JPS62241736A - Timing advance control system for constant speed driving unit - Google Patents

Timing advance control system for constant speed driving unit

Info

Publication number
JPS62241736A
JPS62241736A JP8549186A JP8549186A JPS62241736A JP S62241736 A JPS62241736 A JP S62241736A JP 8549186 A JP8549186 A JP 8549186A JP 8549186 A JP8549186 A JP 8549186A JP S62241736 A JPS62241736 A JP S62241736A
Authority
JP
Japan
Prior art keywords
speed
vehicle speed
differential term
order differential
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8549186A
Other languages
Japanese (ja)
Other versions
JPH069942B2 (en
Inventor
Junji Takahashi
淳二 高橋
Masaki Hitotsuya
一津屋 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP61085491A priority Critical patent/JPH069942B2/en
Priority to CA000526319A priority patent/CA1292301C/en
Priority to EP86202379A priority patent/EP0227198B1/en
Priority to DE8686202379T priority patent/DE3678408D1/en
Priority to US06/948,134 priority patent/US4870583A/en
Publication of JPS62241736A publication Critical patent/JPS62241736A/en
Publication of JPH069942B2 publication Critical patent/JPH069942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent control at a high speed range from going to instability, by restraining speed hunting from occurring by what a higher order differential term is contained in a timing advance vehicular speed, while making a coefficient of this higher order differential term have speed dependency. CONSTITUTION:The vehicular speed signal inputted is processed for its timing advance by way of a vehicular speed signal processing part 1 or the like, and such a timing advance speed that is more advanced in phase than the inputted vehicular speed is found. In this case, a lower order differential term [for example, a primary differential term f' (t)] and a higher order differential term [for example, a secondary differential term f'' (t)] are added to the input vehicular speed f (t), setting it down to a timing advance vehicular speed g (t). At this time, the input vehicular speed f (t) is differentiated by differentiator, doubling a coefficient K1, and furthermore differentiated by a differentiator 7, doubling a coefficient K2, finding the timing advance vehicular speed g (t). In addition,this coefficient K2 is varied according to the setting vehicular speed. With this constitution, an overcompensation part by the lower order differential term f' (t) is offset by the higher order differential term f'' (t), while when the stored vehicular speed is higher, the coefficient K2 is made smaller than a low speed range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、定速走行装置の制御遅れを補償すると共に、
高速域での安定性を損わないようにした進角制御方式に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention compensates for control delays in a constant speed traveling device, and
This invention relates to an advance angle control method that does not impair stability at high speeds.

〔従来の技術〕[Conventional technology]

車速センサから得られる車速信号を制御用のマイクロコ
ンピュータに入力し、成る時点の車速を記憶して以後の
走行車速を該記憶車速(設定車速)に一致させるように
スロットル開度を自動制御する定速走行装置は、該スロ
ットル開度を制御するアクチュエータの機械的な応答遅
れやその他の遅れ要素を有するため、そのままではこの
制御遅れのために精度の高い制御系を得ることが困難で
ある。
The vehicle speed signal obtained from the vehicle speed sensor is input into the control microcomputer, the vehicle speed at that point in time is stored, and the throttle opening is automatically controlled so that the subsequent traveling vehicle speed matches the stored vehicle speed (set vehicle speed). Since the high-speed traveling device has a mechanical response delay of the actuator that controls the throttle opening and other delay elements, it is difficult to obtain a highly accurate control system due to the control delay.

このため従来は、例えば第5図に示すように進角制御し
て制御遅れを補償することがある。同図<a)は定速走
行装置の制御系の概略を示すもので、車速か車速信号に
反映することで系全体は閉ループとなる。車速信号処理
から出力処理までは制御用マイクロコンピュータの処理
であり、アクチュエータは図示せぬスロットル開度を自
動制御するものである。
For this reason, conventionally, advance angle control is sometimes performed to compensate for the control delay, as shown in FIG. 5, for example. Figure <a) shows an outline of the control system of the constant speed traveling device, and by reflecting the vehicle speed on the vehicle speed signal, the entire system becomes a closed loop. Processing from vehicle speed signal processing to output processing is performed by a control microcomputer, and an actuator (not shown) automatically controls throttle opening.

