JPS62245673A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS62245673A
JPS62245673A JP8802986A JP8802986A JPS62245673A JP S62245673 A JPS62245673 A JP S62245673A JP 8802986 A JP8802986 A JP 8802986A JP 8802986 A JP8802986 A JP 8802986A JP S62245673 A JPS62245673 A JP S62245673A
Authority
JP
Japan
Prior art keywords
oxide film
drain region
substrate
region
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8802986A
Other languages
Japanese (ja)
Inventor
Hitoshi Kume
久米 均
Takaaki Hagiwara
萩原 隆旦
Akihiro Shimizu
昭博 清水
Nagatoshi Ooki
長斗司 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP8802986A priority Critical patent/JPS62245673A/en
Publication of JPS62245673A publication Critical patent/JPS62245673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Abstract

PURPOSE:To manufacture an FET assuring the operational breakdown strength without increasing the occupied space by a method wherein a low concentration drain region in a low concentration drain LDD structure is buried in the depth direction of a wafer to be connected to the high concentration drain region in the wafer. CONSTITUTION:A P type Si substrate 21 is isolated by means of a thick oxide film to form a gate oxide film 22 on an active region; the threshold value of gate oxide film 22 is adjusted by implanting B ions; P added polysilicon 23, a thermal oxide film 24 and an Si3N4 are laminated to be patterned to form a gate electrode; and the substrate 21 is also removed by etching as deep as around 0.25mum. The substrate 21 is inclined to make an oblique angle of 30 deg. to an ion incident axis to implant P ions and form an n<->layer 26. The n<->layer 26 is covered with a thermal oxide film 27 leaving a step difference side only by RIE. Next, As added n<+>polysilicon layers 28 are formed to make the etching depth of substrate 21 the actual length of low concentration drain. Finally, the Si layers 28 are covered with a PSG 29 to form an Al electrode 30 for completion. In such a constitution, a fine and highly reliable IGFET can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超■、SHの構成要素となる半導体能動素子
に係り、特に微細化と高信頼化に好適な絶縁ゲート型電
界効果トランジスタ(以下M OSトランジスタと称す
)に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor active device that is a component of ultra-high-power semiconductor devices, and in particular to an insulated gate field effect transistor ( (hereinafter referred to as MOS transistor).

〔従来の技術〕[Conventional technology]

MOSトランジスタは、動作速度の向にと集積度の増大
を目的として、3年毎に0.6〜0.7倍の割合で微細
化が進められてきた。しかし、これにともなう耐圧低下
が、電源電圧一定のシステム環境の元で、次第に無視で
きない問題となってきた。とりわけ、ドレイン接合近傍
の高電界領域で発生するホットキャリアに起因した信頼
性低下現象は深刻であり、微細化を制限する要因となっ
ている。
MOS transistors have been miniaturized at a rate of 0.6 to 0.7 times every three years, with the aim of increasing the operating speed and the degree of integration. However, the resulting drop in breakdown voltage has gradually become a problem that cannot be ignored in a system environment where the power supply voltage is constant. In particular, the reliability degradation phenomenon caused by hot carriers generated in the high electric field region near the drain junction is serious and is a factor that limits miniaturization.

微細化にともなう耐圧低下を緩和するため、これまで様
々な素子構造が提案されてきた。その中で、現在最も重
要な役割を果たしているのは、低濃度ドレイン構造(L
jghtly Doped Drain 、通称L S
 S p造)である。
Various device structures have been proposed to alleviate the drop in breakdown voltage caused by miniaturization. Among them, the one currently playing the most important role is the low concentration drain structure (L
jghtly Doped Drain, commonly known as L S
S p construction).

この構造は、督録特許738280号(出願日昭和45
年6月130)において最初に提案され、その後、アイ
・イー・イー・イー、トランザクションズ オン エレ
クトロン デバイシズ、イー・ディー29(1982年
)第590頁から第596頁(TRRR,Trans、
 Electron I)ev、1ces、 ED −
29(1982) 、 p p 590−596)にお
いて超■、STレベルでの有用性と実用可能性が示され
た。
This structure is disclosed in Directory Patent No. 738280 (filing date: 1972).
It was first proposed in I.E.E., Transactions on Electron Devices, E.D. 29 (1982), pp. 590-596 (TRRR, Trans.
Electron I)ev, 1ces, ED-
29 (1982), p p 590-596), its usefulness and practical feasibility at the ultra-high and ST levels were demonstrated.

