JPS62245722A - Serial/parallel type analog/digital converter - Google Patents

Serial/parallel type analog/digital converter

Info

Publication number
JPS62245722A
JPS62245722A JP8802886A JP8802886A JPS62245722A JP S62245722 A JPS62245722 A JP S62245722A JP 8802886 A JP8802886 A JP 8802886A JP 8802886 A JP8802886 A JP 8802886A JP S62245722 A JPS62245722 A JP S62245722A
Authority
JP
Japan
Prior art keywords
switch
input
switches
reference voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8802886A
Other languages
Japanese (ja)
Inventor
Yuichi Nakatani
裕一 中谷
Shigeki Imaizumi
栄亀 今泉
Toshiro Tsukada
敏郎 塚田
Tatsuji Matsuura
達治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP8802886A priority Critical patent/JPS62245722A/en
Publication of JPS62245722A publication Critical patent/JPS62245722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To eliminate the transient fluctuation of a reference voltage attended with the swiching of a switch by controlling the switch for reference voltage selection at low-order bit comparison by the precharge system so as to stabilize the switch operation. CONSTITUTION:When the output of EOR circuits 75-78 is decided by the com parison of high-order 2-bit, a clock phi is changed and an NMOS switch 10 is turned off. Simultaneously, one input clock, the inverse of phi of NAND circuits 31-34 is changed and only the NAND circuit inputting logical '1' of the EOR circuits 75-78 outputs a low level. Thus, only a PMOS switch 20 receiving a low level at its gate is in switch operation by the output of the NAND circuits 31-34 to connect one of the control line 30 and a power supply VDD. Thus, one NMOS switch group is turned on surely by the clock, the inverse of phi. Thus, large fluctuation of the reference voltage due to transient operation of switch groups 121'-124' is prevented and the comparison speed reduction due to the reference voltage fluctuation is avoided.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は直並列形AID変換器に係り、特に低消費電力
化に好適な直並列形A/D変換器に関する。 〔従来の技術〕 並列形A/1)変換器を低消費電力化するために、考案
された直並列形A/D変換器は特開昭56−23026
に記載されているように、Nビットの直並列形A/D変
換器の場合直列に結線された2N個の分圧抵抗をm個の
分圧抵抗群に分割して基準電圧を得、得られた基準電圧
と入力電圧からヒ位]ビットの比較結果を得、得られた
比較結果よりm個の分圧抵抗群のうち1つを選択
[Industrial Application Field] The present invention relates to a series-parallel type AID converter, and particularly to a series-parallel type A/D converter suitable for reducing power consumption. [Prior Art] In order to reduce the power consumption of a parallel type A/1) converter, a series/parallel type A/D converter was devised in Japanese Patent Laid-Open No. 56-23026.
As described in , in the case of an N-bit series-parallel A/D converter, 2N voltage dividing resistors connected in series are divided into m voltage dividing resistor groups to obtain the reference voltage. Obtain the comparison result of the high level bit from the reference voltage and input voltage obtained, and select one of the m voltage dividing resistor groups from the obtained comparison result.

