JPS6224222A - Optical wavelength varing device - Google Patents

Optical wavelength varing device

Info

Publication number
JPS6224222A
JPS6224222A JP16440285A JP16440285A JPS6224222A JP S6224222 A JPS6224222 A JP S6224222A JP 16440285 A JP16440285 A JP 16440285A JP 16440285 A JP16440285 A JP 16440285A JP S6224222 A JPS6224222 A JP S6224222A
Authority
JP
Japan
Prior art keywords
fiber
light
wavelength
polarized wave
double refraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16440285A
Other languages
Japanese (ja)
Inventor
Yasuro Kimura
康郎 木村
Kenichi Kitayama
研一 北山
Masaharu Ohashi
正治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16440285A priority Critical patent/JPS6224222A/en
Publication of JPS6224222A publication Critical patent/JPS6224222A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the number of parts of a constituent device, and to obtain an optional wavelength by using a high output laser which becomes a pump light, and a double refraction fiber or a polarized wave holding fiber, and changing an oscillation wavelength by an intensity of a high output laser beam. CONSTITUTION:The titled device is constituted by combining an Nd:YAG laser 1, an attenuator 2, a lambda/4 plate 3, a polarizer 4, a lens 5, a double refraction fiber or polarized wave holding fiber 6, and a wavelength branching device 7 of a grating or a prism or a monochromator, etc. A YAG laser beam which is controlled by a mode lock Q switch goes to excitation light and set to an optional intensity through an optical attenuator 2, goes to linearly polarized light through the lambda/4 plate 3 and the polarizer 4, and made incident on an axis whose refractive index is higher, in each orthogonal optical axis of the double refraction fiber or polarized wave holding fiber 6. Length of the double refraction fiber or polarized wave holding fiber 6 is several (m) through scores of (m), and a long fiber is not always required for generating stokes light and anti-stokes light by mixing four induction photons.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコヒーレント光伝送および光ファイバを用いた
センサ技術に使用される光ファイバを用いた光パルス発
生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical pulse generator using an optical fiber used in coherent optical transmission and sensor technology using an optical fiber.

〔従来の技術〕[Conventional technology]

従来1強力なレーザ光を用いて、各種結晶(例えばブル
ースタイト)の異方性を利用して、和訃よび差周波数の
変換が行われてきた。この種の結晶を用いたパラメトリ
ック周波数変換方法では、結晶温度の制御や、入射光の
入射角度の制御が必要であシ、部品数が多く、装置構成
が複雑になる欠点があった。また、7了イパを利用した
誘導ラ   □マン散乱によって生ずるストークス光を
利用する   □方法では1発振す、るストークス光は
ガラスの固有   (振動モードで決まるため1発振波
長を変えるため   □にはGe等のドーパント材を7
テイバ中に入れることによって固有振動モードを変える
必要かあ〕、その波長可変領域も小さいため、43μm
以上の連続発振領域よシ短波長側では、自由に発振波長
を変えることは困難な欠点があり九。
Conventionally, harmonization and difference frequency conversion has been performed using a powerful laser beam and utilizing the anisotropy of various crystals (for example, bluestite). A parametric frequency conversion method using this type of crystal requires control of the crystal temperature and the angle of incidence of incident light, and has the drawback of requiring a large number of parts and complicating the device configuration. In addition, the stimulated Raman scattering method uses Stokes light generated by Raman scattering. 7 dopant materials such as
Is it necessary to change the natural oscillation mode by putting it in the TABA? Because its wavelength variable range is small, it is 43 μm.
On the short wavelength side of the above continuous oscillation region, there is a drawback that it is difficult to freely change the oscillation wavelength.

〔発明の解決しようとする問題点と解決手段〕本発明は
、いわゆるポンプ光となる高出力レーザと複屈折2ティ
バ或いは偏波保持ファイバを用いて、高出力レーザ光の
強度によって発振波長を変えることを特徴とし、その目
的は構成装置部品数の低減と、任意の波長を得るところ
にある。
[Problems and solutions to be solved by the invention] The present invention uses a high-output laser serving as a so-called pump light and a birefringent birefringent or polarization-maintaining fiber to change the oscillation wavelength depending on the intensity of the high-output laser beam. Its purpose is to reduce the number of component parts and to obtain an arbitrary wavelength.