第2図は、LDr′)構造の製造プロセス工程をあられ
す断面図である。ここでは、nチャンネル素子の場合を
例にとって説明する。p型シリコン半導体基板11F、
にゲート酸化膜12とゲート電極13を形成した後、イ
オン打込み工程により低濃度ドレインとなるn−型不純
物領域14を形成したのが、第2図(a)の状態である
。続いて、化学気相堆積法にて8 、> Ox膜をウェ
ハ全面に堆積させ、これに異方性エツチング処理を施す
と、第2図(b)の記号15で示したように、ゲート電
極13の側面に5j02.膜のエツチング残りを生ずる
。このエツチング残りをマスクにして高濃度イオン打込
みを行うと、高濃度ドレインとなるn÷型不純物領域1
6がゲート電極13から自己整合的にオフセットされて
形成され、その結果、チャネル領域には低濃度ドレイン
が接した■、DD槽構造実現される。エツチング残り1
5は、ゲート電wA13と高濃度ドレイン(n生型不純
物領域)16の間のスペースを決定する作用をするため
FIG. 2 is a cross-sectional view showing the manufacturing process of the LDr' structure. Here, the case of an n-channel device will be explained as an example. p-type silicon semiconductor substrate 11F,
After forming a gate oxide film 12 and a gate electrode 13, an n-type impurity region 14 which will become a low concentration drain is formed by an ion implantation process, as shown in FIG. 2(a). Subsequently, an 8>Ox film is deposited on the entire surface of the wafer by chemical vapor deposition, and anisotropic etching is performed on this to form a gate electrode, as shown by symbol 15 in FIG. 2(b). 5j02 on the side of 13. Etching of the film leaves a residue. When high-concentration ion implantation is performed using this etching residue as a mask, the n÷ type impurity region 1 becomes a high-concentration drain.
6 is formed offset from the gate electrode 13 in a self-aligned manner, and as a result, a DD tank structure is realized in which the channel region is in contact with the lightly doped drain. 1 remaining etching
5 serves to determine the space between the gate electrode wA13 and the heavily doped drain (n-type impurity region) 16.

サイドウオールスペーサと呼ばれている。It is called a side wall spacer.

T、 n D構造では、ドレイン接合近傍での電圧降下
が低濃度ドレイン領域14で分散して起こるため、電界
の集中が緩和され、耐圧が向上する。しく4) かし、低濃度ドレイン領域14は同時に寄生直列抵抗と
しても働くので、その不純物プロファイルと平面的長さ
くすなわち、ゲート電極・高濃度ドレイン間の間隔)を
最適化し、かつ精密に制御することが、耐圧と性能の両
立を図り、それを超■、STレベルで実用化していくう
えで必要不可欠となる。
In the T,nD structure, the voltage drop near the drain junction occurs dispersedly in the lightly doped drain region 14, so that the concentration of the electric field is relaxed and the withstand voltage is improved. 4) However, since the lightly doped drain region 14 also acts as a parasitic series resistance, its impurity profile and planar length (i.e., the distance between the gate electrode and the heavily doped drain) should be optimized and precisely controlled. This is essential in achieving both high voltage resistance and performance, and putting it into practical use at the super- and ST-level.

1.3 μmレベルのT、Ona造では、低濃度ドレイ
ン領域の表面濃度をIXl、Q”(7)−8,接合深さ
を0.3  μm、平面的長さ咎0.2  μmに設定
することにより、電流駆動能力を通常の高濃度ドレイン
横進とくらべて10%程度の低fに抑えながら、2.5
 vの耐圧向」〕を実呪している。
In the 1.3 μm level T, Ona structure, the surface concentration of the low concentration drain region is set to IXl,Q”(7)-8, the junction depth is set to 0.3 μm, and the planar length is set to 0.2 μm. By doing this, the current drive capability is kept to about 10% lower f than that of normal high concentration drain lateral movement, while
v's withstand voltage direction'').

また、−]二述の製造プロセス工程を用いることにより
、耐圧と性能に関する素子間ばらつきを実用的な範囲に
抑えることが可能になっている。これは、低濃度ドレイ
ン領域の不純物プロファイルがイオン打込み技術とそれ
に続く熱処理工程で精密に制御されるとともに、その平
面的長さもサイドウオールスペーサの長さによって自己
整合的に決まるためである。
In addition, by using the manufacturing process steps described above, it is possible to suppress variations between elements in terms of withstand voltage and performance to within a practical range. This is because the impurity profile of the lightly doped drain region is precisely controlled by the ion implantation technique and the subsequent heat treatment process, and its planar length is also determined in a self-aligned manner by the length of the sidewall spacer.

