶粒子を温度100℃で3時間乾燥した。得
られた結晶粒子をX線回折法により分析した結果酸化ジ
ルコニウムと酸化チタンとから成る固溶体(ZrTiO
*)の結晶微粒子であることが確認された。また結晶微
粒子を透過型電子顕微111(倍率10G、0,00倍
)で観察した所第4図示のように粒径は200〜300
人で均一であった。
To this precipitate, 0.4 mol of reagent special grade lithium chloride (LiC1!, manufactured by Kanto Kagaku ■, purity 99.0%) was added and dissolved, thoroughly stirred and mixed, and then dried by a spray dryer method to obtain a powder mixture. Ta. Next, put this dry mixed powder into an aluminum crucible and heat it in an electric furnace at a temperature of 700℃ for 1 hour.
It was cooled to normal temperature after being subjected to heat treatment for an hour. The temperature increase rate and temperature decrease rate before and after this heat treatment were each 300℃.
/ time. Next, pure water is added to the heat-treated product that has been cooled to room temperature to elute only the fluxing agent (LiCj), and the precipitated oxide solid solution crystal particles are separated using a centrifuge. Washing was repeated several times to remove the fluxing agent remaining on the surface of the crystal particles. The washed crystal particles were then dried at a temperature of 100° C. for 3 hours. Analysis of the obtained crystal particles by X-ray diffraction revealed that they were a solid solution of zirconium oxide and titanium oxide (ZrTiO
*) was confirmed to be crystal fine particles. Furthermore, when the crystal fine particles were observed using a transmission electron microscope 111 (magnification 10G, 0.00x), the particle size was 200 to 300, as shown in Figure 4.
The people were uniform.

(発明の効果) このように本発明によるときは、第1発明は、板状の複
合酸化物及びその固溶体結晶微粒子である。従って構造
材料或いは機能性材料の原料として用いたときは凝集す
ることなく他の原料と均一に分散混合出来、かつ粒子が
均一な結晶構造のため材料が有する特性値を向上させる
等の効果を有する。
(Effects of the Invention) According to the present invention, the first invention is a plate-shaped composite oxide and its solid solution crystal fine particles. Therefore, when used as a raw material for structural materials or functional materials, it can be uniformly dispersed and mixed with other raw materials without agglomeration, and because the particles have a uniform crystal structure, it has the effect of improving the characteristic values of the material. .

また第2発明の板状複合酸化物及びその固溶体結晶微粒
子の製造方法は、酸化物固溶体を構成する各成分元素の
化合物の溶液と沈澱剤とを混合して共沈させ、得られた
沈澱物と水溶性フラックス剤溶液とを混合した混合液を
乾燥し、得られた混合物を7ラツクス剤の融点以上で加
熱し、析出した酸化物固溶体結晶粒子をフラックス剤か
ら分離、除去するようにしたので、従来法では得られな
かった均一な結晶構造であって、かつ板状の複合酸化物
及びその固溶体結晶微粒子を高純度にかつ極めて簡単に
製造することが出来る等の効果を有する。
Further, the method for producing a plate-shaped composite oxide and its solid solution crystal fine particles according to the second invention includes mixing a solution of a compound of each component element constituting the oxide solid solution and a precipitating agent to co-precipitate the resulting precipitate. A mixed solution of the fluxing agent and a water-soluble fluxing agent solution is dried, the resulting mixture is heated above the melting point of the fluxing agent, and the precipitated oxide solid solution crystal particles are separated and removed from the fluxing agent. This method has the advantage that it has a uniform crystal structure that could not be obtained by conventional methods, and that plate-shaped composite oxides and solid solution crystal fine particles thereof can be produced with high purity and extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化ジルコニウムに対する酸化イツトリウムの
添加量と正方晶若しくは立方晶の含有率との関係を示す
図、第2図は本発明の製造方法の一実施例によって得ら
れた板状酸化物固溶体結晶微粒子の透過型電子顕微鏡写
真、第3図および第4図は本発明の製造方法の他の実施
によって得られた板状酸化物固溶体結晶微粒子の透過型
電子顕微鏡写真である。 外ンる 第1図
FIG. 1 is a diagram showing the relationship between the amount of yttrium oxide added to zirconium oxide and the content of tetragonal or cubic crystals, and FIG. 2 is a diagram showing the relationship between the amount of yttrium oxide added to zirconium oxide and the content of tetragonal or cubic crystals. FIG. Transmission electron micrographs of crystalline fine particles, FIGS. 3 and 4 are transmission electron micrographs of plate-shaped oxide solid solution crystalline fine particles obtained by another implementation of the production method of the present invention. Outer figure 1

