JPS6217736A - Optical pulse width compressing and amplifying method - Google Patents

Optical pulse width compressing and amplifying method

Info

Publication number
JPS6217736A
JPS6217736A JP60156749A JP15674985A JPS6217736A JP S6217736 A JPS6217736 A JP S6217736A JP 60156749 A JP60156749 A JP 60156749A JP 15674985 A JP15674985 A JP 15674985A JP S6217736 A JPS6217736 A JP S6217736A
Authority
JP
Japan
Prior art keywords
light
fiber
pulse width
optical
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60156749A
Other languages
Japanese (ja)
Inventor
Yasuro Kimura
康郎 木村
Kenichi Kitayama
研一 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60156749A priority Critical patent/JPS6217736A/en
Publication of JPS6217736A publication Critical patent/JPS6217736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To compress a signal optical pulse width, and to amplify it without widening the pulse width, by utilizing effectively, a double refractive index difference in a fiber by an optical Kerr effect, and varying a coupling between polarized wave modes of the optical axis direction in double refraction and polarized wave holding fibers. CONSTITUTION:A high output laser beam from a high output laser 1 of a system is made incident on an optical multiplexer 3, multiplexed with a signal light from a signal use light source 10 and applied to a polarizer 4. A linearly polarized light from this polarizer 4 is made incident on an optical axis of a large refractive index of a double refraction fiber 5 of a polarized wave holding optical fiber, or in the direction orthogonal to said axis, through a lens 9. An output light from this fiber 5 is made incident on a wavelength demultiplexer 6 from the lens 9, and a high output laser beam pulse is separated from the output light of the fiber 5. Next, a signal whose pulse width has been compressed is fetched from an analyzer 7 which has been placed in the direction orthogonal to the incident signal light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバを用いた通信方式および光ファイバ
を用いたセンナ技術に使用される光源光パルス幅を圧縮
し、同時に増幅する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for compressing and simultaneously amplifying the pulse width of light source light used in communication systems using optical fibers and Senna technology using optical fibers. It is.

〔従来の技術〕[Conventional technology]

従来、複屈折光ファイバを用いた光パルス幅の圧縮は第
φ図のような構成によシなされていた。
Conventionally, compression of optical pulse width using a birefringent optical fiber has been achieved by a configuration as shown in FIG.

第≠図で、λは2/4板、≠は偏光子、jは複屈折光7
丁イパ、7は検光子、りはレンズ、IOは信号用光源で
ある。信号用光源からのパルス光を2の24板によシ円
偏光とし、弘の偏光子によシレンズタを介して複屈折光
ファイバの主軸に対してθの角度をもった直線偏光とし
て入射する。この方法は、光Kerr効果を利用し、入
射光の光強度によって屈折率を変化させ、光強度の強い
部分と弱い部分を別の主軸に結合させ、光強度の弱い部
分を検光子7によシとり除き、パルス幅を圧縮させるも
のである。図メに示す装置を通った後の光強度は1次式
で与えられる。
In the figure, λ is the 2/4 plate, ≠ is the polarizer, and j is the birefringent light 7.
7 is an analyzer, RI is a lens, and IO is a signal light source. The pulsed light from the signal light source is converted into circularly polarized light by the second 24 plate, and enters the Hiromu polarizer via the lens star as linearly polarized light having an angle of θ with respect to the principal axis of the birefringent optical fiber. This method uses the optical Kerr effect to change the refractive index depending on the light intensity of the incident light, combine the high and low light intensity parts to different principal axes, and use the analyzer 7 to separate the low light intensity parts. This removes shear and compresses the pulse width. The light intensity after passing through the device shown in the figure is given by a linear equation.

P t= PI、dn” (φ/! ) m” (2θ
)・・・・・・・・・・・・・・・・・・ (1)ここ
でPoは装置への入力強度で、φは入射光強度に比例す
る位相変調量で、θは複屈折7アイパ或いは偏波保持フ
ァイバの主軸と、入射光の偏光面との傾きである。φと
入射光の関係は次式で与えられる。
P t= PI, dn” (φ/!) m” (2θ
)・・・・・・・・・・・・・・・・・・ (1) Here, Po is the input intensity to the device, φ is the phase modulation amount proportional to the incident light intensity, and θ is the birefringence. 7 This is the inclination between the main axis of the eyeper or polarization maintaining fiber and the polarization plane of the incident light. The relationship between φ and incident light is given by the following equation.

