JPS62168728A - Duty control type constant speed traveling controller - Google Patents

Duty control type constant speed traveling controller

Info

Publication number
JPS62168728A
JPS62168728A JP29422885A JP29422885A JPS62168728A JP S62168728 A JPS62168728 A JP S62168728A JP 29422885 A JP29422885 A JP 29422885A JP 29422885 A JP29422885 A JP 29422885A JP S62168728 A JPS62168728 A JP S62168728A
Authority
JP
Japan
Prior art keywords
duty
vehicle speed
car speed
control
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29422885A
Other languages
Japanese (ja)
Other versions
JPH0331608B2 (en
Inventor
Masaki Hitotsuya
一津屋 正樹
Akira Miyazaki
晃 宮崎
Minoru Takahashi
稔 高橋
Tatsuo Teratani
寺谷 達夫
Takeshi Tachibana
立花 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP29422885A priority Critical patent/JPS62168728A/en
Priority to EP86202379A priority patent/EP0227198B1/en
Priority to DE8686202379T priority patent/DE3678408D1/en
Priority to CA000526319A priority patent/CA1292301C/en
Priority to US06/948,134 priority patent/US4870583A/en
Publication of JPS62168728A publication Critical patent/JPS62168728A/en
Publication of JPH0331608B2 publication Critical patent/JPH0331608B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To improve stability, by carrying out simultaneously a control which decreases the deflection of a car speed sharply and a control which makes the deflection of a car speed zero slowly, varying radically two integral elements in case that the acceleration of a car speed exceeds a prescribed value, and holding down the deflection of a car speed. CONSTITUTION:A control value is on-off controlled by an output duty D which is obtained from the control line of a prescribed incline, and a real traveling car speed Vn is approached to a stored target car speed VM. In the above apparatus, when G is designated for the incline of a control line, DELTAV for the deflection of a car speed, DM and SD1 for integral elements which respond to the change of the duty quickly and slowly, and (n) for a constant, a set duty SD corresponding to the target car speed VM is calculated by a formula SD=SD1+(DM-SD1)/n, and the output duty D is calculated by a formula D=GXDELTAV+SD. And when the acceleration of car speed DELTAVn exceeds a certain value, the DM and the SD1 are sharply varied at formulae DM DM-A.DELTAVn and SD1 SD1-B.DELTAVn.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、デユーティ制御型の定速走行制御装置に関し
、特に設定車速と実車速の差(以下、車速偏差ΔVと呼
ぶ)を零に制御するために、早い積分要素1と遅い積分
要素2の2つを設け、車速偏差を急速に減少させる制御
と緩かに車速偏差を零にする制御を同時に実施し、また
、車速加速度がある値を越えた場合は、この2つの積分
要素を加速度に応じて急激に変化させ、車速の変化を小
さくしようとするものである。
[Detailed Description of the Invention] C. Industrial Application Field] The present invention relates to a duty control type constant speed cruise control device, and in particular to a device for controlling the difference between a set vehicle speed and an actual vehicle speed (hereinafter referred to as vehicle speed deviation ΔV) to zero. In order to achieve this, two integration elements, fast integration element 1 and slow integration element 2, are provided, and control to rapidly reduce the vehicle speed deviation and control to gently reduce the vehicle speed deviation to zero are simultaneously performed, and the vehicle speed acceleration is controlled to a certain value. If the value exceeds , these two integral elements are rapidly changed in accordance with the acceleration in an attempt to reduce the change in vehicle speed.

〔従来の技術〕[Conventional technology]