以上の結果、1.3 μm l、1】1)構造は、現在
超LSIレベルで実用化され、高濃度ドレイン構造では
不可能な5v電源動作を可能にしている。
As a result of the above, the 1.3 μm l, 1]1) structure is currently in practical use at the VLSI level, and enables 5V power supply operation, which is impossible with a highly doped drain structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、低濃度ドレイン領域の表面濃度をお
よそ8X1.017m−8以下に下げることができない
ため、現在実用化されている1、3 μmレベルより更
に微細化を進めていく場合には、素 (子の動作耐圧と
占有面積がトレードオフの関係になるという問題があっ
た。
With the above conventional technology, it is not possible to reduce the surface concentration of the low concentration drain region to below approximately 8X1.017m-8. Therefore, in order to proceed with further miniaturization beyond the 1 to 3 μm level currently in practical use, There was a problem that there was a trade-off between the operating voltage and the area occupied by the device.

低濃度ドレイン領域の表面濃度を8×10171−8程
度以下に下げることができないのは、以下で説明するよ
うに、ホットキャリアによる特性劣化現象としてL r
) D固有の劣化モードが顕在化し、信頼性(すなわち
動作耐圧)がむしろ著しく低下するためである。
The reason why the surface concentration of the low concentration drain region cannot be lowered to about 8×10171-8 or less is due to the characteristic deterioration phenomenon caused by hot carriers, as explained below.
) This is because the deterioration mode specific to D becomes apparent, and the reliability (that is, the operating voltage) deteriorates considerably.

T、 D I)構造では、低濃度ドレイン領域の表面濃
度が低下するに従い、酸化膜中へのホットキャリア注入
領域がチャネル部分から低濃度ドレイン側へ移動する。
In the T, DI structure, as the surface concentration of the lightly doped drain region decreases, the hot carrier injection region into the oxide film moves from the channel portion to the lightly doped drain side.

低濃度ドレイン領域の上部には化学気相堆積法によるト
ラップ密度の高いS t 02リー (カイトウオールスペーサ)が存在するため、あまり表
面濃度を低下させると、ここでの1−ラップ電荷が急速
に増加することになる。この)−ラップ電荷は、低濃度
ドレイン領域をピンチして寄生直列抵抗を増大させるた
め、電流駆動能力の劣化をひき起こす。以上が、■、D
D構造固有の特性劣化モードである。
Above the low-concentration drain region, there is an S t 02 spacer (kite wall spacer) with a high trap density formed by chemical vapor deposition, so if the surface concentration is reduced too much, the 1-wrap charge here will rapidly increase. will increase. This )-wrap charge pinches the lightly doped drain region and increases parasitic series resistance, causing deterioration in current drive capability. The above is ■, D
This is a characteristic deterioration mode specific to the D structure.

微細化を進める際、低濃度ドレイン領域の濃度を下げず
に動作耐圧を確保するためには、その平面的長さを大き
くすることが必要になる。たとえば、0.5 μmレベ
ルのr、nn構造で5v電源動作を可能にするためには
、低濃度ドレイン領域の平面的長さを0.4〜0.5μ
m程度にしなければならない。この値は、ゲート長さの
比較において明らかにバランスを欠いており、微細化に
ともなう素子の占有面積減少効果を著しく損うものであ
る。
As miniaturization progresses, it is necessary to increase the planar length of the lightly doped drain region in order to ensure its operational breakdown voltage without lowering its concentration. For example, in order to enable 5V power supply operation with a 0.5 μm level r, nn structure, the planar length of the lightly doped drain region must be 0.4 to 0.5 μm.
It must be about m. This value is clearly unbalanced when comparing the gate lengths, and significantly impairs the effect of reducing the area occupied by the device due to miniaturization.

の占有面積を犠牲にせずに動作耐圧を確保することが可
能なMOSトランジスタ高耐圧構造を提供することにあ
る。
An object of the present invention is to provide a high breakdown voltage structure of a MOS transistor that can ensure operating breakdown voltage without sacrificing the area occupied by the MOS transistor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、■、nn構造における低濃度ドレイン領域
をウェハの深さ方向に埋め込み、ウェハ内部で高濃度ド
レイン領域と接続させろことにより、達成される。第1
図は、その構造的特徴を示す断面図である。
The above object is achieved by embedding the lightly doped drain region in the ■,nn structure in the depth direction of the wafer and connecting it to the heavily doped drain region inside the wafer. 1st
The figure is a cross-sectional view showing its structural features.

