JPS62246222A - Chthode for electron tube - Google Patents

Chthode for electron tube

Info

Publication number
JPS62246222A
JPS62246222A JP61088719A JP8871986A JPS62246222A JP S62246222 A JPS62246222 A JP S62246222A JP 61088719 A JP61088719 A JP 61088719A JP 8871986 A JP8871986 A JP 8871986A JP S62246222 A JPS62246222 A JP S62246222A
Authority
JP
Japan
Prior art keywords
earth metal
metal oxide
substrate
material layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61088719A
Other languages
Japanese (ja)
Other versions
JPH0750586B2 (en
Inventor
Masato Saito
正人 斉藤
Shigeko Ishida
石田 誠子
Keiji Fukuyama
福山 敬二
Keiji Watabe
渡部 勁二
Toyoichi Kamata
鎌田 豊一
Kinjiro Sano
佐野 金次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8871986A priority Critical patent/JPH0750586B2/en
Publication of JPS62246222A publication Critical patent/JPS62246222A/en
Publication of JPH0750586B2 publication Critical patent/JPH0750586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To prevent the peeling of an electron emissive material by coating a substrate with the electron emissive material layer which has barium- containing alkaline earth metal oxide as a principal component and contains the predetermined weight percentage of rare earth metal oxide with predermined mean particle size. CONSTITUTION:The upper face of the bottom part of a substrate 1 is coated with an electron emissive material layer 2 which has alkaline earth metal oxide 11 as a principal component containing barium at least and besides strontium or/and calcium and contains 0.1-20 weight percentage of rare earth metal oxide with mean particle size of 4.5 mum or less such as scandium oxide, yttrium oxide, etc.. Thereby it is prevented that interlayer composed of compound oxide is concentrated and formed in the neighborhood of the interface between the conductor and the electron emissive material layer 2 under high density current. Stable emission characteristics can be obtained for many hours and besides the peeling of the electron emissive material can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はTV用ブラウン管などに用いられる臂子笛用
陰極に関し、特1ζ電子放射性物質層の改良Cζ関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cathode for a cathode used in a TV cathode ray tube or the like, and particularly to an improved Cζ of a 1ζ electron emissive material layer.

〔従来の技術〕[Conventional technology]

第2図は従来のTV用ブラウン管や撮偲彦に用いられて
いる陰極を示すものであり、図において(1)はシリコ
ン(Si) 、マグネシウム00などの還元性元素を′
IIi瓜含む主成分がニッケルからなる有底S汁の帰休
−(21はこの基体の底部ト面に被着され、少なくとも
バリウム(Ba)を含み、他1ζストロンチウム(S 
r)あるいは/及びカルシウム(Ca)を含むアルカリ
土類金属酸化物からなる電子放射物質j1、(3+は上
記基体(1)内夏ζ配設されたヒータ(3)で、加熱に
より上記電子放射物質層(2)から熱電子を放出させる
ためのものである。
Figure 2 shows a cathode used in conventional TV cathode ray tubes and camera tubes.
IIi Melon-containing bottomed S juice whose main component is nickel - (21 is deposited on the bottom surface of this substrate, contains at least barium (Ba), and 1ζ strontium (S)
r) or/and an electron emitting material j1, (3+) made of an alkaline earth metal oxide containing calcium (Ca). This is for emitting thermoelectrons from the material layer (2).

この様1ζ構成された電子管用陰極1ζおいて、基体(
1)への電子放射物質層(2)の被着は次の様にして行
なわれるものである。まずアルカリ土類金属(Ba、S
r、Ca)の炭酸塩からなる懸濁液を基体(1)Iζ塗
布し、真空排気工程中にヒータ(30ζよって加熱する
。この時、アルカリ土類金属の炭酸塩はアルカリ土類金
属の酸化物憂ζ変わる。その後、アルカリ土類金属の酸
化物の一部を還元して半導体的性質を有するようlζ活
性化を行なうこと(ζより、基体(1)上曝ζアルカリ
土類金属の酸化物からなる電子放射物質層(2)を被着
せしめているものである。
In the electron tube cathode 1ζ configured in this way, the base (
The electron emitting material layer (2) is deposited on the layer (1) as follows. First, alkaline earth metals (Ba, S
A suspension consisting of a carbonate of r, Ca) is applied to the substrate (1) Iζ and heated with a heater (30ζ) during the vacuum evacuation process.At this time, the alkaline earth metal carbonate is oxidized. After that, a part of the alkaline earth metal oxide is reduced to have semiconducting properties. An electron emitting material layer (2) consisting of the above is deposited.