【7て
J、I、 Q”電圧を得 fjlられた基1″くq電圧
と入力+2圧から下位(トJ−j)ビットの比較結果を
1!)ろものである。ここで。 2〜〉mとしている。 〔発明が解決しようとする問題点〕 第:3図は4ビツト(N = 4 、 m = 4 )
の場合の直並列形A / D変換器を半導体で集積回路
化したときの配列を示す公知例のLつを示したものであ
る。この直並列形Δ/D変換器は基準電圧1を16(=
21)分割し、さらに4(m=1)個の分圧抵抗群に分
割された基準電圧分圧回路100と第1の電圧比較器5
1〜53、第1の電圧比較器からの比較結果を入力とす
る第1の位置検出FOR回路75〜78、前記FOR回
路の一方の出力を入力とする第1の符号化口″1l11
.o、前記FOR回路の他方の出力を制御信号とし、こ
れによりオン、オフ制御されるスイッチ群12]〜12
4、前記スイッチ群121〜124の1つにより選択さ
れたノ、lN準電圧を一方の参照入力とする第2の電圧
比較器61〜63.第2の電圧比較器の比較結果を人力
とする第2の位置検出FOR回路81〜84.及び前記
第2のFOR回路の出力を入力とする第2の符号化回路
120により構成される。この直並列形A/D変換変換
筒1の電圧比較器51〜53により入力電圧と上位2ビ
ツトの比較を行い、上位2ビツトの結果を受は下位2ビ
ツトの基1?!電圧を選択し下位2ビツトの比較を行う
。 第2図にこの変換器のA/r)変換特性を示す。 実線は上位2ビツト、破線は下位2ビツトのA/D変換
特性である。例えば上位2ビツトで比較結果01のデジ
タル値を得たとすると、下位2ビツトでの比較はAで示
した範囲で行われる。 ここで、下位ビットの基準電圧を選択するときスイッチ
群121〜124はFOR回路75〜78の論理出力を
受けるため上位比較の変化時すなわちスイッチ群121
〜124の制御信号のゆ】り換わりのとき2群以上のス
イッチ群が同時にオン状態となり、下位2ビツト比較時
の基準電圧を変動させてしまうおそれがあった。このた
め下位2ビツトの比較はスイッチ群121〜124の1
’7Jり換えから下位2ビツトのJ&′Q電圧の変動が
終った後、比較を行わなければならず、しばしばA/D
変換速度の高速化の障’L’Fとなっていた。 本発明の目的は高速動作に適し、しかも回路規模の小さ
な直披列比校のA/I)変換器において、下位ピッI−
比較時の基準電圧変動を小さく抑え高速性能を高めた直
並列形A/D変換器を提供することにある。 〔問題点を解決するための手段〕 上記の目的を達成するため本発明では、下位ビット比較
時の基゛市電性選択用のスイッチをプリチャージ方式で
制御することによってスイッチ動作を安定化し、スイッ
チの開閉にともなう過渡的な基準電圧の変!!!IJを
除去させた。 〔作用〕 即ち、直並列形AID変換器において、下位ビット比較
における基準電圧信号スイッチの制御信号線をあらかじ
め充電もしくは放電しておき基準電圧選択スイッチをオ
フ状態に設定し、下校ビット比較動作で選択すべき基準
電圧選択スイッチのみがオン状態となるように放電もし
くは充電する。 このことにより、jA準電圧選択スイッチの過渡動作時
のスイッチを介した基準電圧分圧回路のショートによる
基準電圧変動を抑えることができ、高速で確実な比較が
可能となる。 〔発明の実施例〕 以下、本発明の一実施例を第1図により説明する。なお
図中の記号は第3図と同一のものは統一した。第2図に
おいて第3図の従来例で示した下位ビット比較時に基準
電圧選択スイッチ群に特徴を持たせたものである。ここ
で示すスイッチ群121′〜124′はクロックφで制
御されるNMOSスイッチ10とNMOSスイッチ10
のドレイン側をゲートの制御線30とするNMOSスイ
ッチ11〜13からなり、NMOSスイッチ11〜13
のソース端は各分圧抵抗R間と結線され、ドレイン端は
第2の電圧比較器81〜84の基準電圧入力側と結線さ
れている。また、制御線;30はl)M OSスイッチ
20のドレイン端とも結線されている。)’Mt)Sス
イッチ20のソース端は電源Vnoに結線されており、
ゲート入力には第1の位置検出1く○■く回路75〜7
8の出力とクロック7を人力とするN A N 11回
路;31〜34の出力と結線されている。いま、第1の
電圧比較器51〜54で上位2ビツトの比較を行うとき
スイッチ群121′〜124′の制御線30はあらかじ
めクロックφによりNMOSスイッチ10を通してグラ
ンド電源と結線されている。 第1の電圧比較器51〜54は基準電圧分圧回路100
の4個の分圧抵抗群Roi−Ran、 I<(該S〜R
os、Roo−Rtz+ Rta〜Rteとで分圧され
た基準重圧v1〜v3と入力電圧との大小比較を行う。 電圧比較器51〜54の出力には入力電圧が)、(帛電
圧より大ならば論理“0”、小ならば論理“1″が現わ
れる。第1の位置検出E OR回路75〜78は前記電
圧比較器51〜54の出力、論理“0″l、#ljjの
境界を検出して境界に該当する回路のみ゛1″を出力し
、他はO″を出力する。 第1の符号化回路110はFOR回路75〜78の出力
を入力とし、EOR回路75〜78で検出された境界に
相当するデジタルコード3を出力する。以上が上位2ビ
ツトの比較動作である。一方、NANO回路31〜34
の出力はあらかじめクロックTによりハイ(tligh
)レベルに固定されている。 したがって、スイッチ群121′〜124′のPMOS
スイッチ20はオフしている。いま、前述した上位2ビ
ツトの比較動作でFOR回路75〜78の出力が確定し
