JPH0331606B2 - - Google Patents

Info

Publication number
JPH0331606B2
JPH0331606B2 JP60294226A JP29422685A JPH0331606B2 JP H0331606 B2 JPH0331606 B2 JP H0331606B2 JP 60294226 A JP60294226 A JP 60294226A JP 29422685 A JP29422685 A JP 29422685A JP H0331606 B2 JPH0331606 B2 JP H0331606B2
Authority
JP
Japan
Prior art keywords
duty
vehicle speed
speed
control
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294226A
Other languages
Japanese (ja)
Other versions
JPS62168726A (en
Inventor
Masaki Hitotsuya
Akira Myazaki
Hirobumi Ezaki
Tatsuo Teratani
Takeshi Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP29422685A priority Critical patent/JPS62168726A/en
Priority to DE8686202379T priority patent/DE3678408D1/en
Priority to CA000526319A priority patent/CA1292301C/en
Priority to EP86202379A priority patent/EP0227198B1/en
Priority to US06/948,134 priority patent/US4870583A/en
Publication of JPS62168726A publication Critical patent/JPS62168726A/en
Publication of JPH0331606B2 publication Critical patent/JPH0331606B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デユーテイ制御型の定速走行制御装
置に関し、特に設定車速と実車速の差(以下、車
速偏差ΔVと呼ぶ)を零に制御するために、早い
積分要素1と遅い積分要素2の2つを設け、車速
偏差を急速に減少させる制御と緩かに車速偏差を
零にする制御を同時に実施しようとするものであ
り、加えて車速に応じて動的制御ゲインを異なら
せ、安定性を良くしようとするものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a duty control type constant speed cruise control device, and in particular to a device for controlling the difference between a set vehicle speed and an actual vehicle speed (hereinafter referred to as vehicle speed deviation ΔV) to zero. In order to achieve this, two integral elements, a fast integral element 1 and a slow integral element 2, are provided to simultaneously perform control to rapidly reduce the vehicle speed deviation and control to gently bring the vehicle speed deviation to zero. This is intended to improve stability by varying the dynamic control gain depending on vehicle speed.

(従来の技術) デユーテイ制御式の定速走行制御装置は、目標
車速(設定車速)で定速走行するのに必要なデユ
ーテイ値をセツトデユーテイとし、目標車速と走
行車速の差に応じたデユーテイ量をセツトデユー
テイに加算または減算して出力しながら定速走行
制御を行なうものである。しかし、必要デユーテ
イ量は、アクチユエータ、スロツトル駆動系およ
びエンジンの特性のばらつきや路面勾配、エアコ
ン等エンジン負荷の有無、変速ギア段等車両負荷
の変化によつて変わるものであり、セツトデユー
テイ固定では、必要デユーテイ量との差に応じた
車速偏差が発生する。
(Prior art) A duty control type constant speed driving control device sets the duty value necessary for constant speed driving at a target vehicle speed (set vehicle speed) as the set duty, and sets the duty amount according to the difference between the target vehicle speed and the traveling vehicle speed. Constant speed driving control is performed while adding or subtracting from the set duty and outputting the result. However, the required duty amount changes depending on variations in the characteristics of the actuator, throttle drive system, and engine, road slope, the presence or absence of engine loads such as air conditioners, and changes in vehicle loads such as transmission gears. A vehicle speed deviation occurs depending on the difference with the duty amount.