デユーティ制御式の定速走行制御装置は、目標車速(設
定車速)で定速走行するのに必要なデユーティ値をセッ
トデユーティとし、目標車速と走行車速の差に応じたデ
ユーティ量をセットデユーティに加算または減算して出
力しながら定速走行制御を行なうものである。しかし、
必要デユーティ量は、アクチュエータ、スロットル駆動
系およびエンジンの特性のばらつきや路面勾配、エアコ
ン等エンジン負荷の有無、変速ギア段等車両負荷の変化
によって変わるものであり、セットデユーティ固定では
、必要デユーティ量との差に応じた車速偏差が発生する
In a duty control type constant speed driving control device, the duty value required to travel at a constant speed at the target vehicle speed (set vehicle speed) is set as the set duty, and the duty amount according to the difference between the target vehicle speed and the traveling vehicle speed is set as the set duty. It performs constant speed driving control while adding or subtracting the value and outputting the result. but,
The required duty amount changes depending on variations in the characteristics of the actuator, throttle drive system, and engine, road slope, the presence or absence of engine loads such as air conditioners, and changes in vehicle loads such as transmission gears.If the set duty is fixed, the required duty amount A vehicle speed deviation occurs depending on the difference between the two.

第6図はこの種の定速走行制御装置の一例を示すシステ
ム構成図で、制御器ECUは車両駆動軸の回転に比例し
て回転する磁石によってON/ OFFするリードスイ
ッチを備えた車速センサからの信号により走行車速を検
知する。ECUはセントスイッチがONされると走行車
速を記憶し、OFF後アクチュエータACTのコントロ
ールバルブをデユーティ制御する。コントロールバルブ
ON時は負圧が導入され、スロットルSLにリンクした
ダイアフラム発生力を高める。OFF時は大気が導入さ
れダイアフラム発生力を弱める。この間制御中はリリー
スバルブをONとし、大気をしゃ断している。キャンセ
ル信号(クラッチスイッチ(A/T車はニュートラルス
タートスイッチ)、パーキングスイッチ、またはブレー
キスイッチ)が入力されると、コントロールバルブ、リ
リースバルブ共OFFとし、両方から大気を導入してす
みやかに制御を停止させる。キャンセル後リジュームス
イッチをONすると、前回記憶車速での走行制御が復活
される。
Figure 6 is a system configuration diagram showing an example of this type of constant speed running control device.The controller ECU is a vehicle speed sensor equipped with a reed switch that is turned on and off by a magnet that rotates in proportion to the rotation of the vehicle drive shaft. The speed of the vehicle is detected based on the signal. The ECU memorizes the traveling vehicle speed when the cent switch is turned on, and controls the control valve of the actuator ACT on a duty basis after the cent switch is turned off. When the control valve is ON, negative pressure is introduced, increasing the force generated by the diaphragm linked to the throttle SL. When it is OFF, the atmosphere is introduced and weakens the diaphragm generating force. During this time, the release valve is turned on to shut off the atmosphere. When a cancel signal (clutch switch (neutral start switch for A/T vehicles), parking switch, or brake switch) is input, both the control valve and release valve are turned OFF, atmospheric air is introduced from both, and control is immediately stopped. let When the resume switch is turned on after cancellation, the travel control at the previously memorized vehicle speed is restored.

ECUにはマイクロコンピュータを使用し、そこでの処
理をブロック化すると第7図のようになる。コントロー
ルバルブをオン、オフ制御する出力デユーティDはメモ
リに記憶された目標車速vMと走行車速Vnの差に応じ
て決められるが、詳細には走行車速Vnそのものではな
く、車速変化成分<*分成分)を加算したスキップ車速
Vsを用いる。これはアクチュエータの作動遅れやスロ
ットル、駆動系のヒステリシスや遊びによるむだ時間を
進み補償するためである。従って、スキップ車速Vsは
次式により求められる。
A microcomputer is used for the ECU, and the processing therein is divided into blocks as shown in Fig. 7. The output duty D for controlling the control valve on and off is determined according to the difference between the target vehicle speed vM stored in the memory and the traveling vehicle speed Vn, but in detail, it is not the traveling vehicle speed Vn itself, but the vehicle speed change component < * minute component. ) is used as the skip vehicle speed Vs. This is to advance and compensate for dead time due to actuator delay, throttle, and drive system hysteresis and play. Therefore, the skip vehicle speed Vs is determined by the following equation.

Vs=Vn+Kx (Vn−V、1−1 )   −(
1)また、出力デユーティDは次式により求められる。
Vs=Vn+Kx (Vn-V, 1-1) -(
1) Also, the output duty D is determined by the following equation.