たとき、クロックφが変化して前記NMOSスイッチ1
0がオフとなる。同時にNANI)回路31〜:34の
一方の入力クロックφが変化して、F、 OR回路75
〜78の論理141 tTを入力とするNANOH路の
みがロー(Low)を出力する。 これは入力電圧が基準電圧を分圧する分圧抵抗群を選択
している。故にNANOH路31〜34の出力でT、 
o wをゲート人力とするPMOSスイッチ20のみが
スイッチ動作を行い、制御線30の一端と電源VDnを
結線する。制御線30はNMOSスイッチ11〜13の
ゲート入力となっているため、制御線30がitt源v
I)r)と結線されるとNMOSスイッチ11〜13は
オンとなり、第2の電圧比較器61〜63の基準電圧入
力端と分圧抵抗R間とを結線する。電圧比較器61〜6
;3は4個に分割された分圧抵抗群に現われる基準電圧
V a ” V bと入力電圧との大小比較を行い、上
位2ビツト比較と同様に第2の位置検出F OR回路8
1〜84、第2の符号化回路120によって下位2ビツ
ト4が得られる。以上で4ビツトのデジタル出力が得ら
れる6次の比較動作は前述と同様にクロックφでNMO
Sスイッチ10をオン、PMOSスイッチ20をオフ状
態としてから開始される。 なお第1図において、NMOSスイッチ11〜1:3を
PMOSスイッチ又はCMOSスイッチを用いてもよく
。 このときNMOSスイッチ10はP阿O8又はCMO8
,l)阿OSスイッチ20はNHO2又はCMOSスイ
ッチとなり、クロックφは適宜選択すればよい。 この様に本発明によれば、下位ビット比較動作での基準
電圧の選択においてクロックφによりあらかじめ確実に
オフ状態となっている基や電圧選択スイッチとなるNM
OSスイッチ群121′〜124′に対し、クロックT
によって確実に1つのNMOSスイッチ群をオン状態と
することができる。このためスイッチ群121′〜12
4′の過渡動作による基I′F!電圧の大きな変動を防
止すべき1合せて、基準電圧変動による比較速度の減少
が防げる。 第4図は第1図で示したNANO回路31〜34に代ッ
テ、PMOSスイッチ20’ をI)MO8Xイッチ2
゜と結線し、 )’MOSスイッチ20′の制御はクロ
ックφ′で行うこととした実施例の1つである。この結
果、FOR回路75〜78の一方の出方を直接NMOS
スイッチ20の入力とすることができ、かつ制御も第1
図と同様となり、回路も簡単と出来る。 第5図は本発明の直並列形A/D変換鼎の他の実施例で
ある。下位ビットの比較動作において基準電圧を選択す
るスイッチ群を図中の125〜128とし、下位ビット
比較動作での基準電圧選択範囲を広げたものである。い
ま上位ビット比較動作において位置検出回路77が選択
されたとする。このときクロック7がHighのとき選
択される基部電圧選択スイッチは127のスイッチ群で
11〜13と14.18,126のスイッチ群では1B
、17,128のスイッチ群では15のNMOSスイッ
チとなる。したがって、第6図のΔ/D変換特性ではB
で示す範囲となり、下位ビット比較動作での比較範囲が
広がり下位ビット比較が確度良くなっている。ここで、
第5図においてオーバフロー以上、アンダフロー以下の
比較はないので位置検出FOR論理回路8oにはNAN
I)回路31〜34の出力で制御される選択スイッチ付
のFOR回路が必要である。しかし、基準電圧分圧回路
100における抵抗数を増加して基準電圧範囲を広げる
ことで80の選択スイッチを減少させることが可能であ
る。なお、第3図と同様にNMOSスイッチ11〜】8
をPMO8又はCMOSスイッチで用いることも可能で
あり、このとき第3図と同様にNMOSスイッチ10は
PMO5又はCMO3%PMOSスイッチ20はNHO
2又は0MO8とし、クロックφ、7を適切に選択すれ
ばよい。 〔発明の効果〕 以上述べたように本発明によれば、直並列形A/1つ変
換器において、下位ビット比較における基準電圧選択ス
イッチの制御信号線をあらがしめ充電もしくは放電して
おき基準電圧選択スイッチをオフ状態に設定し、下校ビ
ット比較動作で選択すべき基準電圧選択スイッチのみが
オン状態となるように放電もしくは充電する。このこと
により、基準電圧選択スイッチの過渡動作時のスイッチ
を介した基準電圧分圧回路のショートによる基準電圧変
動を抑えることができ、・高速で確実な比較が該該能と
なる直並列形A/D変換塁を提供でき、性能を大幅に向
上させる点で効果が大きい。
[7] Obtain the J, I, Q" voltages and compare the lower (J-j) bits from the obtained base 1" x q voltage and the input +2 voltage to 1! ) It's a bastard. here. 2~〉m. [Problem to be solved by the invention] Figure 3 is 4 bits (N = 4, m = 4)
This figure shows L known examples of arrays when serial-parallel type A/D converters are integrated into semiconductor circuits in the case of . This series-parallel Δ/D converter converts the reference voltage 1 to 16 (=
