JPH03156976A - Semiconductor and manufacture thereof - Google Patents

Semiconductor and manufacture thereof

Info

Publication number
JPH03156976A
JPH03156976A JP29668789A JP29668789A JPH03156976A JP H03156976 A JPH03156976 A JP H03156976A JP 29668789 A JP29668789 A JP 29668789A JP 29668789 A JP29668789 A JP 29668789A JP H03156976 A JPH03156976 A JP H03156976A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
concentration impurity
diffusion region
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29668789A
Other languages
Japanese (ja)
Other versions
JP2705254B2 (en
Inventor
Ichiro Honma
一郎 本間
Nobuhiro Endo
遠藤 伸裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1296687A priority Critical patent/JP2705254B2/en
Publication of JPH03156976A publication Critical patent/JPH03156976A/en
Application granted granted Critical
Publication of JP2705254B2 publication Critical patent/JP2705254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make a smaller device by providing insulator along that part of a lightly-doped diffused region which rises along the sidewall of a gate electrode to separate the diffused region 8 from a heavily-doped diffused region. CONSTITUTION:An insulator 7 is provided along that part of a lightly-doped diffused region 8 which extends upward along the side of a gate electrode 6, so that the diffused region 8 is separated from a heavily-doped diffused region 9. Since the conductive regions in a semiconductor device, i.e., the doped regions 8 and 9, are separated in part of their interface by the insulator 7, the high electric field in the drain region is relaxed. In addition, the space for the insulator 7 is minimized, and thus the device is made smaller.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特に半導体素子内の導電性領域の
構造とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a structure of a conductive region in a semiconductor element and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、シリコン半導体集積回路の高集積化や高速化に伴
ってゲート電極におけるゲート長の短縮が盛んに行われ
ているが、ゲート長が短縮するに従って半導体素子にL
DD(Lightly Doped Drain)構造
が用いられるようになってきた。例えば、斉藤和之等に
より1ゞ新構造短チャネルMO3FET”電子通信学会
総合全国大会i+ 1978. pp、2〜10におい
て発表された。第2図はLDD構造の半導体素子を示す
略図である。図において、11はP型シリコン基板、1
2は素子分離絶縁膜、13はゲート絶縁膜、14は閾値
制御不純物、15はゲート電極、16は低濃度不純物拡
散領域、17はサイドスペーサー(絶縁膜)、18は高
濃度不純物拡散領域である。
In recent years, with the increasing integration and speed of silicon semiconductor integrated circuits, the gate length of gate electrodes has been frequently shortened.
A DD (Lightly Doped Drain) structure has come into use. For example, Kazuyuki Saito et al. presented 1゜New Structure Short Channel MO3FET at IEICE General Conference i+ 1978.pp, 2-10. Figure 2 is a schematic diagram showing a semiconductor element with an LDD structure. , 11 is a P-type silicon substrate, 1
2 is an element isolation insulating film, 13 is a gate insulating film, 14 is a threshold control impurity, 15 is a gate electrode, 16 is a low concentration impurity diffusion region, 17 is a side spacer (insulating film), and 18 is a high concentration impurity diffusion region. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

■、DD槽構造半導体素子を製造する際、低濃度不純物
拡散領域を形成するため絶縁性物質で形成されるサイド
スペーサーが必要であるが、従来は第2図に示すように
、サイドスペーサー17はシリコン基板11の表面に形
成しているため、サイドスペーサー17は低濃度不純物
拡散領域16の横l」に相当する幅のものが必要となり
、その設置スペースが広くなってしまい、サイドスペー
サーが素子の微細化の妨げとなる。
(2) When manufacturing a semiconductor device with a DD tank structure, side spacers made of an insulating material are required to form a low concentration impurity diffusion region. Conventionally, as shown in FIG. 2, side spacers 17 are Since it is formed on the surface of the silicon substrate 11, the side spacer 17 needs to have a width equivalent to 1" horizontally of the low concentration impurity diffusion region 16, and the installation space becomes large. This impedes miniaturization.