〔実施例〕〔Example〕

第1図は本発明の実施例であって、lはNd:YAGレ
ーザ、コは光減衰器、Jは2/4板、係は偏光子、jは
レンズ、tは複屈折フフイパ或いは偏波保持7アイパ、
7はグレーティング或いはプリズム或いはモノクロメー
タ等の波長分波器、である。本実施例ではモードロック
、Qスイッチで制御したYAGレーザ光を励起光とし光
減衰器を通して任意の強度とし、気板と偏光子を通して
直線偏光として、複屈折ファイバ或いは偏波保持7フイ
パの互いに直交する光学軸のうち屈折率の高い軸(以下
屈折率の高い軸方向をX軸、低いほうの軸をy軸と座標
系をとる。)へ入射させる。複屈折7フイパ或いは偏波
保持7了イパの長さは数mから数十mで鱒導≠光子混合
によるストークス光1反ストークス光が発生するため必
ずしも長い7フイパは必要としない。
Figure 1 shows an embodiment of the present invention, where l is a Nd:YAG laser, c is an optical attenuator, J is a 2/4 plate, d is a polarizer, j is a lens, and t is a birefringent fiber or polarized wave. Hold 7 Aipa,
7 is a wavelength demultiplexer such as a grating, a prism, or a monochromator. In this example, YAG laser light controlled by a mode-locked Q-switch is used as excitation light, which is passed through an optical attenuator to a desired intensity, and then passed through an air plate and a polarizer as linearly polarized light. Among the optical axes to be used, the light is incident on an axis with a high refractive index (hereinafter, the direction of the axis with the higher refractive index is taken as the X-axis, and the axis with the lower refractive index is taken as the y-axis in a coordinate system). The length of the birefringent 7-fiper or the polarization-maintaining 7-fiber is from several meters to several tens of meters, and since one Stokes light and one anti-Stokes light are generated due to photon mixing, a long 7-fiber is not necessarily required.

次に1本発明の装置の動作原理について説明する。誘導
グ光子混合によって、励起光と異った波長が発生するに
は次の位相整合条件が必要となる。
Next, the operating principle of the apparatus of the present invention will be explained. The following phase matching conditions are required to generate a wavelength different from the excitation light through stimulated photon mixing.

k、+に、−2kp=o            (1
)ここで、ks、kAはそれぞれストークス光9反スト
ークス光の波動ベクトル、k、は励起光の波動ベクトル
である。この位相整合条件はガラス材料における周波数
シフト量Δ;をもつ不整合量Δk(ΔrI)とモード分
散およびモード複屈折による不整合量f(Δマ)によっ
て近似的に次式で与えられる。
k, +, -2kp=o (1
) Here, ks and kA are wave vectors of Stokes light 9 and anti-Stokes light, respectively, and k is a wave vector of excitation light. This phase matching condition is approximately given by the following equation using the mismatch amount Δk (ΔrI) with the frequency shift amount Δ; in the glass material and the mismatch amount f (Δma) due to mode dispersion and mode birefringence.

Δk(Δマ)+f(Δ;>=o          (
2)すなわち、式(2)を満たす周波数シフト量Δ;の
ところにストークス光と反ストークス光が発生する。位
相整合条件が整うと式(2)は次のように表わされる。
Δk(Δma)+f(Δ;>=o (
2) That is, Stokes light and anti-Stokes light are generated at a frequency shift amount Δ that satisfies equation (2). When the phase matching conditions are met, equation (2) can be expressed as follows.

f(Δν)=−2CNx−N、)C2πら)=−J (
Bg + Bs ) (Jπ:p>      (8)
=−JBo(コπνp) ここで、Nx、NyはそれぞれX軸、y軸の実効的な屈
折率、;pは規格化周波数である。Bgは構造に起因す
るモード複屈折で、B5は光7アイパ内に残留する応力
に起因する応力複屈折である。
f(Δν)=−2CNx−N, )C2π et al.)=−J (
Bg + Bs ) (Jπ:p> (8)
=-JBo (πνp) Here, Nx and Ny are the effective refractive indices of the X-axis and y-axis, respectively; p is the normalized frequency. Bg is mode birefringence caused by the structure, and B5 is stress birefringence caused by stress remaining in the optical 7 eyer.