この活性化工程1ζおいて、アルカリ土類金14の酸化
物の一部は次の様1ζ反応しているものである。
In this activation step 1ζ, a part of the oxide of alkaline earth gold 14 undergoes 1ζ reaction as follows.

つまり基体(1)中に含有されたシリコン、マグネシラ
ム等の還元性元素は拡散基ζよりアルカリ土類金属の酸
化物と基体(1)の界面1ζ移勘し、アルカリ土類金属
酸化物と反応する。例えばアルカリ土類酸化物として酸
化バリウム(Bad)であれば次式(1) (2+の様
1ζ反応するものである。
In other words, reducing elements such as silicon and magnesium contained in the substrate (1) are transferred from the diffusion group ζ to the interface 1ζ between the alkaline earth metal oxide and the substrate (1), and react with the alkaline earth metal oxide. do. For example, if barium oxide (Bad) is used as the alkaline earth oxide, it undergoes a 1ζ reaction as expressed by the following formula (1) (2+).

BaO+1/2Si = Ba+ 1/2SiO2・(
1)BaO+Mg   = Ba+ MgO−(2+こ
の反応の結果、基体(1)上に被着形成されたアルカリ
土類金属酸化物の一部が還元され、酸素欠乏型の半導体
となり、陰極温度700〜soo’c の動作温度で0
.5〜0.8A/d  の電子放射が得られることにな
る。しかるに、この様lζして形成された電子管用陰極
lζあ−ノては電子放射が0.6〜0.8A/d  よ
り高い電流密度は取り出せないものである。その理由と
しては次の様なものである。つまり、アルカリ土類金j
^酸化物の一部を還元反応させた場合、上記(11(2
1式からも明らかな如く基体(1)とアルカリ土類金属
酸化物層との界面にSiO2,MgOあるいはBaO,
SiO2なる複合酸化物層(中間層)が形成され、この
中間層が高抵抗層となって電流の流れを妨げること、ま
た上記中間ノーが基体(1)中の還元元素が電子放射物
質層(2)の表面側へ拡散するのを妨げ十分なバリウム
(Ba)が生成されないことが考えられている。
BaO+1/2Si = Ba+1/2SiO2・(
1) BaO+Mg = Ba+ MgO-(2+ As a result of this reaction, a part of the alkaline earth metal oxide deposited on the substrate (1) is reduced, becoming an oxygen-deficient semiconductor, and the cathode temperature is 700~soo. 0 at operating temperature of 'c
.. An electron emission of 5 to 0.8 A/d will be obtained. However, with the electron tube cathode lζ formed in this way, it is impossible to obtain a current density higher than 0.6 to 0.8 A/d in electron emission. The reasons for this are as follows. In other words, alkaline earth gold
^ When a part of the oxide is subjected to a reduction reaction, the above (11 (2)
As is clear from Equation 1, SiO2, MgO or BaO,
A composite oxide layer (intermediate layer) of SiO2 is formed, and this intermediate layer becomes a high-resistance layer and obstructs the flow of current. 2) It is thought that sufficient barium (Ba) is not produced because it prevents the barium from diffusing to the surface side.