本発明の目的は」1記問題点を解消した半導体装置及び
その製造方法を提供することにある。
An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that solves the problem mentioned above.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の半導体装置において
は、導電性領域が高濃度不純物拡散領域とゲート電極近
傍の低濃度不純物拡散領域とによって構成される半導体
装置において、前記高濃度不純物拡散領域と前記低濃度
不純物拡散領域とを前記ゲート電極より隔絶する絶縁膜
を、前記ゲート電極の側壁に沿って立上る前記拡散領域
の界面に沿わせて有するものである。
To achieve the above object, in a semiconductor device of the present invention, in a semiconductor device in which a conductive region is constituted by a high concentration impurity diffusion region and a low concentration impurity diffusion region near the gate electrode, the high concentration impurity diffusion region An insulating film separating the low concentration impurity diffusion region from the gate electrode is provided along an interface of the diffusion region rising along a sidewall of the gate electrode.

また、本発明の半導体装置は、素子分離絶縁膜間に位置
する半導体基板の素子形成領域表面」二にゲート絶縁膜
を形成する工程と、前記ゲート絶縁膜上にゲート電極を
形成する工程と、前記ゲート電極をマスクとしてエツチ
ング加工することにより、ゲート電極部分を除いた半導
体基板の素子形成領域表面を所定深さ位置まで掘下げる
工程と、前記ゲート電極の側壁を含み、前記エツチング
加工によるエツチング側壁に絶縁膜を形成する工程と、
前記絶縁膜に沿う半導体基板の素子形成領域表面にイオ
ン注入による低濃度不純物拡散領域の形成を行う工程と
、エツチング加工により、ゲート電極の側壁及び半導体
基板の掘下げられた領域3 の側壁にのみ前記絶縁膜を残す工程と、前記半導体基板
の掘下げられた領域内で単結晶の結晶成長を行い、その
単結晶にイオン注入して高濃度不純物拡散領域を形成す
る工程とを含む製造方法によって得られる。
Further, the semiconductor device of the present invention includes a step of forming a gate insulating film on the surface of the element formation region of the semiconductor substrate located between the element isolation insulating films, and a step of forming a gate electrode on the gate insulating film. etching the surface of the element formation region of the semiconductor substrate excluding the gate electrode portion by etching the gate electrode as a mask; etching the etched sidewalls including the sidewalls of the gate electrode; a step of forming an insulating film on the
A step of forming a low concentration impurity diffusion region by ion implantation on the surface of the element formation region of the semiconductor substrate along the insulating film and an etching process are performed to form a low concentration impurity diffusion region only on the side wall of the gate electrode and the side wall of the dug region 3 of the semiconductor substrate. Obtained by a manufacturing method including a step of leaving an insulating film, and a step of growing a single crystal in the dug region of the semiconductor substrate and implanting ions into the single crystal to form a high concentration impurity diffusion region. .

〔作用〕[Effect]

半導体素子内の導電性領域を形成する高濃度不純物拡散
領域と低濃度不純物拡散領域の界面一部に絶縁膜を有す
ることにより、ドレイン部での高電界が緩和されホット
エレクトロン問題が解消し、LDD構造の半導体素子と
同等の特性が得られ、しかも、前記絶縁膜のスペースを
可及的極小にすることが可能となり、素子の微細化が図
れるという利点がある。
By having an insulating film on a part of the interface between the high concentration impurity diffusion region and the low concentration impurity diffusion region that form the conductive region in the semiconductor element, the high electric field in the drain region is alleviated, the hot electron problem is solved, and the LDD This structure has the advantage that characteristics equivalent to those of a semiconductor element can be obtained, and the space of the insulating film can be made as small as possible, allowing miniaturization of the element.

〔実施例] 以下、本発明の一実施例を図面を用いて説明する。〔Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention.

