JPS62168734A - Duty control type constant speed traveling controller - Google Patents

Duty control type constant speed traveling controller

Info

Publication number
JPS62168734A
JPS62168734A JP29884985A JP29884985A JPS62168734A JP S62168734 A JPS62168734 A JP S62168734A JP 29884985 A JP29884985 A JP 29884985A JP 29884985 A JP29884985 A JP 29884985A JP S62168734 A JPS62168734 A JP S62168734A
Authority
JP
Japan
Prior art keywords
duty
car speed
vehicle speed
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29884985A
Other languages
Japanese (ja)
Other versions
JPH0331610B2 (en
Inventor
Masaki Hitotsuya
一津屋 正樹
Akira Miyazaki
晃 宮崎
Hirobumi Yamazaki
博文 山崎
Tatsuo Teratani
寺谷 達夫
Takeshi Tachibana
立花 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP29884985A priority Critical patent/JPS62168734A/en
Priority to CA000526319A priority patent/CA1292301C/en
Priority to EP86202379A priority patent/EP0227198B1/en
Priority to DE8686202379T priority patent/DE3678408D1/en
Priority to US06/948,134 priority patent/US4870583A/en
Publication of JPS62168734A publication Critical patent/JPS62168734A/en
Publication of JPH0331610B2 publication Critical patent/JPH0331610B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a hunting immediately after a target car speed is set up, by fixing the correction term of a set duty to constant values which are different from each other in car speed ranges for a prescribed time after the target car speed is set up. CONSTITUTION:The entitled device calculates a skip car speed Vs by adding an acceleration which is obtained by differentiating a traveling car speed Vn to this traveling car speed Vn which is obtained from a car speed signal. And a control valve for controlling the opening of a throttle is controlled by calculating on output duty D from a gain G, a set duty SD and a deflection DELTAV between the car speed Vs and a target car speed (stored car speed) VM. The set duty SD is determined using an integral element SD1 which responds to the change of a duty slowly and another integral element DM which responds thereto. In this case, the another integral element DM which responds thereto. In this case, the correction term beta of the SD1 is fixed to constant values which are different form each other in car speed ranges for a prescribed time after the target car speed is set up, thereby an integral speed is restrained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、目標車速に対応するセットデユーティを積分
補正するデユーティ制御型の定速走行制御装置に関し、
特に目標車速セット直後のノλンチングを防止しようと
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a duty control type constant speed cruise control device that integrally corrects a set duty corresponding to a target vehicle speed.
Particularly, this is intended to prevent λ-nching immediately after the target vehicle speed is set.

〔従来の技術〕[Conventional technology]

デユーティ制御式の定速走行制御装置は、目標車速で定
速走行するのに必要なデユーティ値をセットデユーティ
とし、目標車速と走行車速の差に応じたデユーティ量を
セットデユーティに加算または減算して出力しながら定
速走行制御を行なうものである。しかし、必要デユーテ
ィ量は、アクチュエータ、スロットル駆動系およびエン
ジンの特性のばらつきや路面勾配、エアコン等エンジン
負荷の有無、変速ギア段等車両負荷の変化によって変わ
るものであり、セットデユーティ固定では、必要デユー
ティ量との差に応じた車速偏差が発生する。
A duty control type constant speed driving control device uses the duty value required to travel at a constant speed at the target vehicle speed as the set duty, and adds or subtracts the duty amount according to the difference between the target vehicle speed and the traveling vehicle speed to or from the set duty. It performs constant speed driving control while outputting the same amount of power. However, the required duty amount changes depending on variations in the characteristics of the actuator, throttle drive system, and engine, road surface slope, the presence or absence of engine loads such as air conditioners, and changes in vehicle loads such as transmission gears. A vehicle speed deviation occurs according to the difference with the duty amount.

