JPH054255B2 - - Google Patents

Info

Publication number
JPH054255B2
JPH054255B2 JP60298125A JP29812585A JPH054255B2 JP H054255 B2 JPH054255 B2 JP H054255B2 JP 60298125 A JP60298125 A JP 60298125A JP 29812585 A JP29812585 A JP 29812585A JP H054255 B2 JPH054255 B2 JP H054255B2
Authority
JP
Japan
Prior art keywords
duty
vehicle speed
speed
control
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60298125A
Other languages
Japanese (ja)
Other versions
JPS62168729A (en
Inventor
Tatsuo Teratani
Takeshi Tachibana
Masumi Nagasaka
Akira Myazaki
Masaki Hitotsuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP29812585A priority Critical patent/JPS62168729A/en
Priority to CA000526319A priority patent/CA1292301C/en
Priority to DE8686202379T priority patent/DE3678408D1/en
Priority to EP86202379A priority patent/EP0227198B1/en
Priority to US06/948,134 priority patent/US4870583A/en
Publication of JPS62168729A publication Critical patent/JPS62168729A/en
Publication of JPH054255B2 publication Critical patent/JPH054255B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、デユーテイ制御式の定速走行制御装
置に関し、特に目標車速に対応するセツトデユー
テイを車速偏差(目標車速と走行車速との差)に
応じた積分速度で修正して該車速偏差を収束する
と共に、積分修正の範囲を制限することにより路
面急変時等の過修正を防止しようとするものであ
る。 〔従来の技術〕 デユーテイ制御式の定速走行制御装置は、目標
車速で定速走行するのに必要はデユーテイ値をセ
ツトデユーテイとし、目標車速と走行車速の差に
応じたデユーテイ量をセツトデユーテイに加算ま
たは減算して出力しながら定速走行制御を行なう
ものである。しかし、必要デユーテイ量は、アク
チユエータ、スロツトル駆動系およびエンジンの
特性やばらつきや路面勾配、エアコン等エンジン
負荷の有無、変速ギア段等車両負荷の変化によつ
て変われものであり、セツトデユーテイ固定で
は、必要デユーテイ量との差に応じた車速偏差が
発生する。 第2図はこの種の定速走行制御装置の一例を示
すシステム構成図で、制御器ECUは車両駆動軸
の回転に比例して回転する磁石によつてON/
OFFするリードスイツチを備えた車速センサか
らの信号により走行車速を検知する。ECUはセ
ツトスイツチがONされると走行車速を記憶し、
OFF後アクチユエータACTのコントロールバル
ブをデユーテイ制御する。コントロールバルブ
ON時は負圧が導入され、スロツトルSLにリンク
したダイアフラム発生力を高める。OFF時は大
気が導入されダイアフラム発生力を弱める。この
間制御中はリリースバルブをONとし、大気をし
や断している。キヤンセル信号(クラツチスイツ
チ(A/T車はニユートラルスタートスイツチ)、
パーキングスイツチ、またはブレーキスイツチ)
が入力されると、コントロールバルブ、リリース
バルブ共OFFとし、両方から大気を導入してす
みやかに制御を停止させる。キヤンセル後リジユ
ームスイツチをONすると、前回記憶車速での走
行制御が復活される。 ECUにはマイクロコンピユータを使用し、そ
こでの処理をブロツク化すると第3図のようにな
る。コントロールバルブをオン、オフ制御する出
力デユーテイDは目標車速(記憶車速)VMと走
行車速Vnの差に応じて決められるが、詳細には
走行車速Vnそのものではなく、車速変化成分
(微分成分)を加算したスキツプ車速sを用いる。
これはアクチエータの作動遅れやスロツトル、駆
動系のヒステリシスや遊びによるむだ時間を進み
補償するとためである。従つて、スキツプ車速
Vsは次式により求められる。 Vs=Vn+K(Vn=Vo-1) ……(1) Vn:現車速 Vo-1:前回車速 K:比例定数 また、出力デユーテイDは次式により求められ
る。 D=SD+VM−VS/VB ……(2) SD:セツトデユーテイ VM:目標車速(記憶車速) VB:制御速度幅 〔発明が解決しようとする問題点〕 ところで、従来方式では定速走行に必要なデユ
ーテイ量の基準値をセツトデユーテイとして固定
設定している為、アクチユエータ系のバラツキや
車両負荷変動によつて車速偏差が生じる。例えば
第4図に示すように記憶車速VM(例えば80Km/
h)に対応するセツトデユーテイSDが40%で、
必要デユーテイ量Dが55%であるとすると、最初
はA点にある制御中心がデユーテイ不足のため車
速の低下に伴いB点に収束する。B点での必要デ
ユーテイ量もほぼ55%であるので(詳細には1点
鎖線で示すように必要デユーテイ量は0.1%/
Km/h程度の車速係数を持つが、この例ではほと
んど無視できる)、制御速度幅VBを例えば20Km/
hとすれば20×40−55/100=−3Km/hの偏差が発 生し、B点で77Km/hで制御されることになる。 かかる車速偏差は制御中心を第4図のA点から
C点へ修正すれば0にすることができるが、この
修正速度が遅いと偏差の収束に時間がかかり、逆
に修正速度が速いと修正の行き過ぎによつて安定
性が損なわれる可能性がある。そこで、本発明は
出力デユーテイとセツトデユーテイの差(原理的
には車速偏差の大きさとも言える)の大きさによ
つて修正速度を変えながら車速偏差を減少させる
ことにより、従来の欠点を効果的に解消しようと
するものである。 〔問題点を解決するための手段〕 本発明は、スロツトル開度を調整するアクチユ
エータのコントロールバルブを、車速とデユーテ
イの変換特性を示す所定勾配の制御線から得られ
る出力デユーテイDでオン、オフ制御し、実際の
走行車速を記憶された目標車速に接近させるデユ
ーテイ制御型の定速走行制御装置において、該目
標車速に対応するセツトデユーテイSDと該出力
デユーテイDとの差ΔDを求め、そのΔDの大き
さに応じた積分速度で前記制御線を所定の範囲を
限度として平行移動させて、該セツトデユーテイ
SDを出力デユーテイDに接近する方向へ積分修
正する制御器を備えたことを特徴とするものであ
る。 〔作用〕 セツトデユーテイSDを固定値としないで、こ
れを修正すれば理論的に車速偏差を0にして目標
車速で定速走行させることができる。このとき、
出力デユーテイDとセツトデユーテイSDとの差
ΔDの大きさによつて修正速度を変えると、安定
性を損なわない範囲で可及的に速やかに車速偏差
を収束できる。但し、車速偏差を常に最小限に保
つには、セツトデユーテイを制限なく修正してい
くことが必要となる。しかし、例えば急登坂路で
次第にセツトデユーテイを増加していつた後に、
急に降坂に移つた場合(峠を越えたような場合)
は、逆にセツトデユーテイの減少に移るが、この
ときECUの遅れおよびアクチユエータ系の遅れ
によつて大きな車速オーバーシユートが発生す
る。逆に降坂から登坂に移つた場合は、関係が逆
になるが、同様の原理により大きな車速アンダー
シユートが発生する。そこで、これを防止するた
めに積分修正の範囲を制限する。 〔実施例〕 第1図は本発明の一実施例を示すフローチヤー
トで、「車速計算」は第3図の走行車速Vnを求め
る処理、続く「スキツプ車速計算」は(1)式のスキ
ツプ車速Vsを求める処理である。本例ではVnの
代りにVsを用いるのでVMとVsの差が車速偏差
ΔVとなる。「出力デユーテイ計算」はこれを制
御速度幅VBを用いてデユーテイ偏差ΔD=ΔV/
VBに変換し、更にセツトデユーテイSDを加えて
(2)式の出力デユーテイDを求める処理である。こ
のとき得られるDとSDからΔDを計算し、その
ΔDの大きさに応じてSDを修正する(初期値は
SD0)。修正式は SD=SD+γ であり、γは下表から求められる。