図において、本発明に係る半導体装置において− は、素子分離絶縁膜2,2に囲まれたP型シリコン基板
lの素子形成領域表面にゲート絶縁膜3を介してゲート
電極6が形成してあり、ゲート絶縁膜3に連らなる絶縁
膜7がゲート電極6の側壁を覆うとともに、その下端が
P型シリコン基板1の表面凹部1a内に延設しである。
In the figure, in the semiconductor device according to the present invention, a gate electrode 6 is formed on the surface of an element forming region of a P-type silicon substrate l surrounded by element isolation insulating films 2, 2, with a gate insulating film 3 interposed therebetween. An insulating film 7 continuous to the gate insulating film 3 covers the side walls of the gate electrode 6, and its lower end extends into the surface recess 1a of the P-type silicon substrate 1.

さらに、基板lの凹部1aの底部及び絶縁膜7の立」ユ
リ部内側に沿って低濃度不純物拡散領域8が形成され、
低濃度不純物拡散領域8及び絶縁膜7並びに素子分離絶
縁膜2によって取囲まれた基板lの凹部1a内に高濃度
不純物拡散領域9が形成しである。4はパンチスルー防
止不純物、5は閾値制御不純物である。
Further, a low concentration impurity diffusion region 8 is formed along the bottom of the recess 1a of the substrate l and the inside of the vertical ridge of the insulating film 7,
A high concentration impurity diffusion region 9 is formed in the recess 1a of the substrate 1 surrounded by the low concentration impurity diffusion region 8, the insulating film 7, and the element isolation insulating film 2. 4 is a punch-through prevention impurity, and 5 is a threshold control impurity.

この構成により、本発明は高濃度不純物拡散領域9と低
濃度不純物拡散領域8をゲート電ff16より隔絶する
絶縁膜7を、ゲート電極6の側壁に沿って立」二る両拡
散領域8,9の界面に沿って有することとなる。したが
って、本発明によれば、シリコン基板lの表面のうちゲ
ート電極6を除いた部分に形成した凹部1aの立上り側
壁に沿って絶縁膜7を配置して低濃度不純物拡散領域8
を形成するに必要な長さを」二下方向で確保することが
できることとなり、該絶縁膜7の横方向寸法を可及的極
小として素子の微細化が可能となる。
With this configuration, the present invention allows the insulating film 7 that isolates the high-concentration impurity diffusion region 9 and the low-concentration impurity diffusion region 8 from the gate electrode ff16 to form both diffusion regions 8, 9 that stand along the sidewalls of the gate electrode 6. along the interface. Therefore, according to the present invention, the insulating film 7 is disposed along the rising sidewall of the recess 1a formed on the surface of the silicon substrate 1 excluding the gate electrode 6, and the low concentration impurity diffusion region 8
The length necessary for forming the insulating film 7 can be secured in the two downward directions, and the lateral dimension of the insulating film 7 can be minimized as much as possible, making it possible to miniaturize the element.

第3図(a)、(ロ)、[F])、 (d)は本発明の
半導体装置の製造方法を工程順に示した模式図である。
FIGS. 3(a), (b), [F]), and (d) are schematic diagrams showing the method for manufacturing a semiconductor device of the present invention in order of steps.