第4図はこの種の定速走行制御装置の一例を示すシステ
ム構成図で、制御器ECUは車両駆動軸の回転に比例し
て回転する磁石によってON/ OFFするリードスイ
ッチを備えた車速センサからの信号により走行車速を検
知する。ECUはセットスイッチがONされると走行車
速を記憶し、OFF後アクチュエータACTのコントロ
ールバルブをデユーティ制御する。コントロールパルブ
ON時は負圧が導入され、スロットルSLにリンクした
ダイアフラム発生力を高める。OFF時は大気が導入さ
れダイアフラム発生力を弱める。この間制御中はリリー
スバルブをONとし、大気をしゃ断している。キャンセ
ル信号(クラッチスイッチ(A/Tiはニュートラルス
タートスイッチ)、パーキングスイッチ、またはプレー
キスインチ)が入力されると、コントロールバルブII
JIJ−スバルプ共OFFとし、両方から大気を導入し
てすみやかに制御を停止させる。キャンセル後リジュー
ユムスイッチをONすると、前回記憶車速での走行制御
が復活される。
Figure 4 is a system configuration diagram showing an example of this type of constant speed cruise control device.The controller ECU is connected to a vehicle speed sensor equipped with a reed switch that is turned on and off by a magnet that rotates in proportion to the rotation of the vehicle drive shaft. The speed of the vehicle is detected based on the signal. When the set switch is turned on, the ECU memorizes the traveling vehicle speed, and after the set switch is turned off, it controls the control valve of the actuator ACT on a duty basis. When the control pulse is turned on, negative pressure is introduced, increasing the force generated by the diaphragm linked to the throttle SL. When it is OFF, the atmosphere is introduced and weakens the diaphragm generating force. During this time, the release valve is turned on to shut off the atmosphere. When a cancel signal (clutch switch (A/Ti is a neutral start switch), parking switch, or brake switch) is input, the control valve II
Turn off both JIJ and Subaru, introduce atmospheric air from both, and immediately stop control. When the resume switch is turned on after cancellation, the travel control at the previously memorized vehicle speed is restored.

ECUにはマイクロコンピュータを使用し、そこでの処
理をブロック化すると第5図のようになる。コントロー
ルバルブをオン、オフ制御する出力デユーティDは目標
車速(記憶車速)VMと走行車速Vnの差に応じて決め
られるが、詳細には走行車速Vnそのものではなく、車
速変化成分(微分成分)を加算したスキップ車速Vsを
用いる。
A microcomputer is used for the ECU, and the processing therein is divided into blocks as shown in FIG. The output duty D for controlling the control valve on and off is determined according to the difference between the target vehicle speed (memory vehicle speed) VM and the traveling vehicle speed Vn, but in detail, it is not the traveling vehicle speed Vn itself but the vehicle speed change component (differential component). The added skip vehicle speed Vs is used.

これはアクチュエータの作動遅れやスロットル、駆動系
のヒステリシスや遊びによるむだ時間を進み補償するた
めである。従って、スキップ車速■Sは次式により求め
られる。
This is to advance and compensate for dead time due to actuator delay, throttle, and drive system hysteresis and play. Therefore, the skip vehicle speed S is determined by the following equation.

V s =Vn +K (Vn−Vn−1)     
・”−(1)また、出力デユーティDは次式により求め
られる。
Vs = Vn +K (Vn-Vn-1)
・”-(1) Also, the output duty D is obtained by the following equation.

上式のVM−VSは車速偏差Δ■であり、また制御速度
幅VBは制御ゲイン(制御線の勾配)Gの逆数であるの
で、(2)式は次のように表わすこともできる。
Since VM-VS in the above equation is the vehicle speed deviation Δ■, and the control speed width VB is the reciprocal of the control gain (gradient of the control line) G, equation (2) can also be expressed as follows.