また、従来の電子管用陰極としては特開昭69−209
41号公報fζ、上記した第2図のものと同喋の構成を
しており、陰極の速動性を得るためtζ基体(1)の板
厚を薄くシ、寿命中の還元剤のNA陶を防止しかつ基体
(1)の強度低下を防止する目的で、基体(1)Iζラ
ンタンがLaNi5及びLag’sの形で分散含有させ
たものが示されている。
In addition, as a conventional cathode for electron tubes, JP-A-69-209
Publication No. 41 fζ has the same structure as the one shown in Figure 2 above, and in order to obtain rapid action of the cathode, the plate thickness of the tζ substrate (1) is made thinner, and the NA ceramic of the reducing agent during its life is reduced. In order to prevent this and to prevent a decrease in the strength of the substrate (1), a substrate (1) containing Iζ lanthanum dispersed in the form of LaNi5 and Lag's is shown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様1ζ欄成された電子管用陰極においては、動作中
lζ基体(1)と電子放射物質、す(21の界面近傍、
特に基体(1)表面近傍のニッケル結晶粒界と上記界面
より10μm程度電子放射物質層(2)内側の位置fζ
前述の中間層が偏析するため、電流の流れ及び電子放射
物質層(21表面側への還元性元素の拡散が妨げられ、
高電流密度下 られないという問題があ−]た。
In the electron tube cathode constructed in this way, near the interface between the lζ substrate (1) and the electron emitting material (21),
In particular, the nickel grain boundary near the surface of the substrate (1) and the position fζ about 10 μm inside the electron emitting material layer (2) from the above interface.
Because the above-mentioned intermediate layer segregates, the flow of current and the diffusion of reducing elements toward the surface of the electron emitting material layer (21) are hindered.
There was a problem that the current density could not be lowered.

また、後者に示したものにおいては、ニッケルを主成分
とする基体(1)の製作時1ζLaN1a及びLa g
osを含有サセルを二メ、基体(1)内(y)L、aN
i5及びLag’sの含有状態のばらつきなどが生じ易
かった。
In addition, in the latter case, 1ζLaN1a and La g
Two sacells containing os, (y) L, aN in the substrate (1)
Variations in the content of i5 and Lag's were likely to occur.

この発明は上記した点に鑑みてなされたものであり、高
電流密度下において基体と電子放射物質層との界面近傍
に複合酸化物からなる中間層が集中して形成されること
を防止し、長時間にわたって安定したエミッション特性
を有し、かつ電子放射物質の剥離を生じない信頼性の高
い電子管用陰極を得ることを目的とする。
This invention has been made in view of the above-mentioned points, and prevents the formation of an intermediate layer made of a composite oxide in a concentrated manner near the interface between the substrate and the electron emitting material layer under high current density. The object of the present invention is to obtain a highly reliable cathode for an electron tube that has stable emission characteristics over a long period of time and does not cause peeling of electron emitting material.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子管用陰極は、少なくともバリウムを
含むアルカリ土類金属酸化物とを主成分とし、0.1〜
201i g%で平均粒径4.5μ以下の希土類金属酸
化物を含んだ電子放射物質1−をニッケルを主成分とす
る基体上に1&墳形成させたものである。
The cathode for an electron tube according to the present invention has an alkaline earth metal oxide containing at least barium as a main component, and has a
An electron-emitting material 1- containing a rare earth metal oxide having an average particle size of 4.5 μm or less at 201g% is formed into a 1> mound on a substrate mainly composed of nickel.

〔作用〕[Effect]

この発明においては、電子放射物質層中に含有された0
、1〜20重爪%で平均粒径4.5μ以下の希土類金属
酸化物が、電子放射物質層を基体に被着形成する際の活
性化時1ζ、アルカリ土類金属の炭酸塩が分解する際、
あるいは陰極としての動作中に酸化バリウムが解離反応
を起こすIll’Xtζ基体が酸化する反応を防止する
とともに、上記希土類金属酸化物が解離してNiと希土
類金属の固溶層を基体表面全体に亘って形成するので、
還元性元素fζよる複合酸化物からなる中間層が基体と
電子放射物質層との界面近傍磨ζ集中的lζ形成される
ことが防止され、中間1m 8 m子拡射物質層内に分
散させるものである。さら1ζ、高電流密度1蒼ζおけ
る基体金属からの電子放射物質j1の剥離現象の防止効
果が一段と向上するものである。
In this invention, 0 contained in the electron emitting material layer
, when a rare earth metal oxide with an average particle size of 4.5μ or less at 1 to 20% is activated to form an electron emitting material layer on a substrate, the carbonate of the alkaline earth metal decomposes. edge,
Alternatively, it prevents the oxidation reaction of the Ill'Xtζ substrate in which barium oxide undergoes a dissociation reaction during operation as a cathode, and also prevents the rare earth metal oxide from dissociating to form a solid solution layer of Ni and rare earth metal over the entire surface of the substrate. Since it is formed by
An intermediate layer made of a composite oxide containing a reducing element fζ is prevented from being intensively formed near the interface between the substrate and the electron emitting material layer, and is dispersed within the intermediate 1 m 8 m electron emitting material layer. It is. Furthermore, the effect of preventing the peeling phenomenon of the electron emitting material j1 from the base metal at a high current density of 1ζ is further improved.