N2図に、溶融石英に対する位相整合量Δk(Δ;)の
計算値を示す。第2図よシΔk(Δi)の曲線と、−、
f (Δi)の交点のΔ;が周波数シフト量を与える。
The N2 diagram shows the calculated value of the phase matching amount Δk (Δ;) for fused silica. In Figure 2, the curve of Δk(Δi) and -,
Δ; at the intersection of f (Δi) gives the frequency shift amount.

従って、式(3)でBg、或いはB$を変化させると。Therefore, if Bg or B$ is changed in equation (3).

Δ;が変化することになる。Δ; will change.

本実施例のように、モードロックとQスイッチで制御さ
れたYAGレーザではIO’W程度の光強度が得られる
。このような強力な光がファイバ内に入射すると、光K
err効果によって光強度に比例して屈折率が変化する
。その量は次式で与えられる。
As in this embodiment, a YAG laser controlled by mode locking and a Q switch can obtain a light intensity of about IO'W. When such strong light enters the fiber, the light K
The refractive index changes in proportion to the light intensity due to the err effect. The amount is given by the following formula.

Nx−N、= (Nx、 −N、。)+H(Px−Py
)     (4)= Bo+H(Px−Py) ここでs NX0m N)’。はそれぞれ光が入射しな
いときの実効的な屈折率で* px、 p、はそれぞれ
、X軸。
Nx-N, = (Nx, -N,.)+H(Px-Py
) (4)=Bo+H(Px-Py) where s NX0m N)'. are the effective refractive indexes when no light is incident, * px and p are the X-axis, respectively.

y軸の光の強度で、Xは光Kerr効果の自己集束係数
で/、/X10 esuである。本実施例では入射光の
偏波面をファイバのX軸に合わせることによってPy=
0とする。式(8)、 (4)よシモード複屈折および
モード分散による位相不整合量f(Δi)は1次式%式
% このように、f(Δ;)は入射強度Pに依存するこ  
 ′とになる。                  
   1・すなわち、入射強度を変えることによって、
ス   ”トークス光1反ストークス光の発生する波長
を変化できることがわかる。第3図には入射強度P&C
!対するストークス光および反ストークス光の発振  
 ゛波長の関係をB。=i、zxio  のファイバに
ついて計算した結果を示す。これから入射光強度P=#
)’Wのとき1周波数シフトJ ν= 7 Q 1m−
’励起光からずれたすなわち波長06タタμmおよび/
、 / j /μmの異った光が誘導≠光子効果によっ
て得られる。
In the y-axis light intensity, X is the self-focusing coefficient of the optical Kerr effect, /, /X10 esu. In this example, Py=
Set to 0. Equations (8) and (4) The amount of phase mismatch f(Δi) due to sysmode birefringence and mode dispersion is expressed by the linear formula % Formula % In this way, f(Δ;) depends on the incident intensity P.
′ becomes.
1. That is, by changing the incident intensity,
It can be seen that the wavelength of the Stokes light 1 anti-Stokes light can be changed. Figure 3 shows the incident intensity P&C.
! Oscillation of Stokes light and anti-Stokes light for
゛The relationship between wavelengths is B. The results calculated for a fiber with =i, zxio are shown. From now on, the incident light intensity P=#
)'W, one frequency shift J ν= 7 Q 1m-
'shifted from the excitation light, i.e. wavelength 06 tat μm and/
, / j /μm different lights are obtained by the stimulation≠photon effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の装置は入射光強度によっ
て発振波長を可変でき装置の構成が簡単で光通信方式や
、光セ/す技術への波長可変光源として応用できる利点
がある。
As explained above, the device of the present invention has the advantage that the oscillation wavelength can be varied depending on the intensity of the incident light, and the structure of the device is simple, so that it can be applied as a wavelength tunable light source to optical communication systems and optical cell technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例、第2図は溶融石英に対する
ガラス材料の不整合量Δk(Δ;)と周波数シフト量Δ
rとの関係を示す図、第3図は、本発明によって得られ
る可変波長範囲と、入射光強度の関係を表わす図である
〇 λ l・・・Nd : YAGレーザ、2・・・光減衰器、
3・・・−礁 板、≠・・・偏光子、j・・・レンズ、t・・・複屈折
7アイバ或いは偏波保持ファイバ、7・・・波長分波器
Figure 1 shows an example of the present invention, and Figure 2 shows the amount of mismatch Δk (Δ;) of the glass material with respect to fused silica and the amount of frequency shift Δ.
Figure 3 is a diagram showing the relationship between the variable wavelength range obtained by the present invention and the incident light intensity.〇λ l...Nd: YAG laser, 2... Optical attenuation vessel,
3...-reef plate, ≠... polarizer, j... lens, t... birefringent 7-eye fiber or polarization maintaining fiber, 7... wavelength demultiplexer.