Claims (1)

【特許請求の範囲】 1、板状複合酸化物及びその固溶体結晶微粒子。 2、複合酸化物及びその固溶体を構成する各成分元素の
化合物の溶液と沈澱剤とを混合して共沈させ、得られた
沈澱物と水溶性フラックス剤溶液とを混合した混合液を
乾燥し、得られた混合物をフラックス剤の融点以上で加
熱し、析出した酸化物固溶体結晶粒子をフラックス剤か
ら分離、除去することを特徴とする板状複合酸化物及び
その固溶体結晶微粒子の製造方法。
[Claims] 1. A plate-like composite oxide and its solid solution crystal fine particles. 2. A solution of the compound of each component element constituting the composite oxide and its solid solution is mixed with a precipitant to cause coprecipitation, and a mixed solution of the obtained precipitate and a water-soluble fluxing agent solution is dried. A method for producing a plate-shaped composite oxide and solid solution crystal fine particles thereof, which comprises heating the obtained mixture above the melting point of the flux agent, and separating and removing precipitated oxide solid solution crystal particles from the flux agent.
JP2978487A 1987-02-13 1987-02-13 Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production Pending JPS63201003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2978487A JPS63201003A (en) 1987-02-13 1987-02-13 Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2978487A JPS63201003A (en) 1987-02-13 1987-02-13 Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production

Publications (1)

Publication Number Publication Date
JPS63201003A true JPS63201003A (en) 1988-08-19

Family

ID=12285632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2978487A Pending JPS63201003A (en) 1987-02-13 1987-02-13 Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production

Country Status (1)

Country Link
JP (1) JPS63201003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150135A (en) * 2010-02-24 2010-07-08 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticles
JP2011098848A (en) * 2009-11-04 2011-05-19 Sumitomo Osaka Cement Co Ltd Zirconia-based composite ceramic fine particles, method for producing the same and zirconia-based composite ceramic fine particle dispersion
JP2013139384A (en) * 2013-02-19 2013-07-18 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098848A (en) * 2009-11-04 2011-05-19 Sumitomo Osaka Cement Co Ltd Zirconia-based composite ceramic fine particles, method for producing the same and zirconia-based composite ceramic fine particle dispersion
JP2010150135A (en) * 2010-02-24 2010-07-08 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticles
JP2013139384A (en) * 2013-02-19 2013-07-18 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticle

Similar Documents

Publication Publication Date Title
CA2454324C (en) Process for making lithium titanate
JP2523776B2 (en) Composition for zirconia ceramic material
AU2002319587A1 (en) Process for making lithium titanate
US20050169833A1 (en) Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
JPH0472774B2 (en)
CN108529672A (en) Chemical coprecipitation produces yttrium stable zirconium oxide spherical powder production technology used for hot spraying
JPS63201003A (en) Plate shaped-compound oxide, fine crystalline particle of solid solution thereof, and its production
JPH01286924A (en) Needle titanium dioxide and production thereof
JPS61186219A (en) Production of lead-containing fine powder
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPWO2004083122A1 (en) Method for producing bismuth titanate fine particles
Kimura et al. Preparation of needle-like TiZrO 4 and PZT powders
JPS63260822A (en) Polycrystalline barium titanate fiber having oriented crystallographic axis
JPS61186221A (en) Production of fine powder of lead-containing oxide
JP2004331492A (en) Method of manufacturing lead titanate zirconate fine particle
JPH0530767B2 (en)
JPH01111725A (en) Condensed ternary lead perovskite solid solution powder and production of condensed ternary lead perovskite ceramic
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPH0558629A (en) Production of perovskite-type lead oxide
JPS63144116A (en) Production of oxide particle
JPH0361609B2 (en)
JPS62162623A (en) Production of fine powder of lead titanate zirconate
JPS63134518A (en) Production of piezoelectric fin oxide power
JPH01239025A (en) Production of particulate lanthanum-incorporated lead titanium zirconate
JPS62252907A (en) Manufacture of barium ferrite fine particle for magnetic recording