D=GXΔV + S D o         ・・
・・・・(2)〔発明が解決しようとする問題点〕 上述した定速走行制御装置は、車速か変化したとき第8
図に示す制御線上で出力デユーティDを変化させ、該車
速を設定車速VMに収束させようとする。この制御線の
勾配がゲインGである。この制御における重要な点は、
設定車速を維持するデユーティを制御中心にもってくる
事である。しかし従来の方式は制御中心になるべきデユ
ーティ(前述したセットデユーティSD a)を一つも
しくは車速だけに応じたデユーティしかもっておらず、
実際には車両、路面9重量、車速等によってさまざまな
値をとる必要がある事のギャップから、車速偏差ΔVの
発生を避ける事ができなかった。
D=GXΔV + S Do...
...(2) [Problem to be solved by the invention] The above-mentioned constant speed cruise control device has a problem that the eighth
The output duty D is changed on the control line shown in the figure to try to converge the vehicle speed to the set vehicle speed VM. The slope of this control line is the gain G. The important point in this control is that
The main purpose of control is to maintain the set vehicle speed. However, the conventional system only has one duty (the aforementioned set duty SD a) that should be the center of control, or only has a duty that corresponds only to the vehicle speed.
In reality, the occurrence of vehicle speed deviation ΔV could not be avoided due to the need to take various values depending on the vehicle, road surface9 weight, vehicle speed, etc.

例えば、第8図のように、ある設定車速で走行するため
にはAなるデユーティが必要であるとすると、車速は線
にそって低下していきデユーティと車速のつり合うB点
で走行する事になり、この車速差がセット偏差として残
る。そのためこの様な車両で定速走行する状態は第9図
の如くなり、走行速度が路面負荷によって変化する。
For example, as shown in Figure 8, if duty A is required to drive at a certain set speed, the vehicle speed will decrease along the line until it travels at point B, where the duty and vehicle speed are balanced. This vehicle speed difference remains as a set deviation. Therefore, the state in which such a vehicle runs at a constant speed is as shown in FIG. 9, and the running speed changes depending on the road load.

上述したセット偏差は制御線が0点を通るように修正さ
れればOになる。本発明はその一手法を提案するもので
ある。
The set deviation mentioned above becomes O if the control line is corrected so as to pass through the 0 point. The present invention proposes one such method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、スロットル開度を調整するアクチュエータの
コントロールバルブを、車速とデユーティの変換特性を
示す所定勾配の制御線から得られる出力デユーティDで
オン、オフ制御し、実際の走行車速を記憶された目標車
速に接近させるデユーティ制御型の定速走行制御装置に
おいて、該目標車速に対応するセットデユーティSDを
5D=SD 1 + (DM−5D I)/nで計算し
、また出力デユーティDを r)=GXΔV+SD で計算し、さらに車速加速度ΔVnが一定値を越えたと
きは DM4−DM−A−ΔVn SDI−3DI−B・ΔVn (A、B:定数(単位は%デユーティ/加速度)なる補
正式でDM、SDIを急変させて、該セットデーティS
Dを出力デユーティDに接近する方向へ積分修正する制
御器を備えたことを特徴とする、ものである。
In the present invention, a control valve of an actuator that adjusts the throttle opening is controlled on and off using an output duty D obtained from a control line with a predetermined slope indicating the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed is memorized. In a duty control type constant speed cruise control device that approaches a target vehicle speed, the set duty SD corresponding to the target vehicle speed is calculated as 5D=SD 1 + (DM-5D I)/n, and the output duty D is calculated as r )=GXΔV+SD, and when the vehicle speed acceleration ΔVn exceeds a certain value, the correction formula is DM4-DM-A-ΔVn SDI-3DI-B・ΔVn (A, B: constant (unit: % duty/acceleration) Then suddenly change the DM and SDI, and set the corresponding set date S.
The present invention is characterized in that it includes a controller that integrally corrects D in a direction toward the output duty D.