2πf、   t   /    2πLφ=7(n、
−nx)=〒X(P8−P、)・・・・・・・・・(2
)θ=tm−’ (px//P、f  ・・・・・・・
・・・・・・・・・・・・・・町・・・・・(8)ここ
でλは、光の波長、Lはファイバ長、n≦・弓 はファ
イバの互いに直交する光学軸の光Kerr効果による屈
折率変化、 Px、 P、は光学軸への光強度、÷は光
Kerr効果の係数である。従来の方法では、光の透過
率は入射光の偏光面の傾き一θに依存し1式(1)よ)
透過率を上げるためθを≠t°に近づけるとPx?P、
となり、式(2)、 (8)よl) Kerr効果によ
って生じる位相変化量φは小さくなるため、パルス幅圧
縮を行うためには、それだけ入射光の強度をあげなけれ
ばならない欠点があった。また、パルス幅圧縮された入
力光は増幅されない欠点があった。
2πf, t/2πLφ=7(n,
-nx)=〒X(P8-P,)・・・・・・・・・(2
)θ=tm-' (px//P, f...
・・・・・・・・・・・・・・・・・・・・・(8) Here, λ is the wavelength of light, L is the fiber length, and n≦・bow is the mutually orthogonal optical axes of the fibers. The refractive index change due to the optical Kerr effect, Px, P is the light intensity toward the optical axis, ÷ is the coefficient of the optical Kerr effect. In the conventional method, the light transmittance depends on the slope of the polarization plane of the incident light - θ, and is expressed by equation (1).
If θ is brought closer to ≠t° to increase the transmittance, Px? P,
According to equations (2) and (8), the amount of phase change φ caused by the Kerr effect becomes smaller, so there is a drawback that the intensity of the incident light must be increased accordingly in order to compress the pulse width. Furthermore, there is a drawback that input light whose pulse width has been compressed is not amplified.

〔発明が解決しようとする問題点と解決のための手段〕
本発明は従来の技術の高出力なパルスが得られないとい
う欠点を解決するために別途ボンピング用の光源を設け
、光Kerr効果によって生じるファイバ中の複屈折率
差を有効に生かし、複屈折ファイバ或いは偏波保持ファ
イバ中の光学軸方向の偏波モード間の結合係数を変化さ
せることによって微弱信号のパルス幅圧縮を行うと同時
に、ファイバ中で生じる銹導弘光子混合、或いは誘導ラ
マン散乱によって圧縮されたパルスの増幅を行うことを
特徴としている。
[Problems to be solved by the invention and means for solving them]
In order to solve the drawback of the conventional technology that high-output pulses cannot be obtained, the present invention provides a separate light source for bombing, makes effective use of the birefringence difference in the fiber caused by the optical Kerr effect, and creates a birefringent fiber. Alternatively, the pulse width of a weak signal can be compressed by changing the coupling coefficient between polarization modes in the optical axis direction in a polarization-maintaining fiber, and at the same time the pulse width can be compressed by photon mixing or stimulated Raman scattering that occurs in the fiber. It is characterized by amplifying the generated pulse.

〔実施例〕〔Example〕

第1図は1本発明の実施例で、/は高出力レーザ、2は
シ、板、3は合波器、≠は偏光子、jは複屈折ファイバ
、乙は波長分波器、7は検光子。
Figure 1 shows an embodiment of the present invention; / is a high-power laser, 2 is a plate, 3 is a multiplexer, ≠ is a polarizer, j is a birefringent fiber, O is a wavelength demultiplexer, and 7 is a wavelength demultiplexer. Analyzer.

tは信号検出素子、りはレンズ、10は信号用光源であ
る。高出力レーザとしては、例えばYAGレーザ等を用
いる。シ、板を通して円偏光状態にした信号光とYAG
レーザの光をポンプ光とし、ハーフミラ−或いはダイク
ロイックミラーを通して、偏光子で直線偏光にして複屈
折7テイパ或いは偏波保持ファイバの光学軸の屈折率の
大きい軸に合わせて入射させる。ファイバを通過した信
号光とポンプ光は、ダイクロイックミラー、或いはプリ
ズム、*いは回折格子等の波長分波器で信号光をとシだ
し、検光子で屈折率の大きい軸方向の偏波成分を取りだ
す。
t is a signal detection element, ri is a lens, and 10 is a signal light source. For example, a YAG laser or the like is used as the high-power laser. C. Signal light made into a circularly polarized state through a plate and YAG
Laser light is used as pump light, and is made linearly polarized by a polarizer through a half mirror or dichroic mirror, and is made incident on the optical axis of a birefringent 7-taper or polarization-maintaining fiber having a high refractive index. The signal light and pump light that have passed through the fiber are separated by a wavelength demultiplexer such as a dichroic mirror, a prism, or a diffraction grating, and an analyzer extracts the axially polarized component with a large refractive index. Take it out.