21) Reference voltage divider circuit 100 and first voltage comparator 5 which are further divided into 4 (m=1) voltage divider resistance groups
1 to 53, first position detection FOR circuits 75 to 78 which receive the comparison result from the first voltage comparator as input, and first encoding port "1l11 which receives one output of the FOR circuit as input.
.. o, the other output of the FOR circuit is used as a control signal, and a group of switches 12] to 12 are controlled to be turned on or off by the control signal.
4. A second voltage comparator 61-63, which has one reference input as the 1N quasi-voltage selected by one of the switch groups 121-124. Second position detection FOR circuits 81 to 84 that use the comparison result of the second voltage comparator as manual power. and a second encoding circuit 120 whose input is the output of the second FOR circuit. The voltage comparators 51 to 53 of the series/parallel type A/D converter 1 compare the input voltage with the upper 2 bits, and receive the result of the upper 2 bits as the base 1 of the lower 2 bits. ! Select the voltage and compare the lower two bits. FIG. 2 shows the A/r) conversion characteristics of this converter. The solid line is the A/D conversion characteristic of the upper two bits, and the broken line is the A/D conversion characteristic of the lower two bits. For example, if a digital value of 01 is obtained as a comparison result using the upper 2 bits, the comparison using the lower 2 bits is performed within the range indicated by A. Here, when selecting the reference voltage of the lower bit, the switch groups 121 to 124 receive the logic outputs of the FOR circuits 75 to 78, so when the upper comparison changes, that is, the switch group 121
When the control signals 124 to 124 are changed, two or more switch groups are turned on at the same time, and there is a risk that the reference voltage at the time of comparison of the lower two bits may be changed. Therefore, the comparison of the lower 2 bits is performed by 1 of the switch groups 121 to 124.
After the J&'Q voltage of the lower two bits has changed from '7J switching, a comparison must be made, and often the A/D
This was an obstacle to increasing the conversion speed. An object of the present invention is to provide a series-to-parallel ratio A/I converter that is suitable for high-speed operation and has a small circuit scale.