〔作用〕[Effect]

本発明では出力デユーティDを D=GXΔV+SD         ・・・・・・(
3)で計算する。SDは可変セットデユーティで、S 
D = S D I + (D M −S D I )
 / n  −+4)で表わされる。DMは高速積分要
素で、デユーティの変化(車速の変化とも言える)に対
し早く応答してセント偏差を減少させる機能を持つ。動
作概念としては、第1図(a)に示すように偏差を減少
させる方向へ制御線を高速回転させるものである。
In the present invention, the output duty D is D=GXΔV+SD (
Calculate in 3). SD is a variable set duty, and S
D = SDI + (DM - SDI)
/ n −+4). DM is a high-speed integral element that has the function of quickly responding to changes in duty (also known as changes in vehicle speed) and reducing center deviation. The operating concept is to rotate the control line at high speed in a direction that reduces the deviation, as shown in FIG. 1(a).

これに対しSDIは低速積分要素で、デユーティの変化
に対し遅く応答してセット偏差を減少させる機能を持つ
。動作概念としては第1図(blに示すように偏差を減
少させる方向へ制御線を平行移動させるものである。
On the other hand, the SDI is a low-speed integral element and has the function of responding slowly to changes in duty and reducing set deviation. The concept of operation is to move the control line in parallel in a direction that reduces the deviation, as shown in FIG.

DM、SDI共に初期値は(2)式のSDoに相当し、
デユーティDの変化に対し第2図のように変化する。同
図(a)は平坦路から登板路に移って車速が低下(デユ
ーティが増加)する場合の動作例であり、同図(b)は
下り坂を含む動作例である。同図(alに示すように車
速変化に伴ないデユーティDが変化すると、DM、SD
Iは共に変化し始めるが、DMの方が応答が早いので先
ずD’Mが追従する。
The initial values of both DM and SDI correspond to SDo in equation (2),
As the duty D changes, it changes as shown in FIG. FIG. 4(a) shows an example of the operation when the vehicle speed decreases (duty increases) as the vehicle moves from a flat road to an uphill road, and FIG. 2(b) shows an example of the operation including a downhill slope. As shown in the same figure (al), when the duty D changes with the change in vehicle speed, DM, SD
Both I start to change, but since DM has a faster response, D'M follows first.

そして、SDIが遅れて追従するので総合的なSDは1
点鎖線のように変化し、やがてデユーティDに一致する
。これはSDがSDoからD=Aまで移動するためで、
このとき(3)式はΔV=O,5D=Aで安定する。
Then, since the SDI follows with a delay, the overall SD is 1
It changes as shown by the dotted chain line and eventually matches the duty D. This is because SD moves from SDo to D=A,
At this time, equation (3) is stabilized with ΔV=O and 5D=A.

出力デユーティDは(31(41式からD=G¥、Δv
+ (S01 + (DM−SD1) /n)・・・・
・・(5) と表わされる。
The output duty D is (31 (from formula 41, D=G\, Δv
+ (S01 + (DM-SD1) /n)...
...(5) It is expressed as.

第3図は本発明の基本フローチャートで、第7図のブロ
ック図に対応するものである。本例では高速積分要素D
MをデユーティDとの差に比例して変化させるようにし
ている。つまり、D M(il−D M(H−1)  
+α      ・・・・・・(6)として今回の要素
DM(ilを前回DM(H1)よりαだけ変化させると
き、このαを例えば α= (D(11−DM(+−x) ) /’K   
 ・・・・・・(7)とすれば、今回のデユーティD 
(i)と前回の要素DM(11)  との差が反映され
て、修正速度が可変されるようになる(Kは定数)。
FIG. 3 is a basic flowchart of the present invention, and corresponds to the block diagram of FIG. 7. In this example, the fast integral element D
M is changed in proportion to the difference from duty D. That is, DM(il-DM(H-1)
+α ...... (6) When changing the current element DM (il by α from the previous DM (H1)), for example, α = (D(11-DM(+-x)) /' K
......(7), then the current duty D
The correction speed is made variable by reflecting the difference between (i) and the previous element DM(11) (K is a constant).