第6図はこの種の定速走行制御装置の一例を示
すシステム構成図で、制御器ECUは車両駆動軸
の回転に比例して回転する磁石によつてON/
OFFするリードスイツチを備えた車速センサか
らの信号により走行車速を検知する。ECUはセ
ツトスイツチがONされると走行車速を記憶し、
OFF後アクチユエータACTのコントロールバル
ブをデユーテイ制御する。コントロールバルブ
ON時は負圧が導入され、スロツトルSLにリンク
したダイアフラム発生力を高める。OFF時は大
気が導入されダイアフラム発生力を弱める。この
間制御中はリリースバルブをONとし、大気をし
や断している。キヤンセル信号(クラツチスイツ
チ(A/T車はニユートラルスタートスイツチ)、
パーキングスイツチ、またはブレーキスイツチ)
が入力されると、コントロールバルブ,リリース
バルブ共OFFとし、両方から大気を導入してす
みやかに制御を停止させる。キヤンセル後リジユ
ームスイツチをONすると、前回記憶車速での走
行制御が復活される。
Figure 6 is a system configuration diagram showing an example of this type of constant speed cruise control device.The controller ECU is turned on/off by a magnet that rotates in proportion to the rotation of the vehicle drive shaft.
The vehicle speed is detected by the signal from the vehicle speed sensor, which is equipped with a reed switch that turns off. When the set switch is turned on, the ECU memorizes the vehicle speed and
After OFF, the control valve of actuator ACT is duty-controlled. control valve
When ON, negative pressure is introduced, increasing the force generated by the diaphragm linked to the throttle SL. When OFF, atmospheric air is introduced and weakens the diaphragm generating force. During this time, the release valve is turned on to cut off the atmosphere. Cancel signal (clutch switch (neutral start switch for A/T vehicles),
parking switch or brake switch)
When input, both the control valve and release valve are turned OFF, atmospheric air is introduced from both, and the control is immediately stopped. If you turn on the resume switch after canceling, driving control at the previously memorized vehicle speed will be restored.

ECUにはマイクロコンピユータを使用し、そ
こでの処理をブロツク化すると第7図のようにな
る。コントロールバルブをオン,オフ制御する出
力デユーテイDはメモリに記憶された目標車速
VMと走行車速Vnの差に応じて決められるが、詳
細には走行車速Vnそのものではなく、車速変化
成分(微分成分)を加算したキヤツプ車速Vsを
用いる。これはアクチユエータの作動遅れやスロ
ツトル、駆動系のヒステリシスや遊びによるむだ
時間を進み補償するためである。従つて、スキツ
プ車速Vsは次式により求められる。
A microcomputer is used for the ECU, and the processing there is divided into blocks as shown in Figure 7. The output duty D that controls the control valve on and off is the target vehicle speed stored in memory.
It is determined according to the difference between V M and the running vehicle speed Vn, but in detail, the cap vehicle speed Vs, which is the sum of the vehicle speed change component (differential component), is used instead of the running vehicle speed Vn itself. This is to advance and compensate for dead time due to actuator delay, throttle, drive system hysteresis, and play. Therefore, the skip vehicle speed Vs is determined by the following formula.

Vs=Vn+K×(Vn−Vo-1) ……(1) Vn:現車速 Vo-1:前回車速 K:比例定数 また、出力デユーテイDは次式により求められ
る。
Vs=Vn+K×(Vn−V o-1 ) (1) Vn: Current vehicle speed V o-1 : Previous vehicle speed K: Proportionality constant Further, the output duty D is determined by the following equation.

D=G×ΔV+SD0 ……(2) G:ゲイン SD0:セツトデユーテイ ΔV:車速偏差(=VM−Vs) 〔発明が解決しようとする問題点〕 上述した定速走行制御装置は、車速が変化した
とき第8図に示す制御線上で出力デユーテイDを
変化させ、該車速を設定車速VMに収束させよう
とする。この制御線の勾配がゲインGである。こ
の制御における重要な点は、設定車速を維持する
デユーテイを制御中心にもつてくる事である。し
かし従来の方式は制御中心になるべきデユーテイ
(前述したセツトデユーテイSD0)を一つもしく
は車速だけに応じたデユーテイしかもつておら
ず、実際には車両,路面,重量,車速等によつて
さまざまな値をとる必要がある事のギヤツプか
ら、車速偏差ΔVの発生を避ける事ができなかつ
た。例えば、第8図のように、ある設定車速で走
行するためにはAなるデユーテイが必要であると
すると、車速は線にそつて低下していきデユーテ
イと車速のつり合うB点で走行する事になり、こ
の車速差がセツト偏差として残る。そのためこの
様な車両で定速走行する状態は第9図の如くな
り、走行速度が路面負荷によつて変化する。
D=G×ΔV+SD 0 ...(2) G: Gain SD 0 : Set duty ΔV: Vehicle speed deviation (=V M −Vs) [Problem to be solved by the invention] The constant speed cruise control device described above is When the vehicle speed changes, the output duty D is changed on the control line shown in FIG. 8 in an attempt to converge the vehicle speed to the set vehicle speed V M. The slope of this control line is the gain G. The important point in this control is to focus on the duty to maintain the set vehicle speed. However, conventional systems only have one duty (the aforementioned set duty SD 0 ) that should be the center of control, or a duty that only depends on the vehicle speed, and in reality, it has various values depending on the vehicle, road surface, weight, vehicle speed, etc. Due to the gap that it is necessary to take, the occurrence of vehicle speed deviation ΔV could not be avoided. For example, as shown in Figure 8, if a duty of A is required to run at a certain set speed, the vehicle speed will decrease along the line and the vehicle will run at point B where the duty and vehicle speed are balanced. This vehicle speed difference remains as a set deviation. Therefore, the state in which such a vehicle is traveling at a constant speed is as shown in FIG. 9, and the traveling speed changes depending on the road surface load.