It is an object of the present invention to provide a series-parallel type A/D converter that suppresses reference voltage fluctuations during comparison and improves high-speed performance. [Means for Solving the Problems] In order to achieve the above object, the present invention stabilizes the switch operation by controlling the switch for selecting the basic character when comparing the lower bits using a precharge method. Transient change in reference voltage due to opening/closing! ! ! IJ was removed. [Function] That is, in a series-parallel type AID converter, the control signal line of the reference voltage signal switch for lower bit comparison is charged or discharged in advance, the reference voltage selection switch is set to the OFF state, and the lower bit comparison operation selects the control signal line. Discharge or charge so that only the reference voltage selection switch to be used is in the on state. This makes it possible to suppress reference voltage fluctuations due to short-circuiting of the reference voltage voltage divider circuit through the jA quasi-voltage selection switch during transient operation, and enables high-speed and reliable comparison. [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. The symbols in the figure that are the same as those in Figure 3 have been unified. In FIG. 2, characteristics are given to the reference voltage selection switch group at the time of lower bit comparison shown in the conventional example of FIG. 3. The switch groups 121' to 124' shown here are an NMOS switch 10 and an NMOS switch 10 controlled by a clock φ.
It consists of NMOS switches 11 to 13 whose drain side is the gate control line 30, and the NMOS switches 11 to 13
The source terminal is connected between each voltage dividing resistor R, and the drain terminal is connected to the reference voltage input side of the second voltage comparators 81 to 84. Further, the control line 30 is also connected to the drain end of the MOS switch 20. )'Mt) The source end of the S switch 20 is connected to the power supply Vno,
The first position detection circuit 75-7 is connected to the gate input.
A N A N 11 circuit using the output of 8 and the clock 7; connected to the outputs of 31 to 34. Now, when the first voltage comparators 51 to 54 compare the upper two bits, the control lines 30 of the switch groups 121' to 124' are connected to the ground power supply through the NMOS switch 10 in advance by the clock φ. The first voltage comparators 51 to 54 are connected to a reference voltage divider circuit 100.
4 voltage dividing resistor groups Roi-Ran, I<(S~R
A comparison is made between the reference pressures v1 to v3 divided by os, Roo-Rtz+Rta to Rte and the input voltage. The outputs of the voltage comparators 51 to 54 show logic "0" if the input voltage is greater than the voltage, and logic "1" if the input voltage is smaller than the voltage.The first position detection EOR circuits 75 to 78 The outputs of the voltage comparators 51 to 54 detect the boundary between logic "0"l and #ljj, and only the circuit corresponding to the boundary outputs "1", and the others output "O". First encoding circuit 110 inputs the outputs of the FOR circuits 75 to 78 and outputs a digital code 3 corresponding to the boundary detected by the EOR circuits 75 to 78.The above is the comparison operation of the upper two bits.On the other hand, the NANO circuits 31 to 78 34
The output of
) level is fixed. Therefore, the PMOS of switch groups 121' to 124'
Switch 20 is off. Now, when the outputs of the FOR circuits 75 to 78 are determined by the above-mentioned comparison operation of the upper two bits, the clock φ changes and the NMOS switch 1
0 is off. At the same time, the input clock φ of one of the NANI) circuits 31 to 34 changes, and the F, OR circuit 75
~78 logic 141 Only the NANOH path that takes tT as an input outputs low. This selects a group of voltage dividing resistors whose input voltage divides the reference voltage. Therefore, the output of NANOH paths 31 to 34 is T,
Only the PMOS switch 20 which uses gate power as ow performs a switching operation, and connects one end of the control line 30 and the power supply VDn. Since the control line 30 is the gate input of the NMOS switches 11 to 13, the control line 30 is connected to the itt source v.
When connected to I)r), the NMOS switches 11 to 13 are turned on, and the reference voltage input terminals of the second voltage comparators 61 to 63 are connected between the voltage dividing resistor R. Voltage comparators 61-6
; 3 compares the input voltage with the reference voltage V a ” V b appearing in the voltage dividing resistor group divided into four, and similarly to the comparison of the upper two bits, the second position detection FOR circuit 8
1 to 84, and the lower two bits 4 are obtained by the second encoding circuit 120. The 6th order comparison operation that yields a 4-bit digital output is performed using the clock φ as described above.
The process starts after the S switch 10 is turned on and the PMOS switch 20 is turned off. In FIG. 1, PMOS switches or CMOS switches may be used instead of the NMOS switches 11 to 1:3. At this time, the NMOS switch 10 is PAO8 or CMO8.