D=GXΔV+SD          ・・・・・・
(3)ところで、定速走行に必要なデユーティ量の基準
値をセットデユーティとして固定設定すると、アクチュ
エータ系のバラツキや車両負荷変動によって車速偏差が
生じる。例えば第6図に示すように記憶車速VM (例
えば80Km/h)に対応するセットデユーティSDが
40%で、必要デユーティiDが55%であるとすると
、最初はA点にある制御中心がデユーティ不足のため車
速の低下に伴いB点に収束する。B点での必要デユーテ
ィ量もほぼ55%であるので(詳細には1点鎖線で示す
ように必要デユーティ量は0.1%/ Km/ h程度
の車速係数を持つが、この例ではほとんど無視できる)
、制御速度幅vBを例えば20 Km/ hとすれば2
0 X −= −3Km/ hの偏差が発生し、B点で
77 Km/ hで制御されることになる。
D=GXΔV+SD ・・・・・・
(3) By the way, if the reference value of the duty amount required for constant speed running is fixed as a set duty, vehicle speed deviation will occur due to variations in the actuator system and vehicle load fluctuations. For example, as shown in Fig. 6, if the set duty SD corresponding to the stored vehicle speed VM (e.g. 80 Km/h) is 40% and the required duty iD is 55%, the control center at point A is initially set to duty. Due to the shortage, the vehicle speed converges to point B as the vehicle speed decreases. Since the required duty amount at point B is also approximately 55% (in detail, as shown by the dashed line, the required duty amount has a vehicle speed coefficient of approximately 0.1%/Km/h, but it is almost ignored in this example. can)
, if the control speed width vB is, for example, 20 Km/h, then 2
A deviation of 0 X -= -3 Km/h occurs, and the speed is controlled at 77 Km/h at point B.

かかる車速偏差は制御中心を第6図のA点から0点へ修
正すればOにすることができる。このためには同図の制
御線を実線位置から破線位置へ平行移動させればよい。
Such a vehicle speed deviation can be reduced to O by correcting the control center from point A in FIG. 6 to point 0. For this purpose, the control line in the figure may be moved in parallel from the solid line position to the broken line position.

この方法の1つに出力デユーティDとセットデユーティ
SDとの差ΔDの大きさによって修正速度を変えるもの
がある。
One of these methods is to change the correction speed depending on the magnitude of the difference ΔD between the output duty D and the set duty SD.

下式は上記方法による修正式で、補正項βは表1の値を
とる。
The equation below is a modified equation based on the above method, and the correction term β takes the values shown in Table 1.

5D=SD+β           ・・・・・・(
4)表   1 〔発明が解決しようとする問題点〕 ところで、定速走行制御は走行中にセットスイッチを押
し、その時の走行車速を目標車速として記憶することか
ら開始するので、このセット直後は急激なデユーティ変
動が起こる。このため、その後の定速走行中と同一の制
御を行うとSDの動きが速すぎて第2図(b)のよ・う
な車速ハンチングが長びく可能性がある。本発明はこの
点を改善しようとするものである。
5D=SD+β ・・・・・・(
4) Table 1 [Problems to be solved by the invention] By the way, constant speed driving control starts by pressing a set switch while driving and storing the traveling vehicle speed at that time as the target vehicle speed. A large duty fluctuation occurs. For this reason, if the same control as that during subsequent constant speed driving is performed, the movement of the SD may be too fast and the vehicle speed hunting as shown in FIG. 2(b) may be prolonged. The present invention attempts to improve this point.