これに対し低速積分要素SDIはαより小さい変数βを
用いて S D 1 (i) −S D 1 (i−t)  +
β     ・・・・・・(8)と表現されるが、この
βを固定値とすれば修正速度は一定になる。例えば D    >SDI    のときβ=0.2%(i−
1)(il) D(H−1) < S D I (+1)のときβ= 
−0,2%とする。
On the other hand, the slow integral element SDI uses a variable β smaller than α and calculates S D 1 (i) − S D 1 (i−t) +
It is expressed as β (8), but if this β is set to a fixed value, the correction speed will be constant. For example, when D > SDI, β = 0.2% (i-
1) (il) When D(H-1) < S D I (+1), β=
-0.2%.

このようにして各時点のDM、SDIが求まれば、これ
を(3)式に代入してSDが、また(4)式に代入して
デユーティDが算出される。
Once the DM and SDI at each point in time are determined in this way, SD is calculated by substituting them into equation (3), and duty D is calculated by substituting them into equation (4).

ところで、上述した制御方法はデユーティの動きに応じ
速い積分要素1  (DM)とゆっくりした積分要素2
 (SDI)の中間点を中心としてデユーティ計算をす
る方法をとっており、路面変動等には速い積分要素の動
きによって応答することをねらいとしているが、一般的
走行状態においてDMの動きが速すぎると、ゲインが大
きくなりすぎ車速ハンチングにつながるため、あまり速
い動きはできない。このため、急激な変化等の速い応答
を要求されるときは、このままでは制御が遅れがちにな
り、車速のオーバーシュート、アンダーシュートが大き
くなりすぎる結果となる。そこで、本発明では車速加速
度ΔVnがある一定値を越えると、各積分要素から加速
度に比例した値を減算することによって急激な変化への
速い応答性を付与し、制御の遅れを防止する。
By the way, the above-mentioned control method uses a fast integral element 1 (DM) and a slow integral element 2 according to the movement of the duty.
The system uses a method of calculating duty centered on the midpoint of (SDI), and aims to respond to road surface fluctuations by fast movement of the integral element, but under normal driving conditions, the DM movement is too fast. If this happens, the gain becomes too large, leading to vehicle speed hunting, making it impossible to move very quickly. For this reason, when a quick response such as a sudden change is required, control tends to be delayed if left as is, resulting in excessive overshoot or undershoot of the vehicle speed. Therefore, in the present invention, when the vehicle speed acceleration ΔVn exceeds a certain value, a value proportional to the acceleration is subtracted from each integral element to provide quick response to sudden changes and prevent control delays.

具体的にはDMからはA・ΔVnを減算し、またSDI
からはB・ΔVnを減算する。A、 Bは定数で、単位
は%デユーティ/加速度である。
Specifically, A・ΔVn is subtracted from DM, and SDI
Subtract B·ΔVn from . A and B are constants, and the unit is % duty/acceleration.

〔実施例〕〔Example〕

第4図は本発明の一実施例を示すフローチャートで、第
3図のフローに破線枠内の処理を追加したものである。
FIG. 4 is a flowchart showing one embodiment of the present invention, in which processing within the dashed line frame is added to the flow of FIG. 3.

本例では DM−DM−A−ΔV n        −” −(
9]においてA=4とし、また 5DI−3DI−B・ΔV n、      =・・=
αωにおいてB=1としであるので、加速度ΔVnが例
えば1.25 km/ h / secを越えるとDM
からは4・ΔVnが、またSDlからはΔVnが減算さ
れる。このことによりDM、SDIは急激に変化する。
In this example, DM-DM-A-ΔV n −” −(
9], A=4, and 5DI-3DI-B・ΔV n, =...=
Since B=1 at αω, if the acceleration ΔVn exceeds, for example, 1.25 km/h/sec, DM
4·ΔVn is subtracted from , and ΔVn is subtracted from SDl. As a result, DM and SDI change rapidly.

但し、ΔVnは加速時に+、減速時に−の符号をとるの
で、デユーティを下げるときはDM。
However, since ΔVn takes a positive sign during acceleration and a negative sign during deceleration, use DM when lowering the duty.

SDl共に減少し、逆に上げるときはDM、SDl共に
増加する。
Both SDl decreases, and conversely, when increasing, both DM and SDl increase.