ポンプ光によってパルス幅圧縮が行われる機構を説明す
る。強力なポンプ光が存在するとき、偏波保持ファイバ
の複屈折SSは光ファイバの光Kerr効果によってポ
ンプ光パワーの関数として次式で与えられる。
The mechanism by which pulse width compression is performed by pump light will be explained. When strong pump light is present, the birefringence SS of the polarization maintaining fiber is given by the following equation as a function of the pump light power due to the optical Kerr effect of the optical fiber.

B、=B、。+7(Px−P、)・・・・・・・・・・
・・・・・・・・・・・・・・ (1)ここで−F3s
oはポンプ光がないときの初期複屈折*  x l’t
 Kerr効果を表わす自己集束係数、Px、P。
B,=B,. +7(Px-P,)・・・・・・・・・・
・・・・・・・・・・・・・・・ (1) Here -F3s
o is the initial birefringence when there is no pump light * x l't
Self-focusing coefficient, Px, P representing the Kerr effect.

はそれぞれポンプ光パワーの互いに直交するX方向とX
方向の成分である。第2図は通常の石英系光ファイバの
Bsとポンプ光の強度Pとの関係を示す6xは/−/ 
X / 0−” e、 s、 uである0図よりP、=
0の場合にはポンプ光の増大に伴って、B。
are the mutually orthogonal X direction and X of the pump light power, respectively.
is the directional component. Figure 2 shows the relationship between Bs of a normal silica-based optical fiber and pump light intensity P. 6x is /-/
X/0−” From the 0 diagram where e, s, u
In the case of 0, as the pump light increases, B.

は直線的に増加することがわかる。ポンプ光パワーは、
Nd : YAGレーザでモードロック・ Qスイッチ
を用いてio’wの出力が得られる。このとき、光Ke
rr効果によって生じるB、の変化量は約/、j’1.
10−5である。
It can be seen that increases linearly. The pump light power is
Nd: io'w output can be obtained using a mode-locked Q switch with a YAG laser. At this time, the light Ke
The amount of change in B caused by the rr effect is approximately /,j'1.
It is 10-5.

第3図にモード間結合係数(以下りと表わす)とBSの
関係を示す。複屈折ファイバ或いは偏波保持ファイバの
モード間結合係数は種々のゆらぎによって決まる量であ
り、複屈折率の差が大きいほど、hは小さくなることが
知られている。従って1式(1)から、入射のポンプ光
によってBsを変えることによってhを変えることがで
きる。すなわち、hはポンプの入射強UPの関数として
表わされる。ここで、hiipx成分のみを励振したと
きP、成分へ移る量の割合を示す。本方法では複屈折フ
ァイバ或いは偏波保持ファイバへの信号光とポンプ光は
Px成分のみであるため、B5はボンプ光が大きくなる
と比例して大きくなり、hは第3図かられかるように小
さくなる。これから、ポンプ光が強くなれば、ファイバ
中でポンプ光 信号光のP、成分へ移る量が小さくなる
現象が生じる。ダイクロイックミラーで信号光とポンプ
光を分離して、検光子で信号光のPy酸成分除去すると
、ポンプ光が弱いときは検光子で除去される信号光は多
く、ポンプ光が強くなるに従って検光子で除去される量
は小さくなシ、信号光のパルス幅が狭くなるパルス幅圧
縮が可能となる。
FIG. 3 shows the relationship between the inter-mode coupling coefficient (hereinafter expressed as below) and BS. It is known that the inter-mode coupling coefficient of a birefringent fiber or polarization-maintaining fiber is determined by various fluctuations, and that the larger the difference in birefringence index, the smaller h becomes. Therefore, from Equation 1 (1), h can be changed by changing Bs depending on the incident pump light. That is, h is expressed as a function of the pump injection strength UP. Here, when only the hiipx component is excited, the ratio of the amount transferred to the P component is shown. In this method, the signal light and pump light to the birefringent fiber or polarization-maintaining fiber are only Px components, so B5 increases proportionally as the pump light increases, and h decreases as shown in Figure 3. Become. As the pump light becomes stronger, a phenomenon occurs in which the amount of pump light transferred to the P component of the signal light in the fiber becomes smaller. When the signal light and pump light are separated by a dichroic mirror and the Py acid component of the signal light is removed by an analyzer, when the pump light is weak, more signal light is removed by the analyzer, and as the pump light becomes stronger, the analyzer removes more signal light. Since the amount removed is small, it is possible to compress the pulse width of the signal light by narrowing the pulse width.