第3図(a)において、P型シリコン基板21上にシリ
コン酸化膜からなる素子分離絶縁膜22を形成し、続い
て基板21の素子形成領域表面にゲート絶縁膜23を形
成する。次に、イオン注入法を用いてパンチスルー防止
不純物24としてボロンを注入する。続いて、閾値制御
不純物25としてイオン注入法を用いてボロンの注入を
行う。次に、燐を熱拡散法により拡散したポリシリコン
からなるゲート電極26をゲート絶縁膜23上にドライ
エツチング法を用いて加工形成する。次に、第3図(ハ
)において、導電性領域となるシリコン基板21の素子
形成領域表面を破線27より28の矢印まで塩素のRI
E技術を用いて1500人掘下げる。続いて第3図(c
)において、導電性領域の高濃度不純物拡散領域と低濃
度不純物拡散領域を隔絶する絶縁膜29としてCVD法
を用いてシリコン窒化膜を基板21の掘下げられた凹部
21aの底部及び立上り側壁並びにゲート電極24の側
壁上に150人堆積形成し、続いてシリコン基板21の
表面に45度の角度から燐のイオン注入を行い低濃度不
純物拡散領域30を絶縁膜29に沿って形成する。次に
、第3図(イ)において、CF4ガスを用いた[E技術
を用い前記堆積したシリコン窒化膜30の全面エツチン
グを行いゲート電極側壁及び塩素のドライエツチング法
を用いて掘下げた領域の側壁のみにシリコン窒化膜29
を残す。続いて5it(4とHCQを用いたシリコンの
選択エピタキシャル法を用いて高濃度不純物拡散領域と
なる領域に31の矢印まで1500人のシリコンの結晶
成長を行い、続いてイオン注入法を用いて結晶成長した
単結晶シリコン31に燐のイオン注入32を行い高濃度
不純物拡散領域33を形成することにより第1図の構造
を得る。
In FIG. 3(a), an element isolation insulating film 22 made of a silicon oxide film is formed on a P-type silicon substrate 21, and then a gate insulating film 23 is formed on the surface of the element formation region of the substrate 21. Next, boron is implanted as a punch-through prevention impurity 24 using an ion implantation method. Subsequently, boron is implanted as a threshold control impurity 25 using an ion implantation method. Next, a gate electrode 26 made of polysilicon in which phosphorus is diffused by a thermal diffusion method is formed on the gate insulating film 23 by using a dry etching method. Next, in FIG. 3(c), the surface of the element formation region of the silicon substrate 21, which will become a conductive region, is treated with chlorine RI from the broken line 27 to the arrow 28.
Use E technology to dig down to 1,500 people. Next, Figure 3 (c
), a silicon nitride film is deposited using the CVD method as an insulating film 29 separating the high concentration impurity diffusion region and the low concentration impurity diffusion region of the conductive region, on the bottom and rising side walls of the recess 21a of the substrate 21, and on the gate electrode. Then, phosphorus ions are implanted into the surface of the silicon substrate 21 at an angle of 45 degrees to form a low concentration impurity diffusion region 30 along the insulating film 29. Next, in FIG. 3(A), the entire surface of the deposited silicon nitride film 30 is etched using the [E technique using CF4 gas, and the side walls of the gate electrode and the side walls of the dug region are etched using a chlorine dry etching method. Only silicon nitride film 29
leave. Next, a silicon selective epitaxial method using 5IT (4 and HCQ) was used to grow 1,500 silicon crystals up to the arrow 31 in the region that would become the high concentration impurity diffusion region, and then ion implantation was used to grow the crystal. The structure shown in FIG. 1 is obtained by performing phosphorus ion implantation 32 into the grown single crystal silicon 31 to form a high concentration impurity diffusion region 33.

以上実施例では、ゲート電極は燐を熱拡散したポリシリ
コンを用いたが、ゲート電極として用いることができる
低抵抗材料であれば燐拡散を行ったポリシリコンに限ら
ず、例えば高融点金属や高7 融点金属とのポリサイド構造でも構わない。また、導電
性領域となる領域を塩素のRIE技術を用いて掘下げた
が、異方的なエツチング形状が得られれば塩素のRIE
に限らず、例えば臭素を用いたRIEや塩素ガスを用い
たECRによるエツチングが有望である。また、低濃度
不純物拡散領域を形成する際、燐の斜めイオン注入を用
いて不純物の導入を行っているが、側壁に不純物が導入
されれば斜めイオン注入に限らず、例えばPSG (燐
ガラス)を高濃度不純物拡散領域と低濃度不純物拡散領
域を隔絶する絶縁膜29に用い熱処理を行えば燐の斜め
イオン注入を行ったときと同等の効果が得られる。
In the above embodiments, polysilicon with thermally diffused phosphorus was used for the gate electrode, but polysilicon with phosphorus diffused therein may be used as long as it is a low resistance material that can be used as the gate electrode, such as a high melting point metal or a high 7 A polycide structure with a melting point metal is also acceptable. In addition, we used chlorine RIE technology to dig down the area that would become the conductive region, but if an anisotropic etching shape could be obtained, chlorine RIE
For example, etching by RIE using bromine or ECR using chlorine gas is promising. In addition, when forming a low concentration impurity diffusion region, impurities are introduced using oblique ion implantation of phosphorus, but if impurities are introduced into the sidewall, oblique ion implantation is not limited to, for example, PSG (phosphorus glass). If this is used for the insulating film 29 separating the high-concentration impurity diffusion region and the low-concentration impurity diffusion region and heat treatment is performed, an effect equivalent to that obtained by performing oblique ion implantation of phosphorus can be obtained.

