JPS6224565A - Gas diffusion electrode of fuel cell and the like - Google Patents
Gas diffusion electrode of fuel cell and the likeInfo
- Publication number
- JPS6224565A JPS6224565A JP60162614A JP16261485A JPS6224565A JP S6224565 A JPS6224565 A JP S6224565A JP 60162614 A JP60162614 A JP 60162614A JP 16261485 A JP16261485 A JP 16261485A JP S6224565 A JPS6224565 A JP S6224565A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- conductive particles
- electrode
- gas diffusion
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、水素−酸素燃料電池用正極、負極、工業電解
用電極、空気−亜鉛電池の電極、ガルバニック方式ガス
センサの構成電極、電気分解用ガス発生極等のガス拡散
電極に関するもので、特にそのガス拡散電極の触媒層の
構造の改良に係る。Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to positive electrodes and negative electrodes for hydrogen-oxygen fuel cells, electrodes for industrial electrolysis, electrodes for air-zinc batteries, constituent electrodes for galvanic gas sensors, and electrodes for electrolysis. This invention relates to gas diffusion electrodes such as gas generation electrodes, and particularly to improvements in the structure of catalyst layers of gas diffusion electrodes.
(従来技術とその問題点)
燃料電池等は、各電極において燃料等と酸化剤等との反
応を促進するために触媒を必要とする。(Prior art and its problems) Fuel cells and the like require a catalyst to promote the reaction between fuel and oxidizer at each electrode.
しかし、反応ガスの電気化学的反応は、電極における電
解質と反応ガスとが接触する点、すなわち三相界面を形
成する領域におけ゛る触媒金属の存在のもとに起る。し
たがって、それ以外の部分に存在する触媒金属は有効に
利用されずに浪費されることになる。燃料電池等におい
て一般的に用いられている触媒金属は高価な貴金属で、
とくに白金や白金−ロジウム、白金−酸化ルテニウム、
白金−スズ等の白金族金属であり、したがって、できる
限りその浪費を少なくし、且つ良好な電極性能を得るこ
とが望ましい。電極性能を向上させるためには、電解質
と反応ガスの界面領域を大きくすることか必要となる。However, the electrochemical reaction of the reactant gas takes place in the presence of the catalytic metal at the point of contact between the electrolyte and the reactant gas at the electrode, ie, in the region forming the three-phase interface. Therefore, the catalyst metal present in other parts is not effectively utilized and is wasted. Catalytic metals commonly used in fuel cells, etc. are expensive precious metals.
In particular, platinum, platinum-rhodium, platinum-ruthenium oxide,
It is a platinum group metal such as platinum-tin, and therefore it is desirable to waste as little as possible and obtain good electrode performance. In order to improve electrode performance, it is necessary to increase the interface area between the electrolyte and the reactant gas.
この界面を大きくするには、反応ガスだけが通過でき、
電解液を滲み込ませない撥水性のガス拡散層と電解液が
存在できる親水性の触媒層を分離することにより大きな
界面が得られることが従来から知られている。このよう
な性質のガス拡散層としては、たとえば、ポリエチレン
、ポリプロピレン、ポリテトラフルオルエチレン、合成
ゴムなどをもちいることができる。またこのような性質
を有する触媒層としては、触媒を担持させた導電性粒子
をtΩ水性樹脂であるポリテトラフルオルエチレンで一
様に結合したものが一般的であるが、この(θ水性樹脂
を上記ガス拡散層材料におきかえることもできる。また
この導電性粒子としては、たとえば、カーボンブラック
(一般的には高温で水素ガス処理をしたものが用いられ
るが、高温で一酸化炭素またはフッ素含有ガスで処理し
たものでもよい。)、グラファイト、人造石墨、活性炭
、炭素繊維を単独であるいは複数で用いることができる
。To make this interface large, only the reactant gas can pass through,
It has been known that a large interface can be obtained by separating a water-repellent gas diffusion layer that does not allow the electrolyte to permeate and a hydrophilic catalyst layer that allows the electrolyte to exist. As a gas diffusion layer having such properties, for example, polyethylene, polypropylene, polytetrafluoroethylene, synthetic rubber, etc. can be used. In addition, a catalyst layer having such properties is generally made by uniformly bonding conductive particles carrying a catalyst with polytetrafluoroethylene, which is a tΩ water-based resin; can be replaced with the above-mentioned gas diffusion layer material.Also, as the conductive particles, for example, carbon black (generally treated with hydrogen gas at high temperature is used, but carbon monoxide or fluorine-containing material is used at high temperature). ), graphite, artificial graphite, activated carbon, and carbon fiber may be used alone or in combination.