, l) The OS switch 20 is an NHO2 or CMOS switch, and the clock φ may be selected as appropriate. As described above, according to the present invention, when selecting the reference voltage in the lower bit comparison operation, the voltage selection switch NM that is reliably turned off in advance by the clock φ and the voltage selection switch NM
For the OS switch group 121' to 124', the clock T
This allows one NMOS switch group to be reliably turned on. For this reason, switch groups 121' to 12
The base I'F! due to the transient operation of 4'! In addition to preventing large fluctuations in voltage, it is also possible to prevent reduction in comparison speed due to fluctuations in the reference voltage. Figure 4 shows a PMOS switch 20' in place of the NANO circuits 31 to 34 shown in Figure 1.
This is one of the embodiments in which the control of the MOS switch 20' is performed by the clock φ'. As a result, one of the outputs of the FOR circuits 75 to 78 can be connected directly to the NMOS
It can be input to the switch 20 and also controlled by the first
The circuit will be similar to the one shown in the figure, and the circuit will be simple. FIG. 5 shows another embodiment of the serial/parallel type A/D converter of the present invention. The switch group for selecting the reference voltage in the comparison operation of the lower bits is designated as 125 to 128 in the figure, and the reference voltage selection range in the comparison operation of the lower bits is expanded. Assume now that the position detection circuit 77 is selected in the upper bit comparison operation. At this time, the base voltage selection switch selected when clock 7 is High is 1B in switch groups 127, 11 to 13, 14, 18, and 126.
, 17,128 switches have 15 NMOS switches. Therefore, in the Δ/D conversion characteristic shown in Fig. 6, B
The comparison range in the lower bit comparison operation is expanded, and the lower bit comparison becomes more accurate. here,
In FIG. 5, there is no comparison between overflow and underflow, so the position detection FOR logic circuit 8o contains NAN.
I) A FOR circuit with a selection switch controlled by the outputs of circuits 31-34 is required. However, by increasing the number of resistors in the reference voltage divider circuit 100 and widening the reference voltage range, it is possible to reduce the number of 80 selection switches. In addition, as in FIG. 3, the NMOS switches 11 to ]8
It is also possible to use PMO8 or CMOS switch, and in this case, as in FIG. 3, NMOS switch 10 can be PMO5 or CMO3% PMOS switch 20 can be NHO
2 or 0MO8, and clocks φ and 7 may be appropriately selected. [Effects of the Invention] As described above, according to the present invention, in a series/parallel type A/1 converter, the control signal line of the reference voltage selection switch in the lower bit comparison is rearranged and charged or discharged before the reference voltage is set. The voltage selection switch is set to the off state, and discharge or charge is performed so that only the reference voltage selection switch to be selected in the lower bit comparison operation is turned on. This makes it possible to suppress reference voltage fluctuations due to short-circuits in the reference voltage divider circuit through the switch during transient operation of the reference voltage selection switch, and enables high-speed and reliable comparison. /D conversion base can be provided, which is highly effective in greatly improving performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の直並列形A/D変換器を示す図、第2
図は直並列形A/D変換器のA/D変換特性を示す図、
第3図は従来の直並列形A/D変換器の構成を示す図、
第4図は第3図の下位ビット選択を変更した実施例の一
つを示す図、第5図は本発明の一方の実施例を示す図、
第6図は第4図の直並列形A / D変換器のA/D変
換特性を示す図である。 1・・・基準電圧入力端子、2・・・入力信号入力端子
、3・・・上位2ビツト出力、4・・・下位2ビツト出
力、Ro1〜Rts・・・分圧抵抗、10〜18・・・
NMOSスイッチ、20.20’・・・PMOSスイッ
チ、30・・・制御信号線、31〜34・・・NAND
回路、51〜53.61〜68・・・電圧比較器、75
〜78.81〜84・・・位置検出FOR回路、80・
・・位置検出FOR論理回路、100 ・iA準電圧分
圧!!路、110,120゜120′・・・符号化回路
、121〜124,12]’〜124’、12f;〜1
28・・・スイッチ群。 奉 l 目 早 4 口
Fig. 1 is a diagram showing a series-parallel type A/D converter of the present invention, Fig.
The figure shows the A/D conversion characteristics of a series-parallel A/D converter.