上述したセツト偏差は制御線がC点を通るよう
に修正されれば0になる。本発明はその一手法を
提案するものである。
The above-mentioned set deviation becomes 0 if the control line is corrected so as to pass through point C. The present invention proposes one such method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、スロツトル開度を調整するアクチユ
エータのコントロールバルブを、車速とデユーテ
イの変換特性を示す所定勾配の制御線から得られ
る出力デユーテイDでオン,オフ制御し、実際の
走行車速を記憶された目標車速に接近させるデユ
ーテイ制御型の定速走行制御装置において、該目
標車速に対応するセツトデユーテイSDを SD=SD1+(DM−SD1)/n で計算し、また出力デユーテイDを D=G×ΔV+SD G:制御線の勾配 ΔV:車速偏差 DM:デユーテイ変化に早く応答する積分要素 SD1:デユーテイ変化に遅く応答する積分要素 で計算し、さらにnの値を走行車速に応じて切換
える処理をして、該セツトデーテイSDを出力デ
ユーテイDに接近する方向へ積分修正する制御器
を備えたことを特徴とする、ものである。
In the present invention, a control valve of an actuator that adjusts the throttle opening is controlled on and off by an output duty D obtained from a control line with a predetermined slope indicating the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed is memorized. In a duty control type constant speed cruise control device that approaches the target vehicle speed, the set duty SD corresponding to the target vehicle speed is calculated as SD=SD1+(DM-SD1)/n, and the output duty D is calculated as D=G×ΔV+SD G : Slope of control line ΔV: Vehicle speed deviation DM: Integral element that responds quickly to duty changes SD1: Calculates using an integral element that responds slowly to duty changes, and further processes to switch the value of n according to the traveling vehicle speed, The present invention is characterized in that it includes a controller that integrally corrects the set date SD in a direction toward the output duty D.

〔作用〕[Effect]

本発明では出力デユーテイDを D=G×ΔV+SD ……(3) で計算する。SDは可変セツトデユーテイで、 SD=SD1+(DM−SD1)/n ……(4) で表わされる。DMは高速積分要素で、デユーテ
イの変化(車速の変化とも言える)に対し早く応
答してセツト偏差を減少させる機能を持つ。動作
概念としては、第1図aに示すように偏差を減少
させる方向へ制御線を高速回転させるものであ
る。これに対しSD1は低速積分要素で、デユーテ
イの変化に対し遅く応答してセツト偏差を減少さ
せる機能を持つ。動作概念としては第1図bに示
すように偏差を減少させる方向へ制御線を平行移
動させるものである。
In the present invention, the output duty D is calculated as D=G×ΔV+SD (3). SD is a variable set duty and is expressed as SD=SD1+(DM-SD1)/n (4). DM is a high-speed integral element that has the function of quickly responding to changes in duty (also known as changes in vehicle speed) and reducing set deviation. The operating concept is to rotate the control line at high speed in a direction that reduces the deviation, as shown in Figure 1a. On the other hand, SD1 is a low-speed integral element that responds slowly to changes in duty and has the function of reducing set deviation. The concept of operation is to move the control line in parallel in a direction that reduces the deviation, as shown in FIG. 1b.