[Industrial Application Field] The present invention relates to a duty control type constant speed cruise control device, and in particular, a device that corrects a set duty corresponding to a target vehicle speed using an integral speed according to a vehicle speed deviation (difference between a target vehicle speed and a running vehicle speed). This is intended to converge the vehicle speed deviation and to prevent over-correction when the road surface suddenly changes by limiting the range of integral correction. [Prior Art] A duty control type constant speed cruise control device sets a duty value necessary for constant speed traveling at a target vehicle speed as a set duty, and adds or sets a duty amount according to the difference between the target vehicle speed and the traveling vehicle speed to the set duty. It performs constant speed driving control while subtracting and outputting. However, the required duty amount varies depending on the characteristics and variations of the actuator, throttle drive system, and engine, road slope, the presence or absence of engine loads such as air conditioners, and changes in vehicle loads such as transmission gears. A vehicle speed deviation occurs depending on the difference with the duty amount. Figure 2 is a system configuration diagram showing an example of this type of constant speed cruise control device.The controller ECU is turned on/off by a magnet that rotates in proportion to the rotation of the vehicle drive shaft.
The vehicle speed is detected by the signal from the vehicle speed sensor, which is equipped with a reed switch that turns off. When the set switch is turned on, the ECU memorizes the vehicle speed and
After OFF, the control valve of actuator ACT is duty-controlled. control valve
When ON, negative pressure is introduced, increasing the force generated by the diaphragm linked to the throttle SL. When OFF, atmospheric air is introduced and weakens the diaphragm generating force. During this time, the release valve is turned on to cut off the atmosphere. Cancel signal (clutch switch (neutral start switch for A/T vehicles),
parking switch or brake switch)
When this is input, both the control valve and release valve are turned OFF, atmospheric air is introduced from both, and the control is immediately stopped. If you turn on the resume switch after canceling, driving control at the previously memorized vehicle speed will be restored. A microcomputer is used for the ECU, and the processing there is divided into blocks as shown in Figure 3. The output duty D for controlling the control valve on and off is determined according to the difference between the target vehicle speed (memorized vehicle speed) V M and the traveling vehicle speed Vn, but in detail it is not the traveling vehicle speed Vn itself but the vehicle speed change component (differential component). The skip vehicle speed s obtained by adding .
This is to compensate for dead time due to actuator delay, throttle, drive system hysteresis, and play. Therefore, the skip vehicle speed
Vs is determined by the following formula. Vs=Vn+K (Vn=Vo -1 )...(1) Vn: Current vehicle speed Vo -1 : Previous vehicle speed K: Proportionality constant Further, the output duty D is determined by the following equation. D=SD+V M −V S /V B ...(2) SD: Set duty V M : Target vehicle speed (memory vehicle speed) V B : Control speed width [Problem to be solved by the invention] By the way, in the conventional system, the speed is constant. Since the reference value of the duty amount required for driving is fixed as a set duty, vehicle speed deviations occur due to variations in the actuator system and vehicle load fluctuations. For example, as shown in Fig. 4, the memorized vehicle speed V M (e.g. 80 Km/
The set duty SD corresponding to h) is 40%,
Assuming that the required duty amount D is 55%, the control center initially located at point A converges to point B as the vehicle speed decreases due to insufficient duty. Since the required duty amount at point B is approximately 55% (in detail, as shown by the dashed line, the required duty amount is 0.1%/
It has a vehicle speed coefficient of about Km/h, but it can be almost ignored in this example), and the control speed width V B is set to 20 Km/h, for example.
h, a deviation of 20×40-55/100=-3 Km/h will occur, and the control will be at 77 Km/h at point B. Such vehicle speed deviation can be reduced to 0 by correcting the control center from point A to point C in Figure 4, but if the correction speed is slow, it will take time for the deviation to converge, and conversely, if the correction speed is fast, the correction will be difficult. Stability may be compromised by overshooting. Therefore, the present invention effectively overcomes the drawbacks of the conventional system by reducing the vehicle speed deviation while changing the correction speed depending on the size of the difference between the output duty and the