車速信号処理は入力車速信号をノイズ除去のフィルタリ
ングをする処理を含み、最終的に走行車速f (t)を
出力する。この走行車速は、セントスイッチをオンにし
たときに以後の目標車速vMとして記憶され、また定速
走行中は該記憶車速vMとの差を検出する基礎になる。
The vehicle speed signal processing includes filtering the input vehicle speed signal to remove noise, and finally outputs the traveling vehicle speed f (t). This traveling vehicle speed is stored as the subsequent target vehicle speed vM when the center switch is turned on, and becomes the basis for detecting the difference from the stored vehicle speed vM while the vehicle is traveling at a constant speed.

そして、この速度差を基にアクチュエータを駆動する。The actuator is then driven based on this speed difference.

この出力処理には、例えば記憶車速をセラl−デユーテ
ィとして、これに速度差に応じたデユーティを加減した
パルス列でアクチュエータを駆動するデユーティ制御方
式がある。
This output processing includes, for example, a duty control method in which the stored vehicle speed is set as a duty, and the actuator is driven by a pulse train with a duty adjusted or subtracted based on the speed difference.

但し、走行車速f (tlと記憶車速vMとの差でアク
チュエータを制御すると制御遅れが生ずるので、第5図
の方式では走行車速f (t)にその1次微分項f′T
t)を定数に1倍して加算した進角車速g (t)g(
t)” f(tl+K + ・f’(t)を用いる進角
制御をしている。
However, if the actuator is controlled based on the difference between the vehicle speed f (tl) and the stored vehicle speed vM, a control delay will occur, so in the method shown in FIG.
Advance angle vehicle speed g (t) g(
Advance angle control is performed using f(tl+K + ·f'(t)).

この進角車速g (tlは第5図(b)に示すように入
力車速r (t)に対し位相進み分を有するので、その
分で制御遅れを補償できることになる。同図(C1は三
角波入力の場合である。
Since this advanced vehicle speed g (tl has a phase advance with respect to the input vehicle speed r (t) as shown in FIG. 5(b), the control delay can be compensated for by that amount. This is the case for input.

〔発明が解決しようとする問題点〕 ところで、第5図+alの進角車速g (t)は1次微
分項r’(t)を含むだけであるので、その進角位相φ
の最大値は第6図に示すように90°であり、周波数が
高い程進角時間は小さくなる。このため例えば車両ゲイ
ンが高い場合には遅れ要素に対する補償が充分に得られ
ず、車速ハンチングを生し易い。第7図はこの動作例で
、高いゲインの下で40 Kml h台でセットした場
合にハンチングが長時間続く様子を示している。
[Problem to be solved by the invention] By the way, since the advance angle vehicle speed g (t) in FIG.
The maximum value of is 90° as shown in FIG. 6, and the higher the frequency, the shorter the advance time. For this reason, for example, when the vehicle gain is high, sufficient compensation for the delay element cannot be obtained, and vehicle speed hunting is likely to occur. FIG. 7 is an example of this operation, and shows how hunting continues for a long time when the setting is in the 40 Kml h range under a high gain.

本発明は、進角車速g (t)に高次の微分項をも含ま
せることで、上述した車速ハンチングを抑え、且つ該微
分項の係数に車速依存性を持たせることで高速域での制
御が不安定になることを防止しようとするものである。
The present invention suppresses the above-mentioned vehicle speed hunting by including a high-order differential term in the advance angle vehicle speed g (t), and also makes the coefficient of the differential term dependent on the vehicle speed in a high-speed range. This is intended to prevent control from becoming unstable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、入力車速を進角処理して該入力車速より位相
の進んだ進角車速を求める定速走行装置の進角制御方式
において、該入力車速の低次微分項と高次微分項を求め
、且つ各微分項にそれぞれの係数を乗じてから該入力車
速に加えて該進角車速を算出すると共に、該高次微分項
の係数を設定車速の高速域では低速域より小さくするこ
とを特徴とするものである。
The present invention provides an advance angle control method for a constant speed traveling device that advances an input vehicle speed to obtain an advanced vehicle speed that is ahead in phase than the input vehicle speed. and calculate the advance vehicle speed by multiplying each differential term by the respective coefficient and adding it to the input vehicle speed, and also make the coefficient of the higher-order differential term smaller in the high-speed range of the set vehicle speed than in the low-speed range. This is a characteristic feature.