DM,SD1共に初期値は(2)式のSD0に相当し、
デユーテイDの変化に対し第2図のように変化す
る。同図aは平坦路から登坂路に移つて車速が低
下(デユーテイが増加)する場合の動作例であ
り、同図bは下り坂を含む動作例である。同図a
に示すように車速変化に伴ないデユーテイDが変
化すると、DM,SD1は共に変化し始めるが、
MDの方が応答が早いので先ずDMが追従する。
そして、SD1が遅れて追従するので総合的なSD
は1点鎖線のように変化し、やがてデユーテイD
に一致する。これはSDがSD0からD=Aまで移
動するためで、このとき(3)式はΔV=0,SD=A
で安定する。
The initial values of both DM and SD1 correspond to SD 0 in equation (2),
It changes as shown in FIG. 2 in response to a change in duty D. Figure a shows an operation example when the vehicle speed decreases (duty increases) as the vehicle moves from a flat road to an uphill road, and figure b shows an operation example including a downhill road. Figure a
As shown in , when the duty D changes with the change in vehicle speed, both DM and SD1 start to change.
Since MD has a faster response, DM follows first.
And since SD1 follows with a delay, the overall SD
changes like a dashed line, and eventually the duty D
matches. This is because SD moves from SD 0 to D=A, and in this case, equation (3) is ΔV=0, SD=A
becomes stable.

出力デユーテイDは(3),(4)式から D=G×ΔV+{SD1+(DM−SD1)/n} ……(5) と表わされる。 The output duty D is obtained from equations (3) and (4). D=G×ΔV+{SD1+(DM-SD1)/n} ……(Five) It is expressed as

デユーテイとSDの差は静的制御ゲインで安定
時のゲインである。これに対しデユーテイとSD1
の差は動的制御ゲインで移動時のゲインである。
The difference between duty and SD is the static control gain, which is the gain when stable. On the other hand, duty and SD1
The difference is the dynamic control gain, which is the gain during movement.

第3図は本発明の基本フローチヤートで、第7
図のブロツク図に対応するものである。
FIG. 3 is a basic flowchart of the present invention, and the seventh
This corresponds to the block diagram in the figure.

これらの処理は50msec毎に実行される。まず、
社速センサの出力に基づき現在の車速を計算す
る。次いで高速積分要素DMを算出するが、本例
では高速積分要素DMを出力デユーテイDとの差
に比例して変化させるようにしている。つまり、 DM(i)=DM(i-1)+α として今回の要素DM(i)を前回DM(i-1)よりαだ
け変化させるようにし、このαを例えば α=(D(i)−DM(i-1))/K で算出する。従つて今回のデユーテイD(i)と前回
の要素DM(i-1)との差が反映されて、修正速度が
可変されるようになる(Kは定数)。
These processes are executed every 50msec. first,
Calculate the current vehicle speed based on the output of the vehicle speed sensor. Next, the high-speed integral element DM is calculated, and in this example, the high-speed integral element DM is changed in proportion to the difference from the output duty D. In other words, DM(i) = DM (i-1) + α, so that the current element DM(i) is changed from the previous DM (i-1) by α, and this α is, for example, α = (D(i)− Calculate as DM (i-1) )/K. Therefore, the difference between the current duty D(i) and the previous element DM (i-1) is reflected, and the correction speed is varied (K is a constant).

次に、低速積分要素SD1を算出する。この低速
積分要素SD1はαより小さい変数βを用いて SD1(i)=SD1(i-1)+β により算出される。このβを固定値とすれば修正
速度は一定になる。例えば D(i-1)>SD1(i-1)のときβ=0.2% D(i-1)<SD1(i-1)のときβ=−0.2% とする。
Next, calculate the low-speed integral element SD1. This slow integral element SD1 is calculated using the variable β smaller than α as follows: SD1(i)=SD1 (i-1) +β. If this β is set to a fixed value, the correction speed will be constant. For example, when D (i-1) > SD1 (i-1), β = 0.2%, and when D (i-1) < SD1 (i-1) , β = -0.2%.