set duty (which can also be said to be the size of the vehicle speed deviation in principle). This is what we are trying to resolve. [Means for solving the problem] The present invention turns on and off a control valve of an actuator that adjusts the throttle opening using an output duty D obtained from a control line with a predetermined slope that indicates the conversion characteristics between vehicle speed and duty. In a duty control type constant speed cruise control device that brings the actual traveling vehicle speed closer to a stored target vehicle speed, the difference ΔD between the set duty SD and the output duty D corresponding to the target vehicle speed is determined, and the magnitude of the ΔD is determined. The control line is moved in parallel within a predetermined range at an integral speed corresponding to the set duty cycle.
The present invention is characterized in that it includes a controller that integrally corrects SD in a direction closer to output duty D. [Operation] If the set duty SD is not set to a fixed value, but it is corrected, the vehicle speed deviation can theoretically be reduced to 0, and the vehicle can be driven at a constant speed at the target vehicle speed. At this time,
By changing the correction speed depending on the magnitude of the difference ΔD between the output duty D and the set duty SD, the vehicle speed deviation can be converged as quickly as possible without impairing stability. However, in order to always keep the vehicle speed deviation to a minimum, it is necessary to correct the set duty without limit. However, for example, after gradually increasing the set duty on a steep hill,
If you suddenly go downhill (such as when you cross a mountain pass)
On the other hand, the set duty decreases, but at this time a large vehicle speed overshoot occurs due to the delay in the ECU and the delay in the actuator system. On the other hand, when going from downhill to uphill, the relationship is reversed, but a large vehicle speed undershoot occurs due to the same principle. Therefore, in order to prevent this, the range of integral correction is limited. [Example] Fig. 1 is a flowchart showing an embodiment of the present invention, in which "vehicle speed calculation" is the process of calculating the running vehicle speed Vn shown in Fig. 3, and the following "skip vehicle speed calculation" is the process of calculating the skip vehicle speed of equation (1). This is the process of finding Vs. In this example, Vs is used instead of Vn, so the difference between V M and Vs becomes the vehicle speed deviation ΔV. "Output duty calculation" uses the control speed width V B to calculate the duty deviation ΔD=ΔV/
Convert to V B and add set duty SD
This is a process for finding the output duty D of equation (2). Calculate ΔD from the D and SD obtained at this time, and correct SD according to the size of ΔD (initial value is
SD 0 ). The correction formula is SD=SD+γ, and γ is calculated from the table below.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、デユーテイ
制御式の定速走行制御装置において、基本となる
デユーテイ値を出力デユーテイとの差に応じて速
度を変えて積分修正するので、安定性を失うこと
なく、実用上十分な速さで車速偏差を収束させる
ことができる。また、積分修正する範囲を制限し
たので、路面急変時等の車速のオーバーシユート
やアンダーシユートを低減できる利点がある。
As described above, according to the present invention, in a duty control type constant speed cruise control device, since the basic duty value is integrally corrected by changing the speed according to the difference from the output duty, there is no possibility of loss of stability. Therefore, the vehicle speed deviation can be converged at a speed sufficient for practical use. Furthermore, since the range of integral correction is limited, there is an advantage that overshoot and undershoot of the vehicle speed can be reduced when the road surface suddenly changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローチヤー
ト、第2図はデユーテイ制御式定速走行制御装置
のシステム構成図、第3図はそのマイコン処理の
ブロツク図、第4図は車速とデユーテイの関係を
示す制御線図である。 図中、ECUは定速走行の制御器、ACTはアク
チユエータ、SLはスロツトルである。
Fig. 1 is a flowchart showing an embodiment of the present invention, Fig. 2 is a system configuration diagram of a duty-controlled constant speed cruise control device, Fig. 3 is a block diagram of its microcomputer processing, and Fig. 4 shows vehicle speed and duty. It is a control diagram showing the relationship between the following. In the diagram, ECU is the constant speed driving controller, ACT is the actuator, and SL is the throttle.