〔作用〕[Effect]

入力車速f (tlにその低次微分項(例えば1次微分
項f′(t))と高次微分項(例えば2次微分項r/F
(t))を加えて進角車速g (t)とすれば、低次微
分項による過補償部分を高次微分項によって相殺するこ
とができるので、車両ゲインが高くとも車速ハンチング
を短時間で収束させることができる。このため、同じ種
類の制御器を量産してゲインの異なる車両に幅広く用い
ることができる。
Input vehicle speed f (tl has its low-order differential term (for example, first-order differential term f'(t)) and high-order differential term (for example, second-order differential term r/F)
(t)) to obtain the advanced vehicle speed g (t), the overcompensation part due to the low-order differential term can be canceled out by the high-order differential term, so even if the vehicle gain is high, vehicle speed hunting can be suppressed in a short time. It can be converged. Therefore, the same type of controller can be mass-produced and used in a wide range of vehicles with different gains.

但し、このようにすると、車速信号にギヤのガタやケー
ブルの捩れによる高周波変調等の乱れが存在する場合、
かえって高速域での制御が不安定になる。そこで、本発
明では設定車速(記憶車速)が高いときは高次微分項の
係数を低速域より小さくすることで制御不安定になるこ
とを回避する。
However, in this case, if there is any disturbance in the vehicle speed signal such as high frequency modulation due to gear play or cable twist,
On the contrary, control at high speeds becomes unstable. Therefore, in the present invention, when the set vehicle speed (memorized vehicle speed) is high, the coefficient of the higher-order differential term is made smaller than in the low speed range, thereby avoiding unstable control.

このようにしても高速域の進角補償効果がさほど低下す
ることはない。これは、一般に制御遅れは低速域におい
て生じ易く、高速域のそれは1次微分項でも十分に補償
できるからである。
Even if this is done, the advance angle compensation effect in the high speed range will not be significantly reduced. This is because control delays are generally more likely to occur in low speed ranges, and delays in high speed ranges can be sufficiently compensated for by the first-order differential term.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロック図で、■は車
速信号処理部、2はセットスイッチ、3は設定車速記憶
部、4は出力処理部、5はアクチュエータ、6は1次微
分器、7は2次微分器である。
FIG. 1 is a block diagram showing an embodiment of the present invention, where ■ is a vehicle speed signal processing section, 2 is a set switch, 3 is a set vehicle speed storage section, 4 is an output processing section, 5 is an actuator, and 6 is a first-order differential 7 is a second-order differentiator.

本例では入力車速f (t)は微分器6で微分されて係
数に1倍される一方、微分器7で更に微分されて係数に
2倍されるので、これらを加算して得られる進角車速g
 (t)は g(tl−f(t)+K + ・f’ (t)+K 2
 ・f  (t)・・・・・・(11 となる。
In this example, the input vehicle speed f (t) is differentiated by the differentiator 6 and multiplied by 1 into a coefficient, while it is further differentiated by the differentiator 7 and multiplied by 2 into a coefficient, so the advance angle obtained by adding these Vehicle speed g
(t) is g(tl-f(t)+K + ・f' (t)+K 2
・f(t)・・・(11)

上式の右辺第3項が第5図の方式にはない部分で、これ
が第2図ta)に示すB部になる。このB部は上式の右
辺第2項による過補償部Aを相殺する作用がある。
The third term on the right side of the above equation is a part that is not present in the method shown in FIG. 5, and this is part B shown in FIG. 2 (ta). This portion B has the effect of canceling out the overcompensation portion A caused by the second term on the right side of the above equation.