なお、アルミナ、シリカ等の無機酸化物の表面を炭化さ
せたものでも良い。Note that the surface of an inorganic oxide such as alumina or silica may be carbonized.
斯かる構造の↑Ω水性ガス拡散電極は、触媒層内で、ミ
クロな1Ω水性部分がガス供給通路となり、親水性部分
には電解液が滲み込み電極反応が起る部分となる。とこ
ろで、この構造で、電極特性をより一層向上させる為に
は、かなりの↑分水性部分が必要である。しかし、触媒
が一様に電極内に分布している為、前記三相界面領域の
親水性部分に存在する触媒は通常20〜30%で、最も
多くて75%であり、従って反応にあずからない無駄に
使用される触媒が多かった。このような触媒の浪費を改
善する方法として、特開昭51−86734号公報には
、電導性の粒子からなり疎水的に結合された基質により
支持された電極のポスト力クリゼーション(電極構造体
が形成された後、電極構造体内に触媒を担持される技術
)により良好な電極が得られることが開示されている。In the ↑Ω water gas diffusion electrode having such a structure, the micro 1Ω aqueous portion in the catalyst layer serves as a gas supply passage, and the hydrophilic portion becomes a portion where the electrolyte permeates and an electrode reaction occurs. By the way, in order to further improve the electrode characteristics with this structure, a considerable amount of ↑water-separating portion is required. However, since the catalyst is uniformly distributed within the electrode, the amount of catalyst present in the hydrophilic portion of the three-phase interface region is usually 20-30%, and at most 75%, so that it is not involved in the reaction. There was a lot of catalyst that was not wasted. As a method to improve this waste of catalyst, Japanese Patent Application Laid-Open No. 51-86734 describes a post-force crease (electrode structure) of an electrode supported by a hydrophobically bonded substrate made of conductive particles. It is disclosed that a good electrode can be obtained by a technique in which a catalyst is supported within the electrode structure after the formation of the catalyst.
しかしながらこの方法も、三相界面領域以外の部分に存
在する触媒は有効に利用されず、その浪費は避けられな
い。However, in this method as well, the catalyst present in areas other than the three-phase interface region is not effectively utilized, and its waste is unavoidable.
(発明の目的)
本発明は斯かる問題を解決すべくなされたものであり、
親水性部分に電解液が完全に入り、100%の触媒が電
解液のぬれ反応にあずかり、他方撥水性部分をガスが通
り、触媒に十分ガスを供給できる燃料電池等のガス拡散
電極を提供することを目的とするものである。(Object of the invention) The present invention has been made to solve such problems,
To provide a gas diffusion electrode for a fuel cell or the like, in which an electrolytic solution completely enters a hydrophilic part and 100% of the catalyst participates in the wetting reaction of the electrolytic solution, while gas passes through a water-repellent part and a sufficient amount of gas can be supplied to the catalyst. The purpose is to
(発明の構成)
上記目的を達成する為の本発明による燃料電池等のガス
拡散電極は、触媒層とガス拡散層とからなる燃料電池等
のガス拡散電極において、前記触媒層は導電性粒子が撥
水性樹脂の表面に分散したスケルトン、およびそのスケ
ルトンの空間に凝集した導電性粒子群からなり、その導
電性粒子群には、触媒金属が担持されていることを特徴
とする。(Structure of the Invention) A gas diffusion electrode for a fuel cell or the like according to the present invention to achieve the above object is a gas diffusion electrode for a fuel cell or the like that includes a catalyst layer and a gas diffusion layer, wherein the catalyst layer has conductive particles. It consists of a skeleton dispersed on the surface of a water-repellent resin and a group of conductive particles aggregated in the space of the skeleton, and is characterized in that a catalytic metal is supported on the group of conductive particles.