第1図において、ゲート電極3の端部でチャネルに接し
た低濃度ドレイン領域5はウェハ深さ方向に埋め込まれ
、内部で高濃度ドレイン領域6と接続されている。酸化
膜4が低濃度ドレイン領域5と接して埋め込まれている
ため、チャネルを流れてきたキャリアは領域5に沿って
深さ方向に進み、酸化膜4の下部で高濃度ドレイン領域
6に流れ込む。従って、酸化膜4の埋め込み深さが、従
来の■、r)D構造における低濃度ドレイン領域の平面
的長さに対応することになる。
In FIG. 1, a lightly doped drain region 5 in contact with the channel at the end of the gate electrode 3 is buried in the depth direction of the wafer and is internally connected to a heavily doped drain region 6. Since the oxide film 4 is buried in contact with the lightly doped drain region 5, carriers flowing through the channel proceed along the region 5 in the depth direction and flow into the heavily doped drain region 6 at the bottom of the oxide film 4. Therefore, the buried depth of the oxide film 4 corresponds to the planar length of the lightly doped drain region in the conventional (1, r)D structure.

なお、酸化膜4は熱酸化法にて形成することが重要であ
る。これは、化学気相堆積法を用いた場合にくらべて、
著しくトラップ密度の低い高品質膜を得ることができる
ためである。
Note that it is important to form the oxide film 4 by a thermal oxidation method. This is compared to using chemical vapor deposition method.
This is because a high quality film with a significantly low trap density can be obtained.

〔作用〕[Effect]

本発明の特徴は、第1図に示したように、MOSトラン
ジスタのチャネルと高濃度ドレインの間に挿入される低
濃度ドレイン領域5が、ウェハ深さ方向に埋め込まれる
ことにある。この埋め込み深さが、従来技術LDD構造
における低濃度ドレイン領域の平面的長さに対応するた
め、深さを増大させることにより、素子占有面積を犠牲
にせずに動作耐圧を向上させることが可能になる。
The feature of the present invention is that, as shown in FIG. 1, the lightly doped drain region 5 inserted between the channel of the MOS transistor and the heavily doped drain is buried in the depth direction of the wafer. This buried depth corresponds to the planar length of the lightly doped drain region in the conventional LDD structure, so by increasing the depth, it is possible to improve the operating voltage without sacrificing the device occupied area. Become.

本発明のもう一つの特徴は、電流を低濃度ドレイン領域
に沿って深さ方向に流すために設けられた埋め込み酸化
膜4を、熱酸化法にて形成することができる点にある。
Another feature of the present invention is that the buried oxide film 4 provided to allow current to flow in the depth direction along the lightly doped drain region can be formed by a thermal oxidation method.

熱酸化法で形成した酸化膜は、従来技術L D D構造
サイドウオールのサイドウオールスペーサのように化学
気相堆積法で形成した膜にくらべて、著しく膜中トラッ
プ密度が低いため、次の二つの効果を得ることができる
。ひとつは、前述のピンチ効果を気にせずに低濃度ドレ
イン領域5の濃度を1×1017(7)−8程度まで下
げることが可能になる。このことは、サブミクロンレベ
ルでの耐圧設計が、低濃度ドレイン領域「長さ」と「濃
度」の両面から自由に行えるようになることを意味して
いる。もう一つの効果は。
The oxide film formed by the thermal oxidation method has a significantly lower trap density in the film than the film formed by the chemical vapor deposition method, such as the sidewall spacer of the conventional LDD structure sidewall. You can get two effects. One is that it becomes possible to lower the concentration of the low concentration drain region 5 to about 1×10 17 (7) −8 without worrying about the above-mentioned pinch effect. This means that voltage resistance design at the submicron level can be freely performed from both the "length" and "concentration" of the low concentration drain region. Another effect is.

一定量のホットキャリアが低濃度ドレイン領域で発生し
ても、従来技術丁、Dn構造に比べて素子特性劣化を小
さく抑えられることである。このことは、低濃度トレイ
ンを用いた高耐圧構造の宿命である耐圧と電流駆動能力
のトレードオフが、緩和。
Even if a certain amount of hot carriers are generated in the low concentration drain region, deterioration of device characteristics can be suppressed to a smaller extent than in the conventional Dn structure. This alleviates the trade-off between breakdown voltage and current drive capability, which is the fate of high breakdown voltage structures using low concentration trains.

改善されることを意味している。It means that it will be improved.

〔実施例〕〔Example〕

以下、本発明の実施例を第3図〜第5図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 3 to 5.