第3図はKI=1.8.に2=1.8X0.6とした本
発明の進角特性図で、進角位相が180°まで拡大され
ている。このため、高い周波数域まで十分な位相進み時
間を保持することができる。
Figure 3 shows KI=1.8. This is an advance angle characteristic diagram of the present invention in which 2=1.8×0.6, and the advance angle phase is expanded to 180°. Therefore, a sufficient phase lead time can be maintained up to a high frequency range.

第4図(A)はこの場合の動作波形図で、高ゲインの下
で車速を40 K+m/ hから5 Km/ hずつ増
加させた場合である。第7図と比較すれば明らかなよう
に、ハンチングの絶対量は少なく、且つ短時間で収束し
ている。
FIG. 4(A) is an operational waveform diagram in this case, where the vehicle speed is increased from 40 Km/h to 5 Km/h under high gain. As is clear from a comparison with FIG. 7, the absolute amount of hunting is small and converges in a short time.

尚、デユーティ変動を緩和するために高次微分項の移動
平均をとってもよい。つまり、マイクロコンピュータ内
の進角車速計算は VSn =VRn +K + ・(VRn −vl?n
−1)+K 2  ((VRn−VRn−+)  (V
Rn−I VRn−2) )但し、VSn :進角車速 VRn :計測点における走行車速 に1:1次微分項の係数 に2:2次微分項の係数 で行われるが、例えば2回移動平均法を採用して上式の
右辺第3項を K 2 ・((VRn−VRn−1)   (VRn−
1−VRn−2)+(VRn−+  VRn−2)  
(VRn−2VRn−3)) / 2とすればデユーテ
ィ変動を緩和できる。この場合、計算サイクルを50m
sとするとに+=36゜K2=216程度である。
Note that a moving average of higher-order differential terms may be taken in order to alleviate duty fluctuations. In other words, the advance angle vehicle speed calculation in the microcomputer is VSn = VRn +K + ・(VRn −vl?n
-1)+K 2 ((VRn-VRn-+) (V
Rn-I VRn-2)) However, VSn: Advance angle vehicle speed VRn: Traveling vehicle speed at the measurement point 1: Coefficient of first-order differential term 2: Coefficient of second-order differential term, for example, two-time moving average By adopting the method, the third term on the right side of the above equation is expressed as K 2 ・((VRn-VRn-1) (VRn-
1-VRn-2)+(VRn-+ VRn-2)
(VRn-2VRn-3))/2, duty fluctuation can be alleviated. In this case, the calculation cycle is 50m
If s is +=36°K2=216 or so.

上述した説明は2次微分項の係数に2を一定にした基本
動作に関するもので、本発明ではこの係数に2を更に設
定車速に応じて変化させる。第2図(blにその一例を
示す。同図は設定車速(VMとする)が一定値(この例
では40Km/h)を越えたら係数に2を初期値TK2
から次第に低下させる特性を示している。この場合のに
2はTK2=1、08 sとして K 2 =TK2−0.015S/K11l/ h x
 (VM−40Km/ h)で表わされ、VM= 12
4 Km/ hでに2=0となる。
The above explanation relates to the basic operation in which the coefficient of the second-order differential term is kept constant at 2, but in the present invention, the coefficient is further changed to 2 in accordance with the set vehicle speed. An example of this is shown in Figure 2 (bl). In the figure, when the set vehicle speed (VM) exceeds a certain value (40 km/h in this example), the initial value TK2 is set to 2 as a coefficient.
It shows characteristics that gradually decrease from . In this case, 2 is TK2 = 1, 08 s, and K 2 = TK2 - 0.015S/K11l/ h x
(VM-40Km/h), VM=12
At 4 Km/h, 2=0.