先ず、従来の燃料電池等のガス拡散電極の構成を図面に
よって説明してその欠点を指摘し、次いで本発明の燃料
電池等のガス拡散電極の構成及びその作用効果を説明す
る。First, the configuration of a conventional gas diffusion electrode for a fuel cell or the like will be explained with reference to drawings, and its drawbacks will be pointed out, and then the configuration of the gas diffusion electrode for a fuel cell or the like of the present invention and its effects will be explained.
第2図は従来の燃料電池等のガス拡散電極の触媒層の断
面図で、触媒金属1が担持された導電性粒子2とta水
性樹脂3が一様に混合され、スケルトンになっているも
のである。この触媒層では電解液の滲み込み部分4にあ
る触媒金属1しか寄与せず、撥水性樹脂3によりできた
ガス供給通路中の触媒金属1は無駄に浪費されることと
なっている。Figure 2 is a cross-sectional view of a catalyst layer of a conventional gas diffusion electrode such as a fuel cell, in which conductive particles 2 carrying catalyst metal 1 and TA water-based resin 3 are uniformly mixed to form a skeleton. It is. In this catalyst layer, only the catalyst metal 1 in the electrolyte permeation portion 4 contributes, and the catalyst metal 1 in the gas supply passage made of the water-repellent resin 3 is wasted.
第1図は本発明の燃料電池等のガス拡散電極の触媒層の
断面模式図で、付号は従来例と同様である。FIG. 1 is a schematic cross-sectional view of a catalyst layer of a gas diffusion electrode for a fuel cell or the like according to the present invention, and the numbers are the same as in the conventional example.
本発明においては、導電性粒子2が0401〜0゜06
μと(θ水性樹脂3の短径0.2μ前後に比し−けた小
さいため、導電性粒子2が凝集して導電性粒子群を形成
する。この導電性粒子群5は電解液に対して親水性であ
るため、この群に電解液が滲透する。他方、1B水性樹
脂3の表面に分散した導電性粒子2は、対面する導電性
粒子群5の導電性粒子2と組になってガス供給通路を形
成する。これは、従来と同様である。しかしこのガス供
給通路が導電性粒子群5のすく近傍に存在するので、導
電性粒子群5の触媒反応に供されるガスが十分供給でき
る。電解液が触媒層全体に滲み込むためには、導電性粒
子群5がスケルトン状に連なっていることが好ましい。In the present invention, the conductive particles 2 are 0401 to 0°06
μ and (θ) are orders of magnitude smaller than the minor axis of the aqueous resin 3, which is around 0.2μ, so the conductive particles 2 aggregate to form a conductive particle group. Since it is hydrophilic, the electrolyte permeates into this group.On the other hand, the conductive particles 2 dispersed on the surface of the 1B aqueous resin 3 form a pair with the conductive particles 2 of the facing conductive particle group 5, and gas A supply passage is formed. This is the same as in the conventional case. However, since this gas supply passage exists very close to the conductive particle group 5, a sufficient amount of gas is supplied for the catalytic reaction of the conductive particle group 5. In order for the electrolytic solution to seep into the entire catalyst layer, it is preferable that the conductive particle groups 5 are connected in a skeleton shape.
また、本発明のガス拡散電極において、撥水性樹脂の微
粉体と、触媒自身又は親水性微粉体に触媒を担持させた
微粉体との混合比を8:2〜2:8の重量混合比にした
理由は、双方の重量混合比が夫々相手方と8:2以上に
開くと、親水性部分に電解液が完全に入らなくなり、他
方撥水性部分をガスが通りにくくなって触媒に十分ガス
を供給できなくなるからである。In addition, in the gas diffusion electrode of the present invention, the mixing ratio of the water-repellent resin fine powder and the catalyst itself or the catalyst supported on the hydrophilic fine powder is set to a weight mixing ratio of 8:2 to 2:8. The reason for this is that if the weight mixing ratio of both sides is 8:2 or more, the electrolyte will not completely enter the hydrophilic part, and it will be difficult for gas to pass through the other water-repellent part, allowing sufficient gas to be supplied to the catalyst. This is because it will not be possible.