第3図において、記号21け半導体基板を示し、比抵抗
10Ω・mでp型(1,00)面のシリコンウェハであ
る。この基板21. 、hに選択酸化法にて厚い酸化膜
の素子分離領域を形成した後、能動領域にゲート酸化膜
22を形成した(第3図には、素子分離領域は示してい
ない)。素子分離領域の酸化膜厚は600nm、ゲート
酸化膜は1.8 n mであった。
In FIG. 3, the number 21 indicates a semiconductor substrate, which is a p-type (1,00) silicon wafer with a specific resistance of 10 Ω·m. This board 21. , h, a thick oxide film element isolation region was formed by selective oxidation, and then a gate oxide film 22 was formed in the active region (the element isolation region is not shown in FIG. 3). The thickness of the oxide film in the element isolation region was 600 nm, and the thickness of the gate oxide film was 1.8 nm.

閾値電圧Vth制御のため、ゲート酸化膜22を通して
硼素(B)イオン打込みを行った後、化学気相堆積にて
多結晶シリコン膜23を堆積し、これにPOCQ s雰
囲気で燐(P)  ドープを行った。Bイオンは、60
keVの加速エネルギーで1.OX 1012ions
/ cxKだけ打込んだ。これにより約0.8■の閾値
電圧が得られた。また、多結晶シリコンの膜厚は31.
0nm、燐ドープ後のシート抵抗は30Ω/口であった
In order to control the threshold voltage Vth, boron (B) ions are implanted through the gate oxide film 22, and then a polycrystalline silicon film 23 is deposited by chemical vapor deposition, and this is doped with phosphorus (P) in a POCQ s atmosphere. went. B ion is 60
1 with acceleration energy of keV. OX 1012ions
/ I typed only cxK. This resulted in a threshold voltage of approximately 0.8 . Moreover, the film thickness of polycrystalline silicon is 31.
0 nm, and the sheet resistance after phosphorus doping was 30Ω/hole.

多結晶シリコン23の表面を熱酸化して、薄い酸化膜2
4を成長させた後、化学気相堆積法にてシリコン窒化膜
25を形成した。酸化膜24とシリコン窒化膜25の膜
厚は、それぞれ30nmと50nmであった。続いて、
写真蝕刻法とドライエツチングの手法を用いて、シリコ
ン窒化膜25゜で\、 ゛酸化膜24.多結晶シリコン膜23.ゲート酸化、−
′H22をパターンニングしてゲート電極を形成しく1
1) た後、シリコン基板21にも異方向エツチングを施した
。パターンユング後のゲート長は0.8μm、シリコン
基板21の異方性エツチングもほぼその寸法通りに行わ
れ、深さは0.25 μmであった。〔第3図(a)〕
The surface of polycrystalline silicon 23 is thermally oxidized to form a thin oxide film 2.
After growing 4, a silicon nitride film 25 was formed by chemical vapor deposition. The film thicknesses of the oxide film 24 and the silicon nitride film 25 were 30 nm and 50 nm, respectively. continue,
Using photo-etching and dry etching techniques, a silicon nitride film of 25 degrees and an oxide film of 24 degrees were formed. Polycrystalline silicon film 23. Gate oxidation, -
' Patterning H22 to form a gate electrode 1
1) After that, the silicon substrate 21 was also etched in a different direction. The gate length after patterning was 0.8 .mu.m, and the anisotropic etching of the silicon substrate 21 was carried out almost according to that dimension, and the depth was 0.25 .mu.m. [Figure 3 (a)]
.

次いで、シリコン基板をイオンの入射軸に対して傾け、
かつ回転させながら燐(P)イオン打込みを行うことに
より、MOSトランジスタの低濃度ドレインとなるn−
型低濃度不純物領域26を形成【ノた。イオン打込みは
シリコン基板を30’傾けた状態で行い、その時の加速
エネルギーは60 k eV 、打込み量は9 X 1
. O12i、ons/ cxKであった。この時、垂
直にエツチングされたシリコン基板側面部の燐濃度は7
 X 1 o”m−8となった[第3図(b)]。
Next, the silicon substrate is tilted with respect to the ion incident axis,
By implanting phosphorus (P) ions while rotating, n-
A type low concentration impurity region 26 is formed. Ion implantation was performed with the silicon substrate tilted by 30', the acceleration energy was 60 k eV, and the implantation amount was 9 x 1.
.. O12i, ons/cxK. At this time, the phosphorus concentration on the vertically etched side surface of the silicon substrate was 7.
X 1 o"m-8 [Fig. 3(b)].