さらに、低濃度不純物拡散領域の不純物は燐を用いてい
るが、砒素を用いても実施できる。また、高濃度不純物
拡散領域の形成にシリコンの選択エピタキシャル成長を
行った後、燐のイオン注入を行い形成しているが、結晶
成長を行いながら不純物を導入するドープトエピタキシ
ャル成長も有望である。
Furthermore, although phosphorus is used as the impurity in the low concentration impurity diffusion region, arsenic may also be used. In addition, although high concentration impurity diffusion regions are formed by selective epitaxial growth of silicon and then ion implantation of phosphorus, doped epitaxial growth, in which impurities are introduced while crystal growth is being performed, is also promising.

〔発明の効果] 8− 以上のように本発明によれば、ゲート長が短縮されるに
従い発生した半導体素子特性の劣化を回復することがで
き信頼性を向上できる。また、半導体素子の微細化が図
れる利点がある。
[Effects of the Invention] 8- As described above, according to the present invention, it is possible to recover from the deterioration of semiconductor device characteristics that occurs as the gate length is shortened, and to improve reliability. Further, there is an advantage that semiconductor elements can be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における半導体装置の構造を示す模式的
断面図、第2図は従来例を示す模式図、第3図(a)、
■、 (c)、 (d)は本発明の製造工程を説明する
模式図である。 1、II、21・・・P型シリコン基板2.12.22
・・・素子分離絶縁膜 3.13.23・・・ゲート絶縁膜 4.24・・・パンチスルー防止不純物5.14.25
・・・閾値制御不純物 6.15.26・・・ゲート電極 7.29・・・高濃度不純物拡散領域と低濃度不純物拡
散領域を隔絶する絶縁膜
FIG. 1 is a schematic cross-sectional view showing the structure of a semiconductor device according to the present invention, FIG. 2 is a schematic view showing a conventional example, FIG. 3(a),
(2), (c), and (d) are schematic diagrams illustrating the manufacturing process of the present invention. 1, II, 21...P-type silicon substrate 2.12.22
...Element isolation insulating film 3.13.23...Gate insulating film 4.24...Punch-through prevention impurity 5.14.25
...Threshold control impurity 6.15.26...Gate electrode 7.29...Insulating film separating the high concentration impurity diffusion region and the low concentration impurity diffusion region

Claims (2)