このようにして各時点の高速積分要素DMと低
速積分要素SD1が求まれば、次のステツプでこれ
を(4)式に代入してセツトデユーテイSDが算出さ
れ、このセツトデユーテイSDと車速偏差ΔVを基
に次のステツプで(3)式より出力デユーテイDが算
出され、出力ポートよりデユーテイ制御信号が出
力される。従つて、路面変化等が生じ車速偏差が
生じると、(3)式より、まず出力デユーテイDが変
化し、この出力デユーテイDに追従するよう高速
積分要素DMと低速積分要素SD1が変化し、これ
によりセツトデユーテイSDが変化する。そして、
その路面勾配に対応したセツトデユーテイまで変
化した時点でセツトデユーテイSDは落ちつくこ
とになる。
Once the high-speed integral element DM and low-speed integral element SD1 at each point in time are determined in this way, the set duty SD is calculated by substituting them into equation (4) in the next step, and the set duty SD is calculated based on this set duty SD and the vehicle speed deviation ΔV. In the next step, the output duty D is calculated from equation (3), and a duty control signal is output from the output port. Therefore, when a road surface change occurs and a vehicle speed deviation occurs, from equation (3), the output duty D changes first, and the high speed integral element DM and the low speed integral element SD1 change to follow this output duty D, and this The set duty SD changes accordingly. and,
The set duty SD will settle down when the set duty SD changes to correspond to the road surface slope.

ところで、上述した方式では車速全域を一定の
制御ゲインで制御すると、車両ゲインの高い低速
走行域では制御系全体のゲインが高くなつてハン
チングが発生し易く、逆に車両ゲインの低い高速
走行域では制御系全体のゲインが低くなり、応答
性が悪くなる。これを回避するには制御系全体の
ゲインを変化させてやればよいのであるが、一般
的に使われる静的制御ゲインを可変する方法は、
安定性が悪くなる。そこで本発明では応答性に起
因する動的制御ゲインを可変することで、制御系
全体のゲインを変化させる。
By the way, in the above-mentioned method, if the entire vehicle speed is controlled with a constant control gain, the gain of the entire control system becomes high in the low-speed driving range where the vehicle gain is high, and hunting is likely to occur, whereas in the high-speed driving range where the vehicle gain is low, hunting is likely to occur. The gain of the entire control system becomes low, resulting in poor responsiveness. To avoid this, it is possible to change the gain of the entire control system, but the commonly used method of varying the static control gain is as follows:
Stability deteriorates. Therefore, in the present invention, the gain of the entire control system is changed by varying the dynamic control gain due to responsiveness.

具体的には(4)式のn値を車速に応じて切換える
のである。
Specifically, the n value in equation (4) is changed according to the vehicle speed.

〔実施例〕〔Example〕

第4図は本発明の一実施例を示すフローチヤー
トで、第3図のフローに車速判断ステツプ(60
Km/h以上か?)とその結果に応じて前記nの値
を切換えてセツトデユーテイSDを算出するステ
ツプを追加したものである。即ち、車速を計測し
た後、車速が60Km/h以上か否かを判断する。そ
の結果60Km/h以上なら高速積分要素DMと低速
積分要素SD1を算出した後、nを2として前記(4)
式に基づきセツトデユーテイSDを算出する。ま
た、60Km/h以下なら、前記DMとSD1を算出し
た後、nと4として(4)式に基づきセツトデユーテ
イSDを算出する。このようにして算出されたセ
ツトデユーテイSDを用いて出力デユーテイDを
算出する。他は第3図と同様である。nの値は任
意であるが、n=1で第1図aの制御線は直立
し、ゲイン最大となる。そしてn値が増加するに
つれ制御線の傾斜は緩やかになる(ゲインが小さ
くなる)。従つて、第4図では車両ゲインの低下
する60Km/h以上ではn=2として動的制御ゲイ
ンを高め、逆に車両ゲインの上昇する60Km/h未
満ではn=4として動的制御ゲインを下げてい
る。
FIG. 4 is a flowchart showing an embodiment of the present invention, in which a vehicle speed determination step (60
Is it more than Km/h? ) and a step of calculating the set duty SD by switching the value of n according to the result. That is, after measuring the vehicle speed, it is determined whether the vehicle speed is 60 km/h or more. If the result is 60km/h or more, calculate the high-speed integral element DM and the low-speed integral element SD1, then set n to 2 and follow the above (4).
Calculate the set duty SD based on the formula. If the speed is 60 km/h or less, after calculating DM and SD1, set duty SD is calculated based on equation (4) using n and 4. The output duty D is calculated using the set duty SD thus calculated. The rest is the same as in FIG. 3. The value of n is arbitrary, but when n=1, the control line in FIG. 1a stands upright and the gain is maximum. As the n value increases, the slope of the control line becomes gentler (the gain becomes smaller). Therefore, in Fig. 4, the dynamic control gain is set to n=2 to increase the dynamic control gain when the vehicle gain decreases over 60 km/h, and conversely, when the vehicle gain increases below 60 km/h, the dynamic control gain is decreased by setting n to 4. ing.