熱酸化法にて、シリコン基板表面に35nmの酸化膜を
成長させた後、ドライエツチングの手法を用いて酸化膜
の異方性エツチングを行い、シリコン基板段差の側面部
にのみ熱酸化膜のエツチング残り27を形成した。この
エツチング残りが、最終的に低濃度ドレイン領域に接し
て埋め込まれる酸化膜となる〔第3図(C)〕。
After growing a 35 nm oxide film on the surface of the silicon substrate using the thermal oxidation method, the oxide film is anisotropically etched using a dry etching method, and the thermal oxide film is etched only on the side surfaces of the silicon substrate steps. The remaining 27 were formed. This etching residue will eventually become an oxide film buried in contact with the low concentration drain region [FIG. 3(C)].

続いて、酸化膜でおおわれていないシリコン基板の底面
部に選択的に、砒素(A s )を多量にドープした多
結晶シリコンを堆積させ、MOSトランジスタの高濃度
ドレインとなるn十型高濃度不純物領域28を形成した
。多結晶シリコンからシリコン基板中に拡散したAsは
埋め込み酸化膜27の下部へ回り込むため、第3図(a
)に示したシリコン基板のエツチング深さが、低濃度ド
レイン領域の実効的な長さとなる〔第3図(d)〕。
Next, polycrystalline silicon doped with a large amount of arsenic (A s ) is selectively deposited on the bottom surface of the silicon substrate that is not covered with an oxide film, and an n+ type high-concentration impurity, which will become the high-concentration drain of the MOS transistor, is deposited. A region 28 was formed. As diffused from polycrystalline silicon into the silicon substrate goes around to the bottom of the buried oxide film 27, as shown in FIG.
) is the effective length of the lightly doped drain region [FIG. 3(d)].

最後に、燐硅酸ガラス29による層間絶縁膜。Finally, an interlayer insulating film made of phosphosilicate glass 29.

コンタクトホール、アルミニウム電極配線30を形成し
て、製造工程を終了した〔第3図(e)〕。
The manufacturing process was completed by forming contact holes and aluminum electrode wiring 30 [FIG. 3(e)].

完成したゲート長0.8 μmの素子は、高濃度ドレイ
ン構造に対する電流駆動能力低下を15%におさえなが
ら、6.5vのホットキャリア耐圧(長期信頼性を満足
することが可能な最大動作電圧)を実現することができ
た。高濃度ドレイン構造のホットキャリア耐圧は3vで
あるから、1.5%の性能低下とひきかえしこ3.5V
の耐圧向ヒが得られたことになる。
The completed device with a gate length of 0.8 μm has a hot carrier withstand voltage of 6.5V (maximum operating voltage that can satisfy long-term reliability) while suppressing the current drive capability drop to 15% due to the highly doped drain structure. We were able to realize this. Since the hot carrier breakdown voltage of the high concentration drain structure is 3V, the performance decreases by 1.5% and the voltage is 3.5V.
This means that an increase in pressure resistance of 100% was obtained.

一方、ゲート長0.8  μmの従来技術■、1〕■〕
構造では、表面濃度IX1.018(1)−8の低濃度
ドレイン領域の平面的長さを0.4  μmにすること
により、6.5  Vのホットキャリア耐圧を得ること
ができたが、その反面、占有面積の増大が大きく、また
、高濃度ドレイン構造に対する電流駆動能力低下も30
%弱に達した。本発明の構造は、電流駆動能力の低下が
小さく、かつ低濃度ドレインの為の余分な面積を全く必
要としないという点で、0.8 μmレベル基本デバイ
スとして優れた特徴を有するものとなっている。
On the other hand, the conventional technology with a gate length of 0.8 μm■, 1〕■〕
In the structure, we were able to obtain a hot carrier breakdown voltage of 6.5 V by setting the planar length of the lightly doped drain region with a surface concentration of 1.018(1)-8 to 0.4 μm. On the other hand, the occupied area increases significantly, and the current driving ability for the highly doped drain structure also decreases.
It reached just under %. The structure of the present invention has excellent characteristics as a basic device at the 0.8 μm level in that the current drive capability is only slightly reduced and no extra area is required for a lightly doped drain. There is.

第4図は、高耐圧MOSトランジスタにおける電流駆動
能力とホットキャリア耐圧の関係を示したものである。
FIG. 4 shows the relationship between current drive capability and hot carrier breakdown voltage in a high voltage MOS transistor.

従来技術T、 D D構造と比較して、両者の間のトレ
ードオフが本発明によって改善されていることがわかる
It can be seen that the trade-off between the two is improved by the present invention compared to the prior art T and DD structures.