次に、微弱信号が増@される機構について説明する。誘
導グ光子混合によって信号光を増幅するには、弘光子混
合によってポンプ光のエネルギの一部が信号光に変換さ
れるように位相整合条件を満足させなければならない。
Next, the mechanism by which weak signals are increased will be explained. In order to amplify signal light by stimulated photon mixing, phase matching conditions must be satisfied so that part of the energy of pump light is converted into signal light by stimulated photon mixing.

位相整合条件は次式%式% k、kAは誘導≠光子混合により生じ九ストークス光お
よび反ストークス光の波動ベクトルで、k。
The phase matching condition is as follows: k, kA is the wave vector of nine Stokes light and anti-Stokes light produced by induction≠photon mixing, and k.

はポンプ光の波動ベクトルである。信号光とポンプ光の
偏光面は平行であるから、信号光の波長をストークス光
の波長に一致させれば、ポンプ光のエネルギが信号光に
変換されて信号光の増幅が行われる。誘導ラマン効果に
よって生じる高次のストークス光と信号光の波長を一致
きせることによっても、信号光の増幅が可能となる。
is the wave vector of the pump light. Since the polarization planes of the signal light and the pump light are parallel, if the wavelength of the signal light is made to match the wavelength of the Stokes light, the energy of the pump light is converted to the signal light and the signal light is amplified. Amplification of the signal light is also possible by matching the wavelength of the signal light with the high-order Stokes light generated by the stimulated Raman effect.

この信号光のパルス幅圧縮と増幅は、それぞれ異なった
非線形現象を同一のファイバ内で生じさせて行うため、
装置構成が簡単となる。
Pulse width compression and amplification of this signal light are performed by generating different nonlinear phenomena within the same fiber.
The device configuration becomes simple.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明による光パルス幅圧縮増幅
方法では、信号光パルス幅の圧縮を行うことができ、さ
らに誘導弘光子混合や誘導ラマン効果によって、パルス
幅を広げることなく増幅できるため、光通信方式や光セ
ンサー用の極短パルス発生光源として応用できる利点が
ある。
As explained above, in the optical pulse width compression amplification method according to the present invention, the signal light pulse width can be compressed, and furthermore, it can be amplified without widening the pulse width by stimulated photon mixing or stimulated Raman effect. It has the advantage of being applicable as an ultrashort pulse generating light source for optical communication systems and optical sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例、第1図は通常の石英系光フ
ァイバの複屈折り、とポンプ光の強度Pとの関係を示す
図、第3図はモード間結合係数りと複屈折り5の関係を
示す図、第弘図は従来のパルス幅圧縮方法の実施例を示
す図である。 /・・・高出力レーザ、2・・・/4板、3・・・合波
器。 弘・・・偏光子、!・・・複屈折ファイバ、6・・・波
長分波器、7・・・検光子、り・・・レンズ、10・・
・信号用光源。
Fig. 1 shows an embodiment of the present invention, Fig. 1 shows the relationship between the birefringence of a normal silica-based optical fiber and the pump light intensity P, and Fig. 3 shows the relationship between the intermode coupling coefficient and the birefringence. A diagram showing the relationship between the bending and bending 5 is a diagram showing an example of a conventional pulse width compression method. /...High output laser, 2.../4 plates, 3...Multiplexer. Hiro...Polarizer! ... Birefringent fiber, 6... Wavelength demultiplexer, 7... Analyzer, Ri... Lens, 10...
- Signal light source.