〔問題点を解決するための手段〕 本発明は、スロットル開度を調整するアクチュエータの
コントロールバルブを、車速とデユーティの変換特性を
示す所定勾配の制御線から得られる出力デユーティDで
オン、オフ制御し、実際の走行車速を記憶された目標車
速に接近させる際に、該目標車速に対応するセットデユ
ーティSDと該出力デユーティDとの差ΔDに応じた積
分速度で前記制御線を平行移動させて、該セットデーテ
ィSDを出力デユーティDに接近する方向へ積分修正す
る制御器を備えたデユーティ制御型の定速走行制御装置
において、該目標車速セット後一定時間はセットデユー
ティSDの補正項βを車速域で異なる一定値に固定して
積分速度を制限することを特徴とするものである。
[Means for Solving the Problems] The present invention turns on and off a control valve of an actuator that adjusts the throttle opening using an output duty D obtained from a control line with a predetermined slope that indicates the conversion characteristics between vehicle speed and duty. When the actual traveling vehicle speed approaches the stored target vehicle speed, the control line is moved in parallel at an integral speed according to the difference ΔD between the set duty SD corresponding to the target vehicle speed and the output duty D. In a duty control type constant speed cruise control device equipped with a controller that integrally corrects the set date SD in a direction approaching the output duty D, a correction term of the set duty SD is used for a certain period of time after the target vehicle speed is set. This is characterized in that the integral speed is limited by fixing β to a constant value that varies in the vehicle speed range.

〔作用〕[Effect]

目標車速のセット直後はそれ以前の状態が判明していな
いので、補正項βの値を表1から選択すると大きすぎる
こともある。そ゛こで本発明ではセット後一定時間(例
えば14 sec )はβの値を緩やかな積分速度とな
る一定値に制限する。また、この値を車速域で異ならせ
ることで車両ゲインの違いを考慮して最適化を図る。
Immediately after setting the target vehicle speed, the previous state is not known, so if the value of the correction term β is selected from Table 1, it may be too large. Therefore, in the present invention, the value of β is limited to a constant value that provides a slow integration speed for a certain period of time after setting (for example, 14 seconds). In addition, by varying this value depending on the vehicle speed range, optimization is achieved taking into account differences in vehicle gain.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すフローチャートである
。本例のSD補正方式は2つの積分要素DM、SDIを
用いるもので、 5D=SD I + (DM−3D I)/n・(5)
で表わされる。DMは高速積分要素で、DM=DM+α
         ・・・・・・(6)と表わされ、補
正項αを例えば α= (D−DM)/K       ・・・・・・(
7)とすると出力デユーティDの平均値となる。
FIG. 1 is a flowchart showing one embodiment of the present invention. The SD correction method in this example uses two integral elements DM and SDI, and 5D=SD I + (DM-3D I)/n・(5)
It is expressed as DM is a fast integral element, DM=DM+α
......(6), and the correction term α is expressed as, for example, α=(D-DM)/K...(
7), it becomes the average value of the output duty D.

これに対しSDIは低速積分要素で SD I =SD 1+β       ・・・・・・
(8)と表わされる。
On the other hand, SDI is a slow integral element, and SD I =SD 1+β...
It is expressed as (8).

DM、SDI、SD共に初期値はSDoであり、第3図
のようにデユーティDに追従して変化する。
The initial value of DM, SDI, and SD is SDo, which changes following the duty D as shown in FIG.

SDIは第6図の制御線を平行移動させる要素であるに
対し、DMは該制御線をA点を中心に0点方向に回転さ
せる要素である。表1で説明した方式はこのDMを用い
ない1要素の積分方式であるので、2要素力式のSDI
を用いれば(4)式は(8)式と同じ意味を持つ。
SDI is an element that moves the control line in FIG. 6 in parallel, whereas DM is an element that rotates the control line around point A toward the zero point. The method explained in Table 1 is a one-element integration method that does not use this DM, so the SDI of the two-element force formula
If used, equation (4) has the same meaning as equation (8).

第1図のフローチャートはセット後12秒以内と経過後
で制御を変える。つまり、12秒経過後は表1に従いD
−3Dの大きさに応じてβを決定するが、12秒以内は
車速域とり、SDの大小関係から一義的にβを決定する
。つまり、60Km/h以下の低速域ではβ=±0.0
4%/secであり、+はD>SDのとき、−はD≦S
Dのときである。
In the flowchart of FIG. 1, the control is changed within 12 seconds and after the setting. In other words, after 12 seconds, D
β is determined according to the magnitude of -3D, but within 12 seconds, the vehicle speed range is taken into consideration, and β is uniquely determined from the magnitude relationship of SD. In other words, in the low speed range below 60km/h, β = ±0.0
4%/sec, + when D>SD, - when D≦S
It's time for D.