Claims (1)

【特許請求の範囲】[Claims] 1 スロツトル開度を調整するアクチユエータの
コントロールバルブを、車速とデユーテイの変換
特性を示す所定勾配の制御線から得られる出力デ
ユーテイDでオン、オフ制御し、実際の走行車速
を記憶された目標車速に接近させるデユーテイ制
御型の定速走行制御装置において、該目標車速に
対応するセツトデユーテイSDと該出力デユーテ
イDとの差ΔDを求め、そのΔDの大きさに応じ
た積分速度で前記制御線を所定の範囲を限度とし
て平行移動させて、該セツトデーテイSDを出力
デユーテイDに接近する方向へ積分修正する制御
器を備えたことを特徴とする、デユーテイ制御型
の定速走行制御装置。
1 The control valve of the actuator that adjusts the throttle opening is controlled on and off using the output duty D obtained from a control line with a predetermined slope that indicates the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed is adjusted to the stored target vehicle speed. In a constant speed cruise control device of duty control type, the difference ΔD between the set duty SD and the output duty D corresponding to the target vehicle speed is determined, and the control line is moved at a predetermined integral speed according to the magnitude of the ΔD. 1. A duty control type constant speed travel control device, comprising a controller that integrally corrects the set date SD in a direction approaching an output duty D by moving the set date SD in parallel within a range.
JP29812585A 1985-12-26 1985-12-27 Duty control type constant speed traveling controller Granted JPS62168729A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29812585A JPS62168729A (en) 1985-12-27 1985-12-27 Duty control type constant speed traveling controller
CA000526319A CA1292301C (en) 1985-12-26 1986-12-24 Constant speed cruise control system of duty ratio control type and a leading angle control method thereof
DE8686202379T DE3678408D1 (en) 1985-12-26 1986-12-24 SYSTEM FOR SPEED CONTROL BY ADJUSTING THE SOLAR POWER AND A METHOD FOR REGULATING WITH PHASE PREFERENCE.
EP86202379A EP0227198B1 (en) 1985-12-26 1986-12-24 A constant speed cruise control system of duty ratio control type and a leading angle control method thereof
US06/948,134 US4870583A (en) 1985-12-26 1986-12-29 Constant speed cruise control system of the duty ratio control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29812585A JPS62168729A (en) 1985-12-27 1985-12-27 Duty control type constant speed traveling controller