(実施例)
本発明による撥水性ガス拡散電極の一実施例を、硫酸を
電解液とするH z/ Oz燃料電池用電極の場合につ
いて説明する。(Example) An example of the water-repellent gas diffusion electrode according to the present invention will be described in the case of an electrode for a Hz/Oz fuel cell using sulfuric acid as an electrolyte.
導電性材料であるカーボンブラックの微粉体と撥水性バ
インダーであるポリテトラフルオルエチレンの微粒子と
を重量比で4:6の割合で混合し、加圧成形した導電性
・IΩ水性多孔質膜より成るガス拡散層上に、0.56
mg/ cotの白金触媒を担持したカーボンブラッ
ク微粉末の導電性粒子とポリテトラフルオルエチレンの
↑n水性処理したカーボンブラック微粉末が分散したt
Ω水性樹脂とが重量比で7:3の混合微粉末をホットプ
レスした触媒層を設けた。なお、この触媒層には、副原
料として、ワックス黒鉛フッ化カーボン粉末等の撥水性
増強用粉末、フッ素ゴム等の補強用物質粉末、着色用顔
料等を適宜含ませることもできる。また、触媒層調整時
には、粉末のままミキサーで混合するか、または石油、
イソプロピルアルコール、ソルベントナフサ、ホワイト
オイル等の液状炭化水素の液体潤滑剤を約20〜200
重量%混合して調整する。このH210□燃料電池用電
極において、60°C13モル/7!硫酸水溶液中で酸
素還元特性、水素酸化特性を測定した。その結果、同一
溶液中にある水素参照電極に対して酸素極特性は0.8
Vで0.2 A / c[J、0.7■で3 A /
cal、また限界電流で5 A / ca1以上の酸素
極特性が得られた。これは従来の(Ω水化した導電性粒
子を含まない第2図の構造のH2102燃料電池用電極
の2倍以上の酸素極特性である。From a conductive IΩ aqueous porous membrane that is pressure-molded by mixing fine powder of carbon black, which is a conductive material, and fine particles of polytetrafluoroethylene, which is a water-repellent binder, at a weight ratio of 4:6. On the gas diffusion layer consisting of 0.56
Conductive particles of carbon black fine powder supporting mg/cot of platinum catalyst and ↑n aqueous treated carbon black fine powder of polytetrafluoroethylene are dispersed.
A catalyst layer was provided by hot pressing a fine powder mixture containing Ω aqueous resin and a weight ratio of 7:3. Note that this catalyst layer can also appropriately contain, as auxiliary raw materials, water repellency enhancing powder such as wax graphite fluorocarbon powder, reinforcing substance powder such as fluororubber, coloring pigment, and the like. In addition, when preparing the catalyst layer, it is necessary to mix the powder in a mixer, or use petroleum,
Approximately 20 to 200% liquid lubricant of liquid hydrocarbon such as isopropyl alcohol, solvent naphtha, white oil, etc.
Mix and adjust weight %. In this H210□ fuel cell electrode, 60°C 13 mol/7! Oxygen reduction properties and hydrogen oxidation properties were measured in an aqueous sulfuric acid solution. As a result, the oxygen electrode characteristics were 0.8 compared to the hydrogen reference electrode in the same solution.
0.2 A/c at V [J, 3 A/c at 0.7 ■
cal, and oxygen electrode characteristics of 5 A/cal or more at the limiting current were obtained. This is an oxygen electrode characteristic more than twice that of the conventional (Ω) H2102 fuel cell electrode having the structure shown in FIG. 2, which does not contain hydrated conductive particles.
また水素極特性は、25mVに於いて2.3A/crA
が得られ、従来の電極の1.3倍の水素極特性が得られ
た。In addition, the hydrogen electrode characteristics are 2.3A/crA at 25mV.
was obtained, and the hydrogen electrode characteristics were 1.3 times that of conventional electrodes.
次に本発明によるガス拡散電極の他の実施例をリン酸を
電解液とするH2102燃料電池用電極の場合について
説明する。Next, another example of the gas diffusion electrode according to the present invention will be described in the case of an electrode for an H2102 fuel cell using phosphoric acid as an electrolyte.
前記実施例と同一の導電性・撥水性多孔質膜より成るガ
ス拡散層上に、0.28■/ cotの白金触媒を担持
した触媒層を設けたH210□燃料電池用電極を、19
0℃、100%リン酸中で酸素還元特性、水素酸化特性
を測定した。その結果、同一溶液中にある水素参照電極
に対して酸素極特性は、0.8■で0.6A/cm2.