FIG. 3 is a diagram showing the configuration of a conventional series-parallel type A/D converter,
FIG. 4 is a diagram showing one embodiment in which the lower bit selection of FIG. 3 is changed, and FIG. 5 is a diagram showing one embodiment of the present invention.
FIG. 6 is a diagram showing A/D conversion characteristics of the series/parallel type A/D converter of FIG. 4. 1... Reference voltage input terminal, 2... Input signal input terminal, 3... Upper 2 bits output, 4... Lower 2 bits output, Ro1 to Rts... Voltage dividing resistor, 10 to 18.・・・
NMOS switch, 20.20'...PMOS switch, 30...control signal line, 31-34...NAND
Circuit, 51-53. 61-68...Voltage comparator, 75
~78.81~84...Position detection FOR circuit, 80.
・Position detection FOR logic circuit, 100 ・iA quasi-voltage division! ! path, 110, 120° 120'... encoding circuit, 121-124, 12]'-124', 12f;-1
28...Switch group. As soon as 4 mouths

Claims (1)

【特許請求の範囲】[Claims] 1、2^N個の基準信号を生ずるための電圧分割手段が
M組に直列分割され、該M組の分割手段より生ずる第1
の基準信号と入力信号との大小関係を判定する(M−1
)個の第1の比較器と、該比較器の出力を入力とするM
個の第1の区間検出回路と、該区間検出回路の出力を入
力とする第1の符号化回路とで第1のA/D変換器とし
、該M組の分割手段内で2^N/M)個の分割手段より
生ずる(2^N/M−1)個の第2の基準信号が(2^
N/M−1)個の第1の開閉器の一方の入力となり、該
開閉器を制御する制御線が第2の開閉器の一方の入力と
なり、該第2の開閉器は第1の制御信号により開閉が制
御され他端は第1の電源と結線されており、該制御線は
第3の開閉器の一方の入力とし、該第3の開閉器の他端
は第2の電源と結線されており、該第1、第2、第3の
開閉器からなる1組の開閉器群を、M組設け、該M組の
開閉器群を構成する該第3の開閉器の制御は該第1の区
間検出回路の出力および第2の制御信号を入力とするM
個の論理回路の出力で行い、該M組の開閉器群を構成す
る該(2^N/M−1)個の第1の開閉器の他方の入力
端が各組共通となり各々(2^N/M−1)個の第2の
比較器の第2の基準信号入力とし、該第2の比較器は該
第2の基準信号とアナログ入力信号との大小関係を判定
し第2の(2^N/M−1)個の第2の区間検出回路の
入力とし、該第2の検出回路の出力を入力とする第2の
符号化回路とで第2のA/D変換器とし、該第1のA/
D変換器で第1のA/D変換を行い、該第1の制御信号
により該M個の制御線を該第1の電源に充電し該(2^
N/M−1)個の第1の開閉器を閉じ、該M個の第3の
開閉器を該M個の論理回路の一方の入力である該第2の
制御信号にて閉じたのち、該M個の第2の開閉器を閉じ
、該第1のA/D変換より該M個の論理回路で該第2の
基準信号が該M組の開閉器群の何れのレベルに位置して
いるかを検出して、該第2の制御信号にて対応する該M
組の開閉器群の第3の開閉器を開き、第2の基準信号を
対応する該(2^N/M−1)個の第1の開閉を通して
該第2の(2^N/M−1)個の比較器の基準電圧信号
として入力し、第2のA/D変換を行うことを特徴とす
る直並列形A/D変換器。
Voltage dividing means for producing 1, 2^N reference signals are serially divided into M sets, and the first
Determine the magnitude relationship between the reference signal and the input signal (M-1
) first comparators and M whose input is the output of the comparator.
A first A/D converter is made up of a first section detection circuit and a first encoding circuit that receives the output of the section detection circuit as an input. (2^N/M-1) second reference signals generated from M) dividing means are (2^N/M-1)
N/M-1) of the first switches, and the control line that controls the switches becomes one input of the second switch, and the second switch is connected to the first control line. Opening/closing is controlled by a signal, and the other end is connected to the first power source, the control line serves as one input of a third switch, and the other end of the third switch is connected to the second power source. M sets of switch groups consisting of the first, second, and third switches are provided, and the third switch constituting the M switch groups is controlled according to the M whose inputs are the output of the first section detection circuit and the second control signal.