Claims (1)

【特許請求の範囲】[Claims] 高出力レーザ光源と、該光源からのレーザ光を直線偏光
とする光学系と、複屈折ファイバと波長分波器からなり
前記光源からのレーザ光を直線偏光として、前記複屈折
ファイバの屈折率の高い軸に一致させて入射し、該複屈
折ファイバからの出力光を前記波長分波器により分波し
て所望の波長の光を得ることを特徴とする光波長可変装
置。
It consists of a high-power laser light source, an optical system that converts the laser light from the light source into linearly polarized light, a birefringent fiber, and a wavelength demultiplexer, and converts the laser light from the light source into linearly polarized light. 1. An optical wavelength tunable device, characterized in that the light enters the birefringent fiber so as to coincide with the high axis, and the output light from the birefringent fiber is demultiplexed by the wavelength demultiplexer to obtain light of a desired wavelength.
JP16440285A 1985-07-25 1985-07-25 Optical wavelength varing device Pending JPS6224222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16440285A JPS6224222A (en) 1985-07-25 1985-07-25 Optical wavelength varing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16440285A JPS6224222A (en) 1985-07-25 1985-07-25 Optical wavelength varing device

Publications (1)

Publication Number Publication Date
JPS6224222A true JPS6224222A (en) 1987-02-02

Family

ID=15792447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16440285A Pending JPS6224222A (en) 1985-07-25 1985-07-25 Optical wavelength varing device

Country Status (1)

Country Link
JP (1) JPS6224222A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140715A (en) * 1982-02-15 1983-08-20 Nippon Telegr & Teleph Corp <Ntt> Light wavelength converting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140715A (en) * 1982-02-15 1983-08-20 Nippon Telegr & Teleph Corp <Ntt> Light wavelength converting element

Similar Documents

Publication Publication Date Title
US9835869B2 (en) Universal polarization converter
US4784450A (en) Apparatus for generating and amplifying new wavelengths of optical radiation
EP0831568B1 (en) A dual harmonic-wavelength split-frequency laser
CN103236629B (en) A kind of optical fiber laser cascade amplifier of polarization-stable
CN106019763A (en) All-fiber continuous light and optical frequency comb locking device
EP0262155A1 (en) Optical power splitter and polarization splitter.
US6867918B2 (en) Methods and apparatus for generation and control of coherent polarization mode dispersion
CN100395926C (en) Cascade optical parameter oscillating laser
US5311352A (en) Increasing the birefringence of KTP and its isomorphs for type II phase matching
Xing et al. A simple all-fiber Solc filter based on 45°-tilted fiber gratings
JPS6224222A (en) Optical wavelength varing device
US3957340A (en) Electrooptical amplitude modulator
JPS6242244B2 (en)
Mantsevich et al. Acousto-optic Time-Domain Optical Demultiplexer.
Eftimov et al. Analysis of the polarization behavior of hybrid modes in highly birefringent fibers
WO2023145524A1 (en) Optical device and light production method
Hocker et al. Difference frequency generation in proustite from 11 to 23 μm
RU2747724C1 (en) Method of stable autogeneration of ultrashort laser pulses in a polarizing fiber ring resonator and a laser based on it
Petrov Acoustooptic and electrooptic guided wave conversion to leaky waves in an anisotropic optical waveguide
JPS6217736A (en) Optical pulse width compressing and amplifying method
Lee et al. Tunable multiwavelength fiber laser based on nematic liquid crystal device for fiber-optic electric field sensor
JPS61112123A (en) Depolarizer
JPS5864088A (en) Optical fiber laser amplifier
Redek et al. Influence of ambient temperature variations on the performance of Lyot depolarizers
Takahashi et al. Orthogonal Dual-Frequency SOA-Fiber Laser