Claims (1)

【特許請求の範囲】[Claims] 高出力レーザ光と信号光を合波し、高出力レーザ光パル
スの偏光状態を直線偏光とし、複屈折光ファイバ或いは
偏波保持光ファイバ中の屈折率の大きな光学軸に入射さ
せ、信号光はその偏光状態を、複屈折光ファイバ或いは
偏波保持光ファイバの屈折率の大きな光学軸或いは、こ
れと直交する方向に直線偏光として入射させ、該偏波保
持光ファイバの出力光から高出力レーザ光パルスを分離
し、パルス幅が圧縮された信号光を、入射信号光と直交
する方向に設置した検光子を介して取り出すことを特徴
とする光パルス幅圧縮増幅方法。
The high-power laser light and the signal light are combined, the polarization state of the high-power laser light pulse is linearly polarized, and the signal light is The polarization state is input as linearly polarized light into the optical axis of a birefringent optical fiber or polarization-maintaining optical fiber with a large refractive index, or in a direction perpendicular to this, and high-power laser light is generated from the output light of the polarization-maintaining optical fiber. An optical pulse width compression amplification method characterized by separating pulses and extracting signal light with a compressed pulse width through an analyzer installed in a direction orthogonal to the incident signal light.
JP60156749A 1985-07-16 1985-07-16 Optical pulse width compressing and amplifying method Pending JPS6217736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60156749A JPS6217736A (en) 1985-07-16 1985-07-16 Optical pulse width compressing and amplifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60156749A JPS6217736A (en) 1985-07-16 1985-07-16 Optical pulse width compressing and amplifying method

Publications (1)

Publication Number Publication Date
JPS6217736A true JPS6217736A (en) 1987-01-26

Family

ID=15634474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60156749A Pending JPS6217736A (en) 1985-07-16 1985-07-16 Optical pulse width compressing and amplifying method

Country Status (1)

Country Link
JP (1) JPS6217736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290833U (en) * 1988-12-28 1990-07-18
JPH0583204A (en) * 1991-09-20 1993-04-02 Fujitsu Ltd Optical transmitter
JP2009265683A (en) * 1997-01-28 2009-11-12 Imra America Inc Apparatus and method for generating high power optical pulses
JP2010250350A (en) * 2004-09-01 2010-11-04 Fujitsu Ltd Optical switch and optical waveform monitoring device utilizing optical switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848513A (en) * 1981-09-18 1983-03-22 Nec Corp Optical amplifier for wave shaping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848513A (en) * 1981-09-18 1983-03-22 Nec Corp Optical amplifier for wave shaping

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290833U (en) * 1988-12-28 1990-07-18
JPH0583204A (en) * 1991-09-20 1993-04-02 Fujitsu Ltd Optical transmitter
JP2009265683A (en) * 1997-01-28 2009-11-12 Imra America Inc Apparatus and method for generating high power optical pulses
JP2010250350A (en) * 2004-09-01 2010-11-04 Fujitsu Ltd Optical switch and optical waveform monitoring device utilizing optical switch

Similar Documents

Publication Publication Date Title
US20170176762A1 (en) Universal Polarization Converter
US5579420A (en) Optical filter
JP2850891B2 (en) Optical filter module and optical amplifying device using the same
US5657155A (en) Optical tap coupler device
EP0945750A3 (en) Polarizing beam splitter/combiner
EP0758493B1 (en) Single polarization fiber and amplifier
CA2353010A1 (en) Optical coupling device and method
EP0959375A3 (en) Optical attenuator
CA3012946A1 (en) Fiber-based broadband polarization-entangled photon source
EP1168035A3 (en) Polarization beam splitter or combiner
WO2003012506A3 (en) Electro optical device with parallel sections for orthogonal polarization modes
EP1521989B1 (en) All-fiber linear design depolarizer
JPS6217736A (en) Optical pulse width compressing and amplifying method
WO2000042465A1 (en) Optical isolator using stimulated brillouin scattering phase conjugation mirrors and its application to an optical amplifier system
US6813397B2 (en) Micro-optic polarization beam multiplexing/de-multiplexing system
JP2975497B2 (en) In-line optical isolator
JP3716981B2 (en) Optical isolator
JPS63157133A (en) Multiplexing circuit and separating circuit for optical pulse
JPS5929219A (en) Optical coupler with terminal for monitoring light output
AU675424B2 (en) Improvements to optical phase shifting
JP2781056B2 (en) Optical logic circuit
JPS5864088A (en) Optical fiber laser amplifier
CN113495374A (en) Method and system for improving diffraction efficiency of acousto-optic tunable filter
Doughty et al. Novel acoustically tuned fibre laser
JPH07104217A (en) Optical device