これが60 Km/ hを越える高域ではβ=±0.2
%/secになるだけで、いずれもD−3Dの大きさと
は無関係にβが決定される。このときのβは積分補正速
度を緩やかな一定値にするためのものである。
In the high range exceeding 60 Km/h, β = ±0.2
%/sec, β is determined regardless of the size of D-3D. At this time, β is used to set the integral correction speed to a gentle constant value.

βが決定されると(8)式によりS’DIが計算され、
DMを用いる方式では(6)式によりDMを計算した後
(5)式でSDを計算しくDMを用いなければ(4)式
でSDを計算し)、更に(1)式でデユーティDを計算
して出力する。このフローの1サイクルは例えば50 
m5ecである。
Once β is determined, S'DI is calculated using equation (8),
In the method using DM, DM is calculated using equation (6), then SD is calculated using equation (5); if DM is not used, SD is calculated using equation (4)), and then duty D is calculated using equation (1). and output it. One cycle of this flow is, for example, 50
It is m5ec.

第2図(alは本発明の動作説明図であるが、セット後
一定時間T経過するまでSDIの補正速度をゆるやかな
一定速度にすることで、デユーティ変化に伴う他の因子
の変化量を抑えることができ、この結果同図(blのよ
うなハンチングの発生を防止できる。
Figure 2 (Al is an explanatory diagram of the operation of the present invention; by keeping the SDI correction speed at a gentle constant speed until a certain period of time T has elapsed after setting, the amount of change in other factors accompanying changes in duty is suppressed. As a result, the occurrence of hunting as shown in the same figure (bl) can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、セットデエーティを
積分補正するデユーティ制御型の定速走行制御装置にお
いて、目標車速のセット直後のハンチングを防止できる
利点がある。
As described above, according to the present invention, there is an advantage that hunting can be prevented immediately after the target vehicle speed is set in a duty control type constant speed cruise control device that integrally corrects the set duty.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すフローチャート、第2
図はその動作説明図、第3図は2要素型積分補正方式の
説明図、第4図は定速走行制御装置のシステム構成図、
第5図はそのマイコン処理のブロック図、第6図はデユ
ーティ制御の特性図である。 図中、ECUは制御器、ACTはアクチュエータ、SL
はスロットルである。 出 願 人  富士通テン株式会社 出 願 人  トヨタ自動車株式会社 代理人弁理士  青  柳   稔 6         =区 到 N ←シー1−8    ←冊噸
FIG. 1 is a flowchart showing one embodiment of the present invention, and FIG.
Fig. 3 is an explanatory diagram of its operation, Fig. 3 is an explanatory diagram of the two-element integral correction method, Fig. 4 is a system configuration diagram of the constant speed cruise control device,
FIG. 5 is a block diagram of the microcomputer processing, and FIG. 6 is a characteristic diagram of duty control. In the diagram, ECU is a controller, ACT is an actuator, and SL
is the throttle. Applicant: Fujitsu Ten Ltd. Applicant: Toyota Motor Co., Ltd. Representative Patent Attorney Minoru Aoyagi 6 = Kuto N ←C1-8 ←Shojo

Claims (1)