この他に、K2を段階的に低下させる方法や、例えばV
M=80Km/hを境に低速域ではに2=TK2、高速
域ではに2″=、0という2段切替えをする方法を採用
してもよい。
In addition, there are methods to lower K2 in stages, for example, V
A two-stage switching method may be adopted in which 2=TK2 is used in the low speed range and 2″=0 in the high speed range, with M=80 Km/h as the boundary.

第4図(B)は(1)式のに2を固定したまま高速域で
定速走行している場合である。このようなときに車速信
号に乱れがあるとデユーティは大幅に変化する。このデ
ユーティの変化は第4図(C)に示す従来方式の場合よ
り大きく、2次微分項を加えることの弊害を示している
。しかし、K2を高速域で小さくすると2次微分項の効
用は低下するので、第4図(DJのようにデユーティの
変化幅は狭くなり、制御の安定性が保たれる。
FIG. 4(B) shows the case where the vehicle is traveling at a constant speed in a high speed range with (2) fixed in equation (1). If there is a disturbance in the vehicle speed signal at such times, the duty will change significantly. This change in duty is larger than in the conventional method shown in FIG. 4(C), indicating the disadvantage of adding a second-order differential term. However, if K2 is made small in the high speed range, the effectiveness of the second-order differential term decreases, so as shown in FIG. 4 (DJ), the range of change in duty becomes narrower and stability of control is maintained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、車両ゲインが高くと
も車速ハンチングが生じにくいので、大きな制御遅れを
持つ低車速域や、車速信号処理部に大きな時定数をもつ
制御系においても充分な位相補償を実施できる。また、
車速信号に乱れがある場合でも高速域で制御不安定にな
ることを防止できる利点がある。
As described above, according to the present invention, vehicle speed hunting is unlikely to occur even when the vehicle gain is high, so that sufficient phase is maintained even in low vehicle speed ranges with large control delays or in control systems where the vehicle speed signal processing section has a large time constant. Compensation can be provided. Also,
This has the advantage of preventing unstable control at high speeds even if there is a disturbance in the vehicle speed signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
その動作説明図、第3図は本発明の進角特性図、第4図
は本発明の動作波形図、第5図は従来の進角制御方式の
説明図、第6図はその進角特性図、第7図は従来の動作
波形図である。 図中、lは車速信号処理部、2はセットスイッチ、3は
記憶部、°4は出力処理部、5はアクチュエータ、6は
1次微分器、7は2次微分器、K2は2次微分項の係数
である。 出 願 人  富士通テン株式会社 代理人弁理士  青  柳   稔 本発明/1?bイ餐;皮彫4迄 第4図(A) 2階イ玖分方式 %式%() 1pυ@分方式 第4図(C) 従来の遺角設置りp方式
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is an explanatory diagram of its operation, Fig. 3 is a lead angle characteristic diagram of the present invention, Fig. 4 is an operation waveform diagram of the present invention, and Fig. 5 6 is an explanatory diagram of a conventional advance angle control method, FIG. 6 is a diagram of its advance angle characteristics, and FIG. 7 is a diagram of conventional operation waveforms. In the figure, l is a vehicle speed signal processing section, 2 is a set switch, 3 is a storage section, °4 is an output processing section, 5 is an actuator, 6 is a first-order differentiator, 7 is a second-order differentiator, and K2 is a second-order differentiator. is the coefficient of the term. Applicant Fujitsu Ten Ltd. Representative Patent Attorney Minoru Aoyagi Invention/1? Fig. 4 (A) 2nd floor A Kubu method % type % () 1 pυ @ Min method Fig. 4 (C) Conventional hidden corner installation p method

Claims (1)