【特許請求の範囲】[Claims] (1)導電性領域が高濃度不純物拡散領域とゲート電極
近傍の低濃度不純物拡散領域とによって構成される半導
体装置において、前記高濃度不純物拡散領域と前記低濃
度不純物拡散領域とを前記ゲート電極より隔絶する絶縁
膜を、前記ゲート電極の側壁に沿って立上る前記拡散領
域の界面に沿わせて有することを特徴とする半導体装置
(1) In a semiconductor device in which the conductive region is composed of a high concentration impurity diffusion region and a low concentration impurity diffusion region near the gate electrode, the high concentration impurity diffusion region and the low concentration impurity diffusion region are separated from the gate electrode. A semiconductor device comprising: an insulating film extending along an interface of the diffusion region rising along a sidewall of the gate electrode.
(2)素子分離絶縁膜間に位置する半導体基板の素子形
成領域表面上にゲート絶縁膜を形成する工程と、前記ゲ
ート絶縁膜上にゲート電極を形成する工程と、前記ゲー
ト電極をマスクとしてエッチング加工することにより、
ゲート電極部分を除いた半導体基板の素子形成領域表面
を所定深さ位置まで掘下げる工程と、前記ゲート電極の
側壁を含み、前記エッチング加工によるエッチング側壁
に絶縁膜を形成する工程と、前記絶縁膜に沿う半導体基
板の素子形成領域表面にイオン注入による低濃度不純物
拡散領域の形成を行う工程と、エッチング加工により、
ゲート電極の側壁及び半導体基板の掘下げられた領域の
側壁にのみ前記絶縁膜を残す工程と、前記半導体基板の
掘下げられた領域内で単結晶の結晶成長を行い、その単
結晶にイオン注入して高濃度不純物拡散領域を形成する
工程とを含むことを特徴とする半導体装置の製造方法。
(2) Forming a gate insulating film on the surface of the element formation region of the semiconductor substrate located between the element isolation insulating films, forming a gate electrode on the gate insulating film, and etching using the gate electrode as a mask. By processing,
a step of digging down the surface of the element formation region of the semiconductor substrate excluding the gate electrode portion to a predetermined depth; a step of forming an insulating film on the side wall etched by the etching process including the side wall of the gate electrode; and a step of forming an insulating film on the etched side wall by the etching process. By forming a low concentration impurity diffusion region by ion implantation on the surface of the element formation region of the semiconductor substrate along the
A step of leaving the insulating film only on the sidewalls of the gate electrode and the sidewalls of the sunken region of the semiconductor substrate, growing a single crystal within the sunken region of the semiconductor substrate, and implanting ions into the single crystal. A method of manufacturing a semiconductor device, comprising the step of forming a high concentration impurity diffusion region.
JP1296687A 1989-11-15 1989-11-15 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2705254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296687A JP2705254B2 (en) 1989-11-15 1989-11-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296687A JP2705254B2 (en) 1989-11-15 1989-11-15 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03156976A true JPH03156976A (en) 1991-07-04
JP2705254B2 JP2705254B2 (en) 1998-01-28