【実施列〕[Implementation row]

以下lζこの発明の一実施例を第1図1ζ基づいて説明
する。図1ζおいて、(2)は基体(1)の底部上面1
ζ被着され、少なくともバリウムを含み、他にストロン
チウムあるいは/及びカルシウムを含むアルカリ土類金
属酸化物υVを主成分とし、0.1〜20重量%で平均
粒径4.6μ以下の酸化スカンジウム、酸化イツトリウ
ム等の希土類金属酸化物(1りを含んだ電子放射物質層
である。
An embodiment of the present invention will be described below with reference to FIG. 1. In FIG. 1ζ, (2) is the bottom upper surface 1 of the base (1)
scandium oxide, which is deposited on ζ and whose main component is an alkaline earth metal oxide υV which contains at least barium and also contains strontium or/and calcium, and has an average particle size of 4.6μ or less in an amount of 0.1 to 20% by weight; It is an electron emitting material layer containing rare earth metal oxides such as yttrium oxide.

次fζ、この様Eζ構成された電子管用陰極において、
基体(1)への電子放射物質層(2)の被着方法1ζつ
いて説明すると、まず、バリウム、ストロンチウム、カ
ルシウムの三元炭酸塩1ζ酸化スカンジウム粉末を所望
の重量96(上記三元炭酸塩が全て酸化物1ζなるとし
°゛ての重量%)添加混合し、懸濁液を作成する。この
感1112をニッケルを主成分とする基体(1)上1ζ
スプレィIζより約80ミクロンの厚みで塗布し、その
後従来のものと同様1ζ、炭酸塩から酸化物への分解過
程及び酸化物の一部を還元する活性化過程を経て、電子
放射物質層(21を基体(1)に被着せしめるものであ
る。
Next fζ, in the electron tube cathode configured in this way Eζ,
To explain the method 1ζ of depositing the electron emitting material layer (2) on the substrate (1), first, scandium oxide powder of ternary carbonate 1ζ of barium, strontium, and calcium is added to a desired weight of 96 (the above ternary carbonate is All of the oxides (1ζ by weight) are added and mixed to create a suspension. This feeling 1112 is applied to the substrate (1) whose main component is nickel.
It is applied to a thickness of about 80 microns from the spray Iζ, and then the electron emitting material layer (21 is applied to the base (1).

ここで、酸化スカンジウム粉末の粒径の効果を調べるた
め1ζ、まずSc 2Ua粉末購入品(Researc
hChemical Corp−純度99.9%)の粒
径を調整せず、上記の如(5C20B混合懸濁液(SC
2σ10重量%)を作成し電子管用陰極を完成した。こ
の電子管用陰極を種々の電流密度で寿命試験を行い、動
作6000時間後の電子放射物質のNi基体からの剥離
を調べた。その結果を第8図に示す。ここで、横軸は従
来のカラーテレビの動作電流密度0.66 A/r−4
を1とした時の相対電流密度として表わしている。
Here, in order to investigate the effect of the particle size of scandium oxide powder, we first used 1ζ, a purchased Sc2Ua powder (Research
The particle size of hChemical Corp-purity 99.9%) was not adjusted and the 5C20B mixed suspension (SC
2σ10% by weight) and completed a cathode for an electron tube. This cathode for an electron tube was subjected to a life test at various current densities, and peeling of the electron emitting material from the Ni substrate after 6000 hours of operation was investigated. The results are shown in FIG. Here, the horizontal axis is the operating current density of a conventional color TV, 0.66 A/r-4.
It is expressed as a relative current density when is set to 1.

なお、この時の5C208粉末の平均粒径(粒度分布が
60%になる時の粒径)は8.0μであった。相対電流
密度8.1 を越えると、前述の剥離現象の頻度が高く
なる傾向が認めちれる。
Note that the average particle size (particle size when the particle size distribution is 60%) of the 5C208 powder at this time was 8.0 μ. When the relative current density exceeds 8.1, it is recognized that the frequency of the above-mentioned peeling phenomenon tends to increase.