第5図は動作波形図で、破線は第3図の特性、
実線は第4図の特性である。
Figure 5 is an operating waveform diagram, and the broken lines are the characteristics of Figure 3.
The solid line is the characteristic shown in FIG.

尚、実施例では低速走行域(例えば60Km/h未
満)で動的制御ゲインを変える例だけを示した
が、高速走行域(例えば100Km/h以上)ででも、
動的制御ゲインを変える(nを小にする)ことは
可能である。また設定車速の区分を、もつと細分
化することによつて、より細かな制御も可能とな
る。
In addition, although the example shows only an example in which the dynamic control gain is changed in a low speed driving range (for example, less than 60 km/h), even in a high speed driving range (for example, over 100 km/h),
It is possible to change the dynamic control gain (reduce n). Further, by dividing the set vehicle speed into smaller categories, more detailed control becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、路面変化等
によりセツトデユーテイの移動が必要な時は要素
DMの動きにより動的制御ゲインを大きくとり、
車速偏差を小さくおさえつつ要素SD1を移動させ
ていく事で、車速の変動を小さく抑えながら、車
速偏差を零にする事が可能となる。また、動的制
御ゲインを車速によつて異ならせる制御をするの
で高速走行域での走行安定性を高め、且つ低速走
行域での車速変化に対する応答性を高めることが
できる。
As described above, according to the present invention, when it is necessary to move the set duty due to changes in the road surface, etc.
The dynamic control gain is increased by the movement of the DM,
By moving the element SD1 while keeping the vehicle speed deviation small, it is possible to reduce the vehicle speed deviation to zero while suppressing fluctuations in the vehicle speed. Furthermore, since the dynamic control gain is controlled to vary depending on the vehicle speed, it is possible to improve running stability in a high-speed driving range and to improve responsiveness to changes in vehicle speed in a low-speed driving range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明
の動作説明図、第3図は本発明の基本フローチヤ
ート、第4図は本発明の一実施例を示すフローチ
ヤート、第5図はその動作波形図、第6図はデユ
ーテイ制御型定速走行装置のシステム構成図、第
7図はそのマイコン処理のブロツク図、第8図は
従来のデユーテイ制御の特性図、第9図はその動
作説明図である。 図中、ECUは制御器、ACTはアクチユエータ、
SLはスロツトルである。
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a diagram explaining the operation of the present invention, FIG. 3 is a basic flow chart of the present invention, FIG. 4 is a flow chart showing an embodiment of the present invention, and FIG. Figure 6 is a diagram of its operating waveforms, Figure 6 is a system configuration diagram of the duty control type constant speed traveling device, Figure 7 is a block diagram of its microcomputer processing, Figure 8 is a characteristic diagram of conventional duty control, and Figure 9 is It is an explanatory diagram of the operation. In the diagram, ECU is a controller, ACT is an actuator,
SL is throttle.