【特許請求の範囲】[Claims]  入力車速を進角処理して該入力車速より位相の進んだ
進角車速を求める定速走行装置の進角制御方式において
、該入力車速の低次微分項と高次微分項を求め、且つ各
微分項にそれぞれの係数を乗じてから該入力車速に加え
て該進角車速を算出すると共に、該高次微分項の係数を
設定車速の高速域では低速域より小さくすることを特徴
とする定速走行装置の進角制御方式。
In an advance angle control method for a constant speed traveling device that advances an input vehicle speed to obtain an advanced vehicle speed whose phase is more advanced than the input vehicle speed, a low-order differential term and a high-order differential term of the input vehicle speed are determined, and each The advance angle vehicle speed is calculated by multiplying the differential terms by respective coefficients and adding them to the input vehicle speed, and the coefficient of the higher order differential term is made smaller in a high speed range of a set vehicle speed than in a low speed range. Advance angle control method for speed running equipment.
JP61085491A 1985-12-26 1986-04-14 Advance control method for constant speed traveling device Expired - Lifetime JPH069942B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61085491A JPH069942B2 (en) 1986-04-14 1986-04-14 Advance control method for constant speed traveling device
CA000526319A CA1292301C (en) 1985-12-26 1986-12-24 Constant speed cruise control system of duty ratio control type and a leading angle control method thereof
EP86202379A EP0227198B1 (en) 1985-12-26 1986-12-24 A constant speed cruise control system of duty ratio control type and a leading angle control method thereof
DE8686202379T DE3678408D1 (en) 1985-12-26 1986-12-24 SYSTEM FOR SPEED CONTROL BY ADJUSTING THE SOLAR POWER AND A METHOD FOR REGULATING WITH PHASE PREFERENCE.
US06/948,134 US4870583A (en) 1985-12-26 1986-12-29 Constant speed cruise control system of the duty ratio control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085491A JPH069942B2 (en) 1986-04-14 1986-04-14 Advance control method for constant speed traveling device

Publications (2)

Publication Number Publication Date
JPS62241736A true JPS62241736A (en) 1987-10-22
JPH069942B2 JPH069942B2 (en) 1994-02-09

Family

ID=13860399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085491A Expired - Lifetime JPH069942B2 (en) 1985-12-26 1986-04-14 Advance control method for constant speed traveling device

Country Status (1)

Country Link
JP (1) JPH069942B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227954A (en) * 1994-02-22 1995-08-29 Toshin Kogyo Kk Screen frame dewing preventing device of automatic screen printing machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168728A (en) * 1985-12-26 1987-07-25 Fujitsu Ten Ltd Duty control type constant speed traveling controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168728A (en) * 1985-12-26 1987-07-25 Fujitsu Ten Ltd Duty control type constant speed traveling controller

Also Published As

Publication number Publication date
JPH069942B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US10884121B2 (en) Inter-vehicle distance control device
KR19980080854A (en) Vehicle tracking control device
US5248921A (en) Servo motor control device
US11851059B2 (en) Vehicle-to-vehicle distance control device
US4870583A (en) Constant speed cruise control system of the duty ratio control type
JPS62241736A (en) Timing advance control system for constant speed driving unit
JP3736017B2 (en) Preceding vehicle tracking control device
US7392116B2 (en) Method for operating a chassis regulating system and a device to carry out the method
JP2567548B2 (en) Inter-vehicle distance control device
JPS62199528A (en) Spark advance control method of constant driving system
JP2003271246A (en) Speed control device
JPH1095214A (en) Suspension controlling device
JPH07322664A (en) Controller for electric motor
JP2006347404A (en) Acceleration calculation device for vehicle and traveling controller for vehicle
SU911460A2 (en) Extremum regulator for objects with relay
JPH1082719A (en) Engine torque control device
JP3136804B2 (en) Constant speed traveling control device
JPS62168720A (en) Duty control type constant speed running control device
JP2616556B2 (en) Disk unit
JPH0431135A (en) Constant speed travel controller for vehicle
JPH0577656A (en) Constant speed running control device for vehicle
JP2502797B2 (en) Constant speed traveling equipment for vehicles
CN117799617A (en) Torque control method and device, electronic equipment and storage medium
JPS62168734A (en) Duty control type constant speed traveling controller
JPH0331608B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term