Publications (2)

Publication Number Publication Date
JPS62168729A JPS62168729A (en) 1987-07-25
JPH054255B2 true JPH054255B2 (en) 1993-01-19

Family

ID=17855498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29812585A Granted JPS62168729A (en) 1985-12-26 1985-12-27 Duty control type constant speed traveling controller

Country Status (1)

Country Link
JP (1) JPS62168729A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157831A (en) * 1985-12-28 1987-07-13 Aisin Seiki Co Ltd Constant speed travel device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657117A (en) * 1979-10-16 1981-05-19 Nippon Denso Co Ltd Constant speed running control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657117A (en) * 1979-10-16 1981-05-19 Nippon Denso Co Ltd Constant speed running control device

Also Published As

Publication number Publication date
JPS62168729A (en) 1987-07-25

Similar Documents

Publication Publication Date Title
US6671607B2 (en) Vehicle speed control system
US20030105573A1 (en) Gear shifting on target speed reduction in vehicle speed control system
JPH0429573B2 (en)
JP2704774B2 (en) Vehicle drive wheel slip control system
JP2003267085A (en) Travel controller for vehicle
JPH1073033A (en) Driving force control device of vehicle
JPH054255B2 (en)
JPH054254B2 (en)
JPH0331610B2 (en)
JPH0331608B2 (en)
JP3155089B2 (en) Vehicle control device
JPH0331609B2 (en)
JPH0331606B2 (en)
JP3591015B2 (en) Constant-speed cruise control system for vehicles
JPH0331607B2 (en)
JP2005125894A (en) Vehicular speed control device
JP2005127424A (en) Driving force control device for vehicle
JP2590590B2 (en) Constant speed traveling equipment for vehicles
JPH043335B2 (en)
JPH0526689B2 (en)
JPH043334B2 (en)
JPS63106144A (en) Constant speed drive unit for automobile
JPH052530B2 (en)
JPH0572303B2 (en)
JPS63106143A (en) Constant speed drive unit for automobile