The other input terminal of the (2^N/M-1) first switches constituting the M switch groups is common to each group, and each N/M-1) second reference signals are input to second comparators, and the second comparators determine the magnitude relationship between the second reference signals and the analog input signal, and 2^N/M-1) second section detection circuits, and a second encoding circuit whose input is the output of the second detection circuits, forming a second A/D converter; The first A/
A D converter performs a first A/D conversion, and the M control lines are charged to the first power supply by the first control signal, and the (2^
After closing the N/M-1) first switches and closing the M third switches using the second control signal that is one input of the M logic circuits, The M second switches are closed, and the first A/D conversion determines in which level of the M switch groups the second reference signal is located in the M logic circuits. detecting whether the M
The third switch of the group of switches is opened, and the second reference signal is passed through the corresponding (2^N/M-1) first switches to the second (2^N/M- 1) A series/parallel type A/D converter which is inputted as a reference voltage signal of two comparators and performs a second A/D conversion.
JP8802886A 1986-04-18 1986-04-18 Serial/parallel type analog/digital converter Pending JPS62245722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8802886A JPS62245722A (en) 1986-04-18 1986-04-18 Serial/parallel type analog/digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8802886A JPS62245722A (en) 1986-04-18 1986-04-18 Serial/parallel type analog/digital converter

Publications (1)

Publication Number Publication Date
JPS62245722A true JPS62245722A (en) 1987-10-27

Family

ID=13931366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8802886A Pending JPS62245722A (en) 1986-04-18 1986-04-18 Serial/parallel type analog/digital converter

Country Status (1)

Country Link
JP (1) JPS62245722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272028U (en) * 1988-11-21 1990-06-01
JPH0273831U (en) * 1988-11-25 1990-06-06
JPH04282919A (en) * 1990-09-17 1992-10-08 Motorola Inc Subrange type analog-desital converter having multiplex clock cycle
JPH1032491A (en) * 1996-03-19 1998-02-03 Samsung Electron Co Ltd Flash a/d converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272028U (en) * 1988-11-21 1990-06-01
JPH0273831U (en) * 1988-11-25 1990-06-06
JPH04282919A (en) * 1990-09-17 1992-10-08 Motorola Inc Subrange type analog-desital converter having multiplex clock cycle
JPH1032491A (en) * 1996-03-19 1998-02-03 Samsung Electron Co Ltd Flash a/d converter

Similar Documents

Publication Publication Date Title
US4532438A (en) Monolithically integrable MOS-comparator circuit
US20060238399A1 (en) Successive approximation type A/D converter
JP3807351B2 (en) Impedance control method and impedance control circuit for semiconductor integrated circuit
US7102394B1 (en) Programming and control of an integrated circuit using an externally connected resistor network
JPH0125449B2 (en)
JP2714999B2 (en) Analog / digital converter
US6218975B1 (en) Interleaved auto-zero analog-to-digital converter with switching noise compensation
JPH05347561A (en) A/d converter
JP2000341124A (en) Analog-to-digital converter
JPS62245722A (en) Serial/parallel type analog/digital converter
JP3636232B2 (en) Integrated circuit capable of selecting function and method for selecting function
US7676537B2 (en) Address generation method for combining multiple selection results
US6927723B2 (en) A/D converter and A/D conversion method
JPH1032491A (en) Flash a/d converter
EP1349283A2 (en) A/D converter circuit
EP3696983A1 (en) Analog to digital converter
JP2003133937A (en) Bidirectional level converter circuit
JPH04129332A (en) Successive approximation a/d converter
JP4460949B2 (en) A / D converter and A / D conversion method
JP2880953B2 (en) A / D converter
JPH11154865A (en) Division encoder data line for a/d conversion circuit
JPH0686458A (en) Power-supply selector circuit
JPH1188171A (en) A/d converter
JPH1117543A (en) Consecutive comparison a/d converter
JP3896717B2 (en) Successive comparison A / D converter