第5図は、低濃度ドレイン領域の長さが一定の元で、そ
の表面濃度とホットキャリア耐圧の関係を示したもので
ある。従来技術■、r)n構造では、表面濃度が101
7(7)′8のオーダになると固有の特性劣化モードが
顕著となり、ホットキャリア耐圧の低下が起ころ。これ
に対し、本発明では、表面濃度を下げれば下げる程(少
なくとも1×1017(7)−8までは)ホットキャリ
ア耐圧を高めることが可能であり、耐圧設計に大きな自
由度のあることがわかる。
FIG. 5 shows the relationship between the surface concentration and hot carrier breakdown voltage under the condition that the length of the lightly doped drain region is constant. Prior art ■, r) In the n structure, the surface concentration is 101
When it reaches the order of 7(7)'8, the inherent characteristic deterioration mode becomes noticeable and the hot carrier withstand voltage decreases. In contrast, in the present invention, the lower the surface concentration is, the higher the hot carrier breakdown voltage can be (at least up to 1×1017(7)-8), which shows that there is a large degree of freedom in breakdown voltage design. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来技術T、 T) n構造の宿命で
あった動作耐圧と電流駆動能力のトレードオツの関係を
改善することができ、かつ低濃度トレイン領域による素
子占有面積増大を避けることができる。このことは、サ
ブミクロンレベルMO8・■、STの高集積・高性能化
を実現しながら、5v電源動作を可能にする効果がある
According to the present invention, it is possible to improve the trade-off between operating breakdown voltage and current drive capability, which was the fate of the prior art T, T) n structure, and to avoid an increase in the device occupation area due to the low concentration train region. I can do it. This has the effect of making it possible to operate on a 5V power supply while achieving high integration and high performance of submicron level MO8, ■, and ST.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるMOSトランジスタ構造の断面図
、第2図は従来技術による丁、r)T’)構造の製造プ
ロセス工程を表わす断面図、第3図は本発明の一実施例
を示す製造プ[1ヤス工程断面図、第4図は本発明およ
び従来技術L I’) I)構造に才?ける電流yIt
動能力とホットキャリア耐圧の関係を示す特性図、第5
図は同じく本発明および従来技術T、 D n構造にお
いて低濃度ドレイン領域表面濃度とホットキャリア低圧
の関係を示す特性図である。 1・・・第1導電型半導体基板、2・・・ゲート酸化膜
、3・・・ゲート電極、4・・・埋込み酸化膜、5・・
・第2導電型低′a度不純物領域、6・・・第2導電型
高濃度不純物領域、11・・・p型半導体基板、12・
・・ゲート酸化膜、13・・・グー1〜電極、14・・
・n−型低濃度不純物領域、15・・・サイドウオール
スペーサ、16・・・n十型高濃度不純物領域、21・
・・p型半導体基板、22・・・ゲート酸化膜、23・
・・多結晶シリコンゲート電極、24・・・シリコン酸
化膜、25・・・シリコン窒化膜、26・・・n−型1
(′a度不純物領域、27・・・坪め込み酸化膜、28
・・・r1+型高濃度不純物領域、29・・・燐硅酸ガ
ラス膜、:30・・・アルミニ肩2図 (lン H+) n−製 イ氏B tt  p型+傅Aト寡T良 /4  不牝物碌;ベノ
2 サ”°−ト西含4ヒ謂   15 寸イドウ万−I
t/ス、へ′−す第3図
FIG. 1 is a cross-sectional view of a MOS transistor structure according to the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process steps of a prior art structure, and FIG. 3 is a cross-sectional view showing an embodiment of the present invention. The manufacturing process [1] Figure 4 shows the present invention and the prior art. current yIt
Characteristic diagram showing the relationship between dynamic capacity and hot carrier breakdown voltage, 5th
The figure is a characteristic diagram showing the relationship between the surface concentration of the low concentration drain region and the low pressure of hot carriers in the T and D n structures of the present invention and the prior art. DESCRIPTION OF SYMBOLS 1... First conductivity type semiconductor substrate, 2... Gate oxide film, 3... Gate electrode, 4... Buried oxide film, 5...
- Second conductivity type low-a degree impurity region, 6... Second conductivity type high concentration impurity region, 11... p-type semiconductor substrate, 12.
...Gate oxide film, 13...Goo 1~electrode, 14...
- n-type low concentration impurity region, 15... side wall spacer, 16... n-type high concentration impurity region, 21.
... p-type semiconductor substrate, 22 ... gate oxide film, 23.
...Polycrystalline silicon gate electrode, 24...Silicon oxide film, 25...Silicon nitride film, 26...N-type 1
('A degree impurity region, 27... recessed oxide film, 28
...r1+ type high concentration impurity region, 29...phosphosilicate glass film, :30...aluminum shoulder 2 figure (l-H+) n- made Yi B tt p type + Fu A to low T good /4 Infertile; Beno 2 Sa”°-to Nishi-in 4hi 15 Sun Idoman-I
t/s, he'-s Figure 3