次1ζ、上述の5C20B粉末購入品をファインミクロ
ミル粉砕機などの超微粉 砕器により、5C20B粉末
の平均粒径を調整し同様1ζScgOaIO重量%混合
の懸濁液を作成し、相対電流密度4.5で6000時間
動作後の電子放射物質の剥離現象の発生頻度及びエミッ
ション電流の相対値(動作0時間の値を100%とした
)を調べた結果を第4図)ζ示す。
Next, the average particle size of the 5C20B powder was adjusted using an ultrafine pulverizer such as a fine micro mill, and a suspension containing 1ζScgOaIO by weight was similarly prepared by using the purchased 5C20B powder described above with a relative current density of 4. Figure 4) shows the results of investigating the frequency of occurrence of the exfoliation phenomenon of the electron emitting material and the relative value of the emission current (the value at 0 hours of operation is taken as 100%) after 6000 hours of operation.

Sc gos粉末の平均粒径が4.5μ以下で剥離が発
生せず、エミッション電流の維持特性が大巾Iζ向上す
る。特1ζ平均粒径8.θμ以下では極めて良好な特性
を示す。
When the average particle size of the Sc gos powder is 4.5μ or less, no peeling occurs, and the emission current maintenance characteristics are greatly improved. Special 1ζ average particle size 8. Below θμ, extremely good characteristics are exhibited.

このよう■ζ優れた特性の原因は以下の様に考えられる
。電子放射物質中のSc 2011は動作中に解離して
、Ni基体金属表面にNi−5c@溶体もしくは金属間
化合物11を形成し、このN i −8c層がNi基体
金属と電子放射物質界面近傍でのBaS io++ΔM
gO5in2なる中間層の形成を抑制し、十分なエミッ
ション電流の維持と電子放射物質とNi基体金属との被
着性を向上する。ところが、Ni基体金属のNi粒径は
大きいものでlO数μあるが、多くのNi結晶粒は数μ
であるため、5C201粉末の平均粒径が4、δμ以下
iζなるとN i −8cmが大部分のNi結晶粒の表
面で形成され、上記効果が顕著1ζなる。
The reason for such excellent characteristics is considered to be as follows. Sc 2011 in the electron emitting material dissociates during operation to form a Ni-5c @ solution or intermetallic compound 11 on the surface of the Ni base metal, and this Ni-8c layer forms a layer near the interface between the Ni base metal and the electron emitting material. BaS io++ΔM at
This suppresses the formation of an intermediate layer of gO5in2, maintains a sufficient emission current, and improves the adhesion between the electron emitting material and the Ni base metal. However, the Ni grain size of the Ni base metal is large, several microns in lO, but many Ni crystal grains are several microns in diameter.
Therefore, when the average particle size of the 5C201 powder is less than 4.delta.μ iζ, N i -8 cm is formed on the surface of most Ni crystal grains, and the above effect becomes remarkable 1ζ.