第5図はこの動作説明図で、(a)は第3図の基本方式
によるもの、(b)は第4図の改良方式によるものであ
る。同図(b)のデユーティ変化は(a)よりも急峻に
なり、この結果路面勾配が急変しても車速変化は小さく
抑えられる。
FIG. 5 is an explanatory diagram of this operation, in which (a) is based on the basic method shown in FIG. 3, and (b) is based on the improved method shown in FIG. 4. The duty change shown in FIG. 6(b) is more steep than that shown in FIG. 4(a), and as a result, even if the road surface gradient changes suddenly, the change in vehicle speed can be suppressed to a small value.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、路面変化等によりセ
ットデユーティの移動が必要な時は要素DMの動きによ
り動的ゲインを大きくとり、車速偏差を小さくおさえつ
つ要素SDIを移動させていく事で、車速の変動を小さ
く抑えながら、車速偏差を零にする事が可能となる。ま
た、加速度が一定値を越えたらDM、SDIを加速度に
比例して変化させるので、路面勾配の急変時にも車速偏
差を小さく抑え、安定した制御性を確保することができ
る。
As described above, according to the present invention, when it is necessary to move the set duty due to changes in the road surface, etc., the dynamic gain is increased by moving the element DM, and the element SDI is moved while keeping the vehicle speed deviation small. This makes it possible to reduce vehicle speed deviation to zero while suppressing fluctuations in vehicle speed. Furthermore, since DM and SDI are changed in proportion to the acceleration when the acceleration exceeds a certain value, it is possible to suppress the vehicle speed deviation to a small value even when the road surface gradient changes suddenly, and to ensure stable controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明の動作説
明図、第3図は本発明の基本フローチャート、第4図は
本発明の一実施例を示すフローチャート、第5図は第3
図および第4図の動作説明図、第6図はデユーティ制御
型定速走行装置のシステム構成図、第7図はそのマイコ
ン処理のブロック図、第8図は従来のデユーティ制御の
特性図、第9図はその動作説明図である。 図中、E(jJは制御器、ACTはアクチュエータ、S
Lはスロットルである。
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an explanatory diagram of the operation of the present invention, Fig. 3 is a basic flowchart of the invention, Fig. 4 is a flowchart showing an embodiment of the invention, and Fig. 5 is a diagram illustrating the operation of the invention. Third
6 is a system configuration diagram of the duty control type constant speed traveling device, FIG. 7 is a block diagram of its microcomputer processing, FIG. 8 is a characteristic diagram of conventional duty control, and FIG. FIG. 9 is an explanatory diagram of the operation. In the figure, E (jJ is the controller, ACT is the actuator, S
L is the throttle.

Claims (1)

【特許請求の範囲】 スロットル開度を調整するアクチュエータのコントロー
ルバルブを、車速とデューティの変換特性を示す所定勾
配の制御線から得られる出力デューティDでオン、オフ
制御し、実際の走行車速を記憶された目標車速に接近さ
せるデューティ制御型の定速走行制御装置において、該
目標車速に対応するセットデューティSDを SD=SD1+(DM−SD1)/n で計算し、また出力デューティDを D=G×ΔV+SD {G:制御線の勾配 ΔV:車速偏差 DM:デューティ変化に早く応答する積分要素SD1:
デューティ変化に遅く応答する積分要素n:定数} で計算し、さらに車速加速度ΔVnが一定値を越えたと
きは DM←DM−A・ΔVn SD1←SD1−B・ΔVn {A、B:定数(単位は%デューティ/加速度)なる補
正式でDM、SD1を急変させて、該セットデーティS
Dを出力デューティDに接近する方向へ積分修正する制
御器を備えたことを特徴とする、デューティ制御型の定
速走行制御装置。
[Claims] A control valve of an actuator that adjusts the throttle opening is controlled on and off by an output duty D obtained from a control line with a predetermined slope indicating a conversion characteristic between vehicle speed and duty, and the actual traveling vehicle speed is stored. In a duty control type constant speed cruise control device that approaches a target vehicle speed, the set duty SD corresponding to the target vehicle speed is calculated as SD=SD1+(DM-SD1)/n, and the output duty D is calculated as D=G. ×ΔV+SD {G: Gradient of control line ΔV: Vehicle speed deviation DM: Integral element that responds quickly to duty changes SD1:
An integral element that responds slowly to duty changes: n: constant}. Furthermore, when vehicle speed acceleration ΔVn exceeds a certain value, DM←DM-A・ΔVn SD1←SD1-B・ΔVn {A, B: constant (unit DM and SD1 are suddenly changed using the correction formula (% duty/acceleration), and the set data S
A duty control type constant speed travel control device, comprising a controller that integrally corrects D in a direction approaching an output duty D.
JP29422885A 1985-12-26 1985-12-26 Duty control type constant speed traveling controller Granted JPS62168728A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29422885A JPS62168728A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller
EP86202379A EP0227198B1 (en) 1985-12-26 1986-12-24 A constant speed cruise control system of duty ratio control type and a leading angle control method thereof
DE8686202379T DE3678408D1 (en) 1985-12-26 1986-12-24 SYSTEM FOR SPEED CONTROL BY ADJUSTING THE SOLAR POWER AND A METHOD FOR REGULATING WITH PHASE PREFERENCE.
CA000526319A CA1292301C (en) 1985-12-26 1986-12-24 Constant speed cruise control system of duty ratio control type and a leading angle control method thereof
US06/948,134 US4870583A (en) 1985-12-26 1986-12-29 Constant speed cruise control system of the duty ratio control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29422885A JPS62168728A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller

Publications (2)

Publication Number Publication Date
JPS62168728A true JPS62168728A (en) 1987-07-25
JPH0331608B2 JPH0331608B2 (en) 1991-05-07

Family

ID=17804997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29422885A Granted JPS62168728A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller

Country Status (1)

Country Link
JP (1) JPS62168728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199528A (en) * 1986-02-27 1987-09-03 Fujitsu Ten Ltd Spark advance control method of constant driving system
JPS62241736A (en) * 1986-04-14 1987-10-22 Fujitsu Ten Ltd Timing advance control system for constant speed driving unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667417A (en) * 1979-11-07 1981-06-06 Hitachi Ltd Car speed control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667417A (en) * 1979-11-07 1981-06-06 Hitachi Ltd Car speed control unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199528A (en) * 1986-02-27 1987-09-03 Fujitsu Ten Ltd Spark advance control method of constant driving system
JPH0518737B2 (en) * 1986-02-27 1993-03-12 Fujitsu Ten Ltd
JPS62241736A (en) * 1986-04-14 1987-10-22 Fujitsu Ten Ltd Timing advance control system for constant speed driving unit

Also Published As

Publication number Publication date
JPH0331608B2 (en) 1991-05-07

Similar Documents

Publication Publication Date Title
JP3358509B2 (en) Travel control device for vehicles
JP3214172B2 (en) Differential limit torque control device
US20030105573A1 (en) Gear shifting on target speed reduction in vehicle speed control system
JPH0727232Y2 (en) Vehicle constant-speed traveling device
JPH0376247B2 (en)
JPH03156135A (en) Driving wheel slip controller for vehicle
JPS62168728A (en) Duty control type constant speed traveling controller
JP3680701B2 (en) Vehicle speed control device
JPH08282330A (en) Follow-up travel controller for vehicle
JPS62168732A (en) Duty control type constant speed traveling controller
JPH0920160A (en) Following run controller for vehicle
JPS62168726A (en) Duty control type constant speed traveling controller
JPH0331607B2 (en)
JPS62168729A (en) Duty control type constant speed traveling controller
JPS62168734A (en) Duty control type constant speed traveling controller
JPS62168720A (en) Duty control type constant speed running control device
JP3591015B2 (en) Constant-speed cruise control system for vehicles
JPH08169251A (en) Follow-up travel control device for vehicle
JPH07304349A (en) Constant speed traveling controller for vehicle
JPH043335B2 (en)
JPH01125529A (en) Drive force controller for vehicle
JPS642819Y2 (en)
JPH043334B2 (en)
JPS62120235A (en) Constant speed traveling device for automobile
JPS62120237A (en) Constant speed traveling device for automobile