Claims (1)

【特許請求の範囲】 1 スロツトル開度を調整するアクチユエータの
コントロールバルブを、車速とデユーテイの変換
特性を示す所定勾配の制御線から得られる出力デ
ユーテイDでオン,オフ制御し、実際の走行車速
を記憶された目標車速に接近させるデユーテイ制
御型の定速走行制御装置において、該目標車速に
対応するセツトデユーテイSDを SD=SD1+(DM−SD1)/n で計算し、また出力デユーテイDを D=G×ΔV+SD G:制御線の勾配 ΔV:車速偏差 DM:デユーテイ変化に早く応答する積分要素 SD1:デユーテイ変化に遅く応答する積分要素 で計算し、さらにnの値を走行車速に応じて切換
える処理をして、該セツトデーテイSDを出力デ
ユーテイDに接近する方向へ積分修正する制御器
を備えたことを特徴とする、デユーテイ制御型の
定速走行制御装置。
[Claims] 1. A control valve of an actuator that adjusts the throttle opening is controlled on and off using an output duty D obtained from a control line with a predetermined slope indicating the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed is controlled. In a duty control type constant speed cruise control device that approaches a stored target vehicle speed, the set duty SD corresponding to the target vehicle speed is calculated as SD=SD1+(DM-SD1)/n, and the output duty D is calculated as D=G. ×ΔV+SD G: Gradient of control line ΔV: Vehicle speed deviation DM: Integral element that responds quickly to duty changes SD1: Calculates using an integral element that responds slowly to duty changes, and further processes to switch the value of n according to the traveling vehicle speed. 1. A duty control type constant speed cruise control device, comprising: a controller that integrally corrects the set date SD in a direction approaching the output duty D.
JP29422685A 1985-12-26 1985-12-26 Duty control type constant speed traveling controller Granted JPS62168726A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29422685A JPS62168726A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller
DE8686202379T DE3678408D1 (en) 1985-12-26 1986-12-24 SYSTEM FOR SPEED CONTROL BY ADJUSTING THE SOLAR POWER AND A METHOD FOR REGULATING WITH PHASE PREFERENCE.
CA000526319A CA1292301C (en) 1985-12-26 1986-12-24 Constant speed cruise control system of duty ratio control type and a leading angle control method thereof
EP86202379A EP0227198B1 (en) 1985-12-26 1986-12-24 A constant speed cruise control system of duty ratio control type and a leading angle control method thereof
US06/948,134 US4870583A (en) 1985-12-26 1986-12-29 Constant speed cruise control system of the duty ratio control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29422685A JPS62168726A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller

Publications (2)

Publication Number Publication Date
JPS62168726A JPS62168726A (en) 1987-07-25
JPH0331606B2 true JPH0331606B2 (en) 1991-05-07

Family

ID=17804970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29422685A Granted JPS62168726A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller

Country Status (1)

Country Link
JP (1) JPS62168726A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898636A (en) * 1981-12-04 1983-06-11 Nippon Denso Co Ltd Constant-speed running device for use in vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898636A (en) * 1981-12-04 1983-06-11 Nippon Denso Co Ltd Constant-speed running device for use in vehicle

Also Published As

Publication number Publication date
JPS62168726A (en) 1987-07-25

Similar Documents

Publication Publication Date Title
JPH06191324A (en) Engine output control device for vehicle
JPH0331606B2 (en)
JPH0331607B2 (en)
JPH0331608B2 (en)
JP4065342B2 (en) Method and apparatus for controlling vehicle speed
JPH0577869B2 (en)
JPH0331609B2 (en)
JPH054254B2 (en)
JP3155089B2 (en) Vehicle control device
JPH0717297A (en) Running control device for automobile
JPH054255B2 (en)
JP3591015B2 (en) Constant-speed cruise control system for vehicles
JPS62168734A (en) Duty control type constant speed traveling controller
JPS63219849A (en) Engine control device
JPS642819Y2 (en)
JPH043335B2 (en)
JP2898161B2 (en) Slip control device
JPH043334B2 (en)
JPH0825409B2 (en) Constant speed traveling device
JPH0632155A (en) Engine controller
JPH01271635A (en) Device for controlling engine
JPH0617689A (en) Internal combustion engine controller
JPH01125529A (en) Drive force controller for vehicle
JPS6268140A (en) Correcting system of set duty of speed controller for car
JPH01253548A (en) Engine output controlling device