【特許請求の範囲】[Claims] スロットル開度を調整するアクチュエータのコントロー
ルバルブを、車速とデューティの変換特性を示す所定勾
配の制御線から得られる出力デューティDでオン、オフ
制御し、実際の走行車速を記憶された目標車速に接近さ
せる際に、該目標車速に対応するセットデューティSD
と該出力デューティDとの差ΔDに応じた積分速度で前
記制御線を平行移動させて、該セットデーティSDを出
力デューティDに接近する方向へ積分修正する制御器を
備えたデューティ制御型の定速走行制御装置において、
該目標車速セット後一定時間はセットデューティSDの
補正項βを車速域で異なる一定値に固定して積分速度を
制限することを特徴とするデューティ制御型の定速走行
制御装置。
The control valve of the actuator that adjusts the throttle opening is controlled on and off using an output duty D obtained from a control line with a predetermined slope that indicates the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed approaches the stored target vehicle speed. When setting the set duty SD corresponding to the target vehicle speed.
and the output duty D, the controller moves the control line in parallel at an integral speed according to the difference ΔD between the set data SD and the output duty D, and integrally corrects the set data SD in a direction approaching the output duty D. In a constant speed cruise control device,
A duty control type constant speed cruise control device, characterized in that, for a certain period of time after setting the target vehicle speed, the correction term β of the set duty SD is fixed at a constant value that varies in the vehicle speed range to limit the integral speed.
JP29884985A 1985-12-26 1985-12-28 Duty control type constant speed traveling controller Granted JPS62168734A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29884985A JPS62168734A (en) 1985-12-28 1985-12-28 Duty control type constant speed traveling controller
CA000526319A CA1292301C (en) 1985-12-26 1986-12-24 Constant speed cruise control system of duty ratio control type and a leading angle control method thereof
EP86202379A EP0227198B1 (en) 1985-12-26 1986-12-24 A constant speed cruise control system of duty ratio control type and a leading angle control method thereof
DE8686202379T DE3678408D1 (en) 1985-12-26 1986-12-24 SYSTEM FOR SPEED CONTROL BY ADJUSTING THE SOLAR POWER AND A METHOD FOR REGULATING WITH PHASE PREFERENCE.
US06/948,134 US4870583A (en) 1985-12-26 1986-12-29 Constant speed cruise control system of the duty ratio control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29884985A JPS62168734A (en) 1985-12-28 1985-12-28 Duty control type constant speed traveling controller

Publications (2)

Publication Number Publication Date
JPS62168734A true JPS62168734A (en) 1987-07-25
JPH0331610B2 JPH0331610B2 (en) 1991-05-07

Family

ID=17864995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29884985A Granted JPS62168734A (en) 1985-12-26 1985-12-28 Duty control type constant speed traveling controller

Country Status (1)

Country Link
JP (1) JPS62168734A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898636A (en) * 1981-12-04 1983-06-11 Nippon Denso Co Ltd Constant-speed running device for use in vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898636A (en) * 1981-12-04 1983-06-11 Nippon Denso Co Ltd Constant-speed running device for use in vehicle

Also Published As

Publication number Publication date
JPH0331610B2 (en) 1991-05-07

Similar Documents

Publication Publication Date Title
JPH0523969B2 (en)
KR19990028329A (en) Method and Apparatus for Adjusting Drive Torque
JPS62168734A (en) Duty control type constant speed traveling controller
JPH0331608B2 (en)
JP3092444B2 (en) Constant-speed cruise control device for vehicles
JPH054254B2 (en)
JPH054255B2 (en)
JP3591015B2 (en) Constant-speed cruise control system for vehicles
JPS62168732A (en) Duty control type constant speed traveling controller
JPH07304349A (en) Constant speed traveling controller for vehicle
JP3155089B2 (en) Vehicle control device
JP3235435B2 (en) Vehicle speed control device
JPH0331606B2 (en)
JP2508657B2 (en) Vehicle speed controller
JPH0331607B2 (en)
JPH043335B2 (en)
JPS6264635A (en) Constant speed running device for car
JPH043334B2 (en)
JPS61166734A (en) Constant speed running device of automobile
JP3417220B2 (en) Vehicle speed control device for vehicles
JPH01125529A (en) Drive force controller for vehicle
JPH08295155A (en) Constant running device for vehicle
JPH0274423A (en) Constant speed travel control device
JPS6268138A (en) Correcting system of set deviation of speed controller for car
JPS63269737A (en) Control device for engine