0.7■で3.4A/cm2であった。これは従来のH
210□燃料電池用電極の3倍以上の酸素極特性である
。また水素極特性は、25mVで2.5A/c+Jが得
られ、これは従来の電極の1.3倍の極特性である。A H210□ fuel cell electrode was prepared by disposing a catalyst layer supporting 0.28□/cot of platinum catalyst on a gas diffusion layer made of the same conductive and water-repellent porous membrane as in the above example.
Oxygen reduction properties and hydrogen oxidation properties were measured in 100% phosphoric acid at 0°C. As a result, the oxygen electrode characteristics compared to the hydrogen reference electrode in the same solution were 0.6 A/cm2 at 0.8 .
It was 3.4A/cm2 at 0.7■. This is the conventional H
210□ Oxygen electrode characteristics are more than three times that of fuel cell electrodes. In addition, the hydrogen electrode characteristics were 2.5 A/c+J at 25 mV, which is 1.3 times higher than that of conventional electrodes.
上記各実施例の電極の電解液にぬれている触媒クラスタ
ーの表面積は、通常用いられている電気化学的手法(ポ
ルタングラム)で求められている。The surface area of the catalyst cluster wetted with the electrolyte of the electrode in each of the above examples was determined by a commonly used electrochemical method (portangram).
即ち、撥水性が極めて少なく、全ての触媒クラスターが
完全にぬれてしまう電極で求められたクラスター表面積
をSo、い実施例の電極のクラスター表面積をSPtと
すると、U = S pt/ S ’ ptで触媒利用
率が求められ、実施例の電極における酸素極特性に於い
て、触媒利用率が100%であった。In other words, if the cluster surface area determined for an electrode with extremely low water repellency and in which all catalyst clusters are completely wetted is So, and the cluster surface area of the electrode in the example is SPt, then U = S pt/S' pt. The catalyst utilization rate was determined, and the catalyst utilization rate was 100% in terms of the oxygen electrode characteristics of the electrode of Example.
また上記実施例の電極のガス供給能の程度は次のように
確認された。即ち、ガス供給が十分で、それによる分極
が無ければ、ターフエルプロットでその勾配が理論的に
80〜90mVになる。実験により実施例の電極では、
1.5 A / cntの電流密度までそのターフエル
勾配が約90mVであることが確かめられた。このこと
から、ガス供給に基づく分極がI A / crA以上
の電流密度まで無い電極であって、ガス供給が十分に行
われる電極であることが確認された。Moreover, the degree of gas supply ability of the electrode of the above example was confirmed as follows. That is, if the gas supply is sufficient and there is no polarization caused by it, the slope of the Tafel plot will theoretically be 80 to 90 mV. Experiments showed that the electrode of the example
Its terfel slope was confirmed to be approximately 90 mV up to a current density of 1.5 A/cnt. From this, it was confirmed that the electrode had no polarization due to gas supply up to a current density of I A / crA or more, and that the electrode could sufficiently supply gas.
なお、上記実施例では、触媒として白金触媒が用いられ
ているが、他の金属触媒、とくに貴金属触媒または酸化
物触媒等であっても良い。また電解凍は硫酸、リン酸に
かぎるものではなく、他のものでも良い。さらに上記実
施例は燃料電池用電極の場合であるが本発明のガス拡散
電極は工業電解用電極、空気−亜鉛電池の電極、ガルバ
ニック方式ガスセンザの構成電極、電気分解用ガス発生
極としても用いることができるものである。In the above embodiments, a platinum catalyst is used as the catalyst, but other metal catalysts, particularly noble metal catalysts or oxide catalysts, may also be used. Further, electrolytic freezing is not limited to sulfuric acid and phosphoric acid, and other materials may also be used. Further, although the above embodiments are for electrodes for fuel cells, the gas diffusion electrode of the present invention can also be used as an electrode for industrial electrolysis, an electrode for an air-zinc battery, a component electrode for a galvanic gas sensor, and a gas generation electrode for electrolysis. It is something that can be done.