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板上のチャネル領域と、第2導
電型半導体領域から成る第1のドレイン領域の間に、該
第1導電型半導体基板よりも抵抗率が低く、かつ第1の
ドレイン領域よりも抵抗率が高い、第2導電型半導体領
域から成る第2のドレイン領域を有する絶縁ゲート型電
界効果トランジスタにおいて、第2のドレイン領域が該
第1導電型半導体基板表面から基板深さ方向に埋め込ま
れ、基板内部で第1のドレイン領域に接続されているこ
とを特徴とする半導体装置。 2、半導体基板上にゲート絶縁膜を設ける工程、該ゲー
ト絶縁膜上にゲート電極を設ける工程、該ゲート電極上
に耐エッチング膜を設ける工程、該耐エッチング膜をマ
スクとして上記半導体基板をエッチングする工程、 該エッチングされた表面全体に不純物を導入する工程、 上記不純物が導入された面を熱酸化する工程、該熱酸化
により設けられた酸化膜の側壁部を残してエッチングす
る工程、 上記半導体基板上に導電率の高い半導体を積層する工程
とを有することを特徴とする半導体装置の製造方法。
[Claims] 1. Between the channel region on the first conductivity type semiconductor substrate and the first drain region consisting of the second conductivity type semiconductor region, the resistivity is lower than that of the first conductivity type semiconductor substrate. and an insulated gate field effect transistor having a second drain region made of a second conductivity type semiconductor region having a higher resistivity than the first drain region, wherein the second drain region is formed in the first conductivity type semiconductor substrate. A semiconductor device characterized in that the semiconductor device is buried in the depth direction of the substrate from the surface and connected to a first drain region inside the substrate. 2. Providing a gate insulating film on the semiconductor substrate, providing a gate electrode on the gate insulating film, providing an etching-resistant film on the gate electrode, and etching the semiconductor substrate using the etching-resistant film as a mask. a step of introducing an impurity into the entire etched surface; a step of thermally oxidizing the surface into which the impurity has been introduced; a step of etching leaving a side wall portion of the oxide film formed by the thermal oxidation; 1. A method for manufacturing a semiconductor device, comprising the step of stacking a highly conductive semiconductor thereon.
JP8802986A 1986-04-18 1986-04-18 Semiconductor device and manufacture thereof Pending JPS62245673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8802986A JPS62245673A (en) 1986-04-18 1986-04-18 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8802986A JPS62245673A (en) 1986-04-18 1986-04-18 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62245673A true JPS62245673A (en) 1987-10-26

Family

ID=13931396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8802986A Pending JPS62245673A (en) 1986-04-18 1986-04-18 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62245673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156976A (en) * 1989-11-15 1991-07-04 Nec Corp Semiconductor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156976A (en) * 1989-11-15 1991-07-04 Nec Corp Semiconductor and manufacture thereof

Similar Documents

Publication Publication Date Title
US5705840A (en) Field effect transistor with recessed buried source and drain regions
US7217612B2 (en) Manufacturing method for a semiconductor device with reduced local current
JPH0294477A (en) Semiconductor device and manufacture thereof
JP2005203770A (en) Transistor of semiconductor device and method for manufacturing the same
JPH05183159A (en) Semiconductor device and fabrication thereof
KR0139773B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH02180074A (en) Offset type field effect transistor and insulation gate type bipolar transistor
JPH0478025B2 (en)
JP2005116592A (en) Field effect transistor
JP2519608B2 (en) Semiconductor device and manufacturing method thereof
JPS62245673A (en) Semiconductor device and manufacture thereof
JP2633104B2 (en) Method for manufacturing semiconductor device
JPH05299648A (en) Mis field effect transistor
JPS63217664A (en) Misfet and manufacture thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2765132B2 (en) Manufacturing method of vertical field effect transistor
JP2006332232A (en) Semiconductor device and manufacturing method thereof
US6248620B1 (en) Method for fabricating a field effect-controlled semiconductor component
JPH07302908A (en) Semiconductor device and manufacture thereof
JPS5868979A (en) Semiconductor device
JPS62274776A (en) Semiconductor device
JPH0722616A (en) Mos semiconductor device and its manufacture
JPH053135B2 (en)
JPH0697685B2 (en) Method for manufacturing semiconductor device
JPS6184051A (en) Semiconductor element