なお、上記実施例)ζおいては、希土類金属酸化物とし
てSc gosを用いたものを説明したが他の希土類金
属酸化物でも同様の効果は得られたものの、特tζSC
gOs 、YgOs 、Ce20s+cおいてその効果
が顕著であった。
Note that in the above Example) ζ, the case where Sc gos was used as the rare earth metal oxide was explained, but although similar effects were obtained with other rare earth metal oxides, especially tζ SC
The effect was remarkable for gOs, YgOs, and Ce20s+c.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように述べたようiζ基体に被着され
る少なくともバリウムを含むアルカリ土類金属酸化P!
Aを主成分とする電子放射物質層に0.1〜20重瀘%
で平均粒径が4.5μ以下の希土類金属酸化物を含有さ
せたものとしたので、希土類金属酸化物が電子放射物質
atζ含まれていない従来のもの1ζ対して2〜6倍の
高電流密Ii動作下での長寿命を実現し、安価で製造の
制約の少ない信頼性の高い電子管用陰極が得られるとい
う効果を有するものである。
As described above, this invention provides an alkaline earth metal oxide P! containing at least barium that is deposited on an iζ substrate!
0.1 to 20% in the electron emitting material layer containing A as the main component
Because it contains rare earth metal oxides with an average particle size of 4.5μ or less, the current density is 2 to 6 times higher than that of the conventional 1ζ, which does not contain the electron emitting substance atζ. This has the effect of providing a highly reliable cathode for an electron tube that has a long life under Ii operation, is inexpensive, has few restrictions on manufacturing, and has high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の電子管用陰極を示す断面図、第8図は相対wttf
rt密度と電子放射物質剥離頻度との関係を示す図、第
4図はSagos平均粒径と電子放射物質剥離頻度及び
エミッション電流比との関係を示す図である。 図1ζおいて、(1)は基体、t21は電子放射物質層
である。 なお各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional electron tube cathode, and FIG. 8 is a relative wttf
FIG. 4 is a diagram showing the relationship between the rt density and the frequency of exfoliation of the electron emitting material, and FIG. 4 is a diagram showing the relationship between the Sagos average particle diameter, the frequency of exfoliation of the electron emitting material, and the emission current ratio. In FIG. 1ζ, (1) is a base body, and t21 is an electron emitting material layer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 主成分がニッケルからなる基体に、少なくともバリウム
を含むアルカリ土類金属酸化物を主成分とし、平均粒径
4.5μ以下の希土類金属酸化物を0.1〜20重量%
含んだ電子放射物質層を被着形成したことを特徴とする
電子管用陰極。
0.1 to 20% by weight of a rare earth metal oxide with an average particle size of 4.5μ or less, which is mainly composed of an alkaline earth metal oxide containing at least barium, on a substrate mainly composed of nickel.
A cathode for an electron tube, characterized in that an electron emitting material layer containing an electron emitting material is deposited thereon.
JP8871986A 1986-04-17 1986-04-17 Electron tube cathode Expired - Lifetime JPH0750586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8871986A JPH0750586B2 (en) 1986-04-17 1986-04-17 Electron tube cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8871986A JPH0750586B2 (en) 1986-04-17 1986-04-17 Electron tube cathode

Publications (2)

Publication Number Publication Date
JPS62246222A true JPS62246222A (en) 1987-10-27
JPH0750586B2 JPH0750586B2 (en) 1995-05-31

Family

ID=13950710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8871986A Expired - Lifetime JPH0750586B2 (en) 1986-04-17 1986-04-17 Electron tube cathode

Country Status (1)

Country Link
JP (1) JPH0750586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510292A (en) * 2000-09-19 2004-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cathode ray tube with composite cathode.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833677A (en) * 1971-09-03 1973-05-11
JPS4912758A (en) * 1972-05-12 1974-02-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833677A (en) * 1971-09-03 1973-05-11
JPS4912758A (en) * 1972-05-12 1974-02-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510292A (en) * 2000-09-19 2004-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cathode ray tube with composite cathode.

Also Published As

Publication number Publication date
JPH0750586B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JPS6222347A (en) Cathode for electron tube
JPS62246222A (en) Chthode for electron tube
JPS6288239A (en) Cathode for electron tube
JPH0782800B2 (en) Electron tube cathode
JPS62165832A (en) Cathode for electron tube
JP3395213B2 (en) Electron tube cathode
JP2620580B2 (en) Cathode for electron tube
JPS63257153A (en) Cathode for electron tube
JPS5949131A (en) Electron tube cathode
JPS6290821A (en) Cathode for electron tube
JPS6290820A (en) Cathode for electron tube
JPH02288043A (en) Cathode for electron tube
JPH0760632B2 (en) Electron tube cathode
JPS6290819A (en) Cathode for electron tube
JPH02288040A (en) Cathode for electron tube
JPS63257155A (en) Cathode for electron tube
JPS62165833A (en) Cathode for electron tube
JPH02288041A (en) Cathode for electron tube
JPS6288240A (en) Cathode for electron tube
JPS63131428A (en) Cathode for electron tube
JPS63231835A (en) Cathode for electron tube
JPS61208719A (en) Cathode for electron tube
JPS6288241A (en) Cathode for electron tube
JPH04220925A (en) Cathode for electron tube
JPS58154129A (en) Electron-tube cathode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term