(発明の効果)
以上の説明で判るように本発明による燃料電池等のガス
拡散電極は、親水性部分に電解液が完全に入り、100
%の触媒が電解液のぬれ反応に与り、他方撥水性部分を
ガスが通り、触媒に十分ガスが供給されるので、触媒が
無駄に使用されることが無く、電極特性が著しく向上す
る。(Effects of the Invention) As can be seen from the above explanation, the gas diffusion electrode for fuel cells, etc. according to the present invention allows the electrolyte to completely enter the hydrophilic portion,
% of the catalyst participates in the wetting reaction of the electrolytic solution, while gas passes through the water-repellent portion and sufficient gas is supplied to the catalyst, so the catalyst is not wasted and the electrode properties are significantly improved.
第1図は本発明の燃料電池等のガス拡散電極の触媒層の
断面模式図、第2図は従来のガス拡散電極の触媒層の断
面模式図である。FIG. 1 is a schematic cross-sectional view of a catalyst layer of a gas diffusion electrode such as a fuel cell of the present invention, and FIG. 2 is a schematic cross-sectional view of a catalyst layer of a conventional gas diffusion electrode.
Claims (3)
ガス拡散電極に於いて、前記触媒層は導電性粒子2が撥
水性樹脂3の表面に分散したスケルトンとそのスケルト
ンの空間に凝集した導電性粒子群からなり、その導電性
粒子群5には触媒金属1が担持されていることを特徴と
する燃料電池等のガス拡散電極。(1) In a gas diffusion electrode for a fuel cell or the like that is composed of two layers: a catalyst layer and a gas diffusion layer, the catalyst layer is formed between a skeleton in which conductive particles 2 are dispersed on the surface of a water-repellent resin 3 and a space between the skeletons. A gas diffusion electrode for a fuel cell or the like, comprising a group of aggregated conductive particles, and a catalyst metal 1 is supported on the conductive particle group 5.
撥水性樹脂との重量混合比が8:2〜2:8であること
を特徴とする燃料電池等のガス拡散電極。(2) A gas diffusion electrode for a fuel cell or the like, characterized in that the weight mixing ratio of the conductive particles according to claim (1) and the water-repellent resin is 8:2 to 2:8.
粒子がカーボンブラックであることを特徴とする燃料電
池等のガス拡散電極。(3) A gas diffusion electrode for a fuel cell or the like, wherein the conductive particles according to claims (1) to (2) are carbon black.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60162614A JPH0766812B2 (en) | 1985-07-24 | 1985-07-24 | Gas diffusion electrode for fuel cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60162614A JPH0766812B2 (en) | 1985-07-24 | 1985-07-24 | Gas diffusion electrode for fuel cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6224565A true JPS6224565A (en) | 1987-02-02 |
JPH0766812B2 JPH0766812B2 (en) | 1995-07-19 |
Family
ID=15757944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60162614A Expired - Lifetime JPH0766812B2 (en) | 1985-07-24 | 1985-07-24 | Gas diffusion electrode for fuel cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766812B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241432A2 (en) * | 1986-03-07 | 1987-10-14 | Tanaka Kikinzoku Kogyo K.K. | Gas permeable electrode |
JPH04202792A (en) * | 1990-11-30 | 1992-07-23 | Shinei Kk | Sheet for electrode |
JPH05234599A (en) * | 1992-02-21 | 1993-09-10 | Tanaka Kikinzoku Kogyo Kk | Gas-diffusion electrode for fuel cell and its manufacture |
EP1383184A1 (en) * | 2001-04-27 | 2004-01-21 | Matsushita Electric Industrial Co., Ltd. | Electrode for fuel cell and method of manufacturing the electrode |
JP2007119881A (en) * | 2005-10-31 | 2007-05-17 | Permelec Electrode Ltd | Oxygen reducing gas diffusion cathode and sodium chloride electrolytic method |
WO2008111570A1 (en) * | 2007-03-09 | 2008-09-18 | Sumitomo Chemical Company, Limited | Membrane-electrode assembly and fuel cell using the membrane-electrode assembly |
JP2008258152A (en) * | 2007-03-09 | 2008-10-23 | Sumitomo Chemical Co Ltd | Membrane-electrode assembly and fuel cell using this |