Family

ID=17836782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296687A Expired - Lifetime JP2705254B2 (en) 1989-11-15 1989-11-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2705254B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598021A (en) * 1995-01-18 1997-01-28 Lsi Logic Corporation MOS structure with hot carrier reduction
US5675164A (en) * 1995-06-07 1997-10-07 International Business Machines Corporation High performance multi-mesa field effect transistor
US5828103A (en) * 1994-08-29 1998-10-27 United Microelectronicws Corp. Recessed lightly doped drain (LDD) for higher performance MOSFET
JP2003526943A (en) * 2000-03-13 2003-09-09 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for forming source / drain regions having deep junctions
US7687854B2 (en) * 2003-08-19 2010-03-30 Magnachip Semiconductor, Ltd. Transistor in a semiconductor substrate having high-concentration source and drain region formed at the bottom of a trench adjacent to the gate electrode
CN105027291A (en) * 2013-03-29 2015-11-04 英特尔公司 Transistor architecture having extended recessed spacer and source/drain regions and method of making same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245673A (en) * 1986-04-18 1987-10-26 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6373770A (en) * 1986-09-16 1988-04-04 Fuji Photo Film Co Ltd Picture inversion method
JPS6473770A (en) * 1987-09-16 1989-03-20 Fujitsu Ltd Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245673A (en) * 1986-04-18 1987-10-26 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6373770A (en) * 1986-09-16 1988-04-04 Fuji Photo Film Co Ltd Picture inversion method
JPS6473770A (en) * 1987-09-16 1989-03-20 Fujitsu Ltd Semiconductor device and manufacture thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828103A (en) * 1994-08-29 1998-10-27 United Microelectronicws Corp. Recessed lightly doped drain (LDD) for higher performance MOSFET
US5598021A (en) * 1995-01-18 1997-01-28 Lsi Logic Corporation MOS structure with hot carrier reduction
US5663083A (en) * 1995-01-18 1997-09-02 Lsi Logic Corporation Process for making improved MOS structure with hot carrier reduction
US5675164A (en) * 1995-06-07 1997-10-07 International Business Machines Corporation High performance multi-mesa field effect transistor
JP2003526943A (en) * 2000-03-13 2003-09-09 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for forming source / drain regions having deep junctions
JP4889901B2 (en) * 2000-03-13 2012-03-07 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for forming source / drain regions having deep junctions
US7919380B2 (en) 2003-08-19 2011-04-05 Magnachip Semiconductor, Ltd. Method of manufacturing a transistor in semiconductor device having a gate electrode located between the trenches formed in low-concentration regions of the source and drain regions including high-concentration regions formed at the bottom of the trenches
US7687854B2 (en) * 2003-08-19 2010-03-30 Magnachip Semiconductor, Ltd. Transistor in a semiconductor substrate having high-concentration source and drain region formed at the bottom of a trench adjacent to the gate electrode
CN105027291A (en) * 2013-03-29 2015-11-04 英特尔公司 Transistor architecture having extended recessed spacer and source/drain regions and method of making same
KR20150138166A (en) * 2013-03-29 2015-12-09 인텔 코포레이션 Transistor architecture having extended recessed spacer and source/drain regions and method of making same
JP2016514905A (en) * 2013-03-29 2016-05-23 インテル・コーポレーション Transistor architecture having extended recess spacer and multiple source / drain regions and method of manufacturing the same
US9786783B2 (en) 2013-03-29 2017-10-10 Intel Corporation Transistor architecture having extended recessed spacer and source/drain regions and method of making same
GB2527214B (en) * 2013-03-29 2020-06-17 Intel Corp Transistor Architecture having extended recessed spacer and source/drain regions and method of making same

Also Published As

Publication number Publication date
JP2705254B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US6498071B2 (en) Manufacture of trench-gate semiconductor devices
TWI392086B (en) Enhanced resurf hvpmos device with stacked hetero-doping rim and gradual drift region
KR100215163B1 (en) Mos field effect transistor with improved pocket regions for supressing any short channel effects and method for manufacturing the same
KR101152451B1 (en) Lateral semiconductor device using trench structure and method of manufacturing the same
US6764910B2 (en) Structure of semiconductor device and method for manufacturing the same
JPH0629532A (en) Mosfet and its manufacture
JPH10270709A (en) Ldmos transistor device and manufacture thereof
JP2005510088A (en) Trench metal oxide semiconductor field effect transistor device with polycrystalline silicon source contact structure
JP2002541660A (en) Method for manufacturing semiconductor device
JPH09213934A (en) Power semiconductor device and manufacturing method thereof
US5397728A (en) Method for making vertical MOS having a deep source region near the channel
US4826782A (en) Method of fabricating aLDD field-effect transistor
JP3854136B2 (en) Semiconductor device transistor and method of manufacturing the same
US4994881A (en) Bipolar transistor
JPH11214529A (en) Integration of mos device and semiconductor chip
JP2005536868A (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device with low parasitic resistance
JPH03156976A (en) Semiconductor and manufacture thereof
US6197640B1 (en) Semiconductor component and method of manufacture
JPH06216148A (en) Field effect transistor and manufacture thereof
JP3781087B2 (en) High speed bipolar transistor and manufacturing method thereof
KR100242379B1 (en) Vertical channel mosfet and manufacturing method thereof
JPH0923000A (en) Manufacture of semiconductor device
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
KR100279745B1 (en) Power element having trench gate structure and manufacturing method thereof
JPH07273319A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13