JP2013067859A (en) * | 2011-09-23 | 2013-04-18 | Bayer Intellectual Property Gmbh | Improved gas diffusion electrode and method for manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4930838A (en) * | 1972-05-22 | 1974-03-19 | ||
JPS5186733A (en) * | 1974-12-18 | 1976-07-29 | United Technologies Corp |
-
1985
- 1985-07-24 JP JP60162614A patent/JPH0766812B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4930838A (en) * | 1972-05-22 | 1974-03-19 | ||
JPS5186733A (en) * | 1974-12-18 | 1976-07-29 | United Technologies Corp |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241432A2 (en) * | 1986-03-07 | 1987-10-14 | Tanaka Kikinzoku Kogyo K.K. | Gas permeable electrode |
JPH04202792A (en) * | 1990-11-30 | 1992-07-23 | Shinei Kk | Sheet for electrode |
JPH05234599A (en) * | 1992-02-21 | 1993-09-10 | Tanaka Kikinzoku Kogyo Kk | Gas-diffusion electrode for fuel cell and its manufacture |
EP1383184A1 (en) * | 2001-04-27 | 2004-01-21 | Matsushita Electric Industrial Co., Ltd. | Electrode for fuel cell and method of manufacturing the electrode |
EP1383184A4 (en) * | 2001-04-27 | 2008-04-16 | Matsushita Electric Ind Co Ltd | Electrode for fuel cell and method of manufacturing the electrode |
JP2007119881A (en) * | 2005-10-31 | 2007-05-17 | Permelec Electrode Ltd | Oxygen reducing gas diffusion cathode and sodium chloride electrolytic method |
WO2008111570A1 (en) * | 2007-03-09 | 2008-09-18 | Sumitomo Chemical Company, Limited | Membrane-electrode assembly and fuel cell using the membrane-electrode assembly |
JP2008258152A (en) * | 2007-03-09 | 2008-10-23 | Sumitomo Chemical Co Ltd | Membrane-electrode assembly and fuel cell using this |
JP2013067859A (en) * | 2011-09-23 | 2013-04-18 | Bayer Intellectual Property Gmbh | Improved gas diffusion electrode and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0766812B2 (en) | 1995-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5134744B2 (en) | POLYMER ELECTROLYTE-MEMBRANE-ELECTRODE UNIT FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME AND INK FOR MANUFACTURING THE SAME | |
EP0577291B1 (en) | Process for the preparation of electrode assemblies | |
KR100768960B1 (en) | Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment | |
US6403245B1 (en) | Materials and processes for providing fuel cells and active membranes | |
JP3755840B2 (en) | Electrode for polymer electrolyte fuel cell | |
AU2001271398A1 (en) | Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment | |
JP2003515894A (en) | Direct methanol battery with circulating electrolyte | |
JPH09167622A (en) | Electrode catalyst and solid polymer type fuel cell using same | |
JP3577402B2 (en) | Polymer electrolyte fuel cell | |
JPS6224565A (en) | Gas diffusion electrode of fuel cell and the like | |
JP2001118583A (en) | Fuel cell electrode and method for manufacturing the same | |
EP0557259B1 (en) | Gas diffusion electrode for electrochemical cell and process of preparing same | |
JPS6247968A (en) | Molten carbonate fuel cell capable of internal reformation | |
JPH07240214A (en) | Base body tube for inner reform for solid electrolyte fuel cell | |
JPS6074272A (en) | Manufacture of fused carbonate type fuel cell | |
JPH061700B2 (en) | Composite electrode for fuel cell | |
JP2616061B2 (en) | Phosphoric acid fuel cell | |
JPS62249360A (en) | Manufacture of gas diffusion electrode | |
JPH0896813A (en) | Electrode for high-molecular solid electrolytic type electrochemistry cell | |
JPH0520868B2 (en) | ||
JPS6286668A (en) | Methanol modified type fuel cell | |
JPS60216459A (en) | Air electrode of fuel cell | |
JPH09259893A (en) | Electrode for high polymer electrolyte fuel cell, manufacture thereof, and operation method for fuel cell having same electrode | |
JP2569769B2 (en) | Phosphoric acid fuel cell | |
JPH0711961B2 (en) | Method for manufacturing gas diffusion electrode |