JPS62241388A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62241388A
JPS62241388A JP8464886A JP8464886A JPS62241388A JP S62241388 A JPS62241388 A JP S62241388A JP 8464886 A JP8464886 A JP 8464886A JP 8464886 A JP8464886 A JP 8464886A JP S62241388 A JPS62241388 A JP S62241388A
Authority
JP
Japan
Prior art keywords
laser
reflector
beams
emitted
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8464886A
Other languages
Japanese (ja)
Inventor
Masao Hirano
平野 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8464886A priority Critical patent/JPS62241388A/en
Publication of JPS62241388A publication Critical patent/JPS62241388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To decrease the beam breadth of laser beams oscillated from a plurality of laser elements by integrally mounting the laser elements and a reflector reflecting laser beams emitted from the laser elements to a substrate, reflecting laser beams emitted from the laser elements by the reflector and irradiating the laser elements by reflected beams as return beams. CONSTITUTION:A plurality of laser elements 17 are formed onto a substrate 11, and a crystal layer 18 consisting of a waveguide layer 13 shaped in case of the formation of the laser element 17, an active layer 14 and a clad layer 15 is shaped as a reflector 20 by forming a groove 19 through etching at a predetermined interval l from the end surface 14A of the active layer 14 where opposite to the end surface 14A of the active layer 14, from which laser beams are emitted, in the laser element 17. Since such a reflector 20 is shaped, laser beams emitted from semiconductor laser elements 17 and 22 can be projected mutually to other laser elements 17, 22, preventing the dissipation of beams by using the reflector 20. Accordingly, the beam breadth of the outgoing beams of laser beams emitted from the laser elements l7, 22 can be narrowed.

Description

【発明の詳細な説明】 C概要〕 半導体レーザ素子より出射されるレーザ光の線幅を減少
させる半導体レーザ装置であって、同一基板に複数のレ
ーザ素子と、このレーザ素子より出射されるレーザ光を
反射させる反射体を同一の手法で一体的に形成し、レー
ザ素子より出射されるレーザ光を反射体を介してレーザ
素子に戻り光として導入することで、レーザ素子より出
射されるレーザ光のin福を減少させる半導体レーザ装
置。
[Detailed Description of the Invention] C Summary] A semiconductor laser device that reduces the line width of a laser beam emitted from a semiconductor laser element, which comprises a plurality of laser elements on the same substrate and a laser beam emitted from the laser elements. By integrally forming a reflector that reflects the laser beam using the same method and introducing the laser beam emitted from the laser element as return light to the laser element via the reflector, the laser beam emitted from the laser element can be reflected. Semiconductor laser device that reduces inconvenience.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体レーザ素子より出射されるレーザ光の線
幅を減少させる半導体レーザ装置に関する。
The present invention relates to a semiconductor laser device that reduces the line width of laser light emitted from a semiconductor laser element.

光通信システムの光源として低消費電力、高速変調が可
能である等の理由によって半導体レーザ素子が用いられ
ている。
Semiconductor laser elements are used as light sources in optical communication systems because they have low power consumption and are capable of high-speed modulation.

このような半導体レーザ素子より出射されるレーザ光の
ビーム径、即ちレーザ光の線幅は、100MHz程度で
あるが、これを更にコヒーレント光通信方式に用いよう
とすると、レーザ素子より出射されるレーザ光の線幅は
I MHz以下に減少させることが要求されている。
The beam diameter of the laser beam emitted from such a semiconductor laser device, that is, the linewidth of the laser beam, is about 100 MHz, but if this is further used in a coherent optical communication system, the laser beam emitted from the laser device It is required that the linewidth of light be reduced to below I MHz.

〔従来の技術〕[Conventional technology]

従来、このようなレーザ素子の線幅を減少させた半導体
レーザ装置としては、レーザ素子1が設置されている基
台2上に平面鏡等の反射鏡3を設置し、このレーザ素子
1と反射鏡3とで空洞発振器を形成する。
Conventionally, in a semiconductor laser device in which the line width of such a laser element is reduced, a reflecting mirror 3 such as a plane mirror is installed on a base 2 on which a laser element 1 is installed, and the laser element 1 and the reflecting mirror are connected to each other. 3 forms a cavity oscillator.

このようにすれば、レーザ素子1の端面IAとIBとの
間にも共振器が形成され、レーザ素子1の端面1八とI
Bで形成された共振器の長さlと、レーザ素子1と反射
鏡3との間で形成される共振器の長さはLで、その長さ
が異なるため、その2つの共振器で形成される定在波は
異なったものが得られる。
In this way, a resonator is also formed between the end faces IA and IB of the laser element 1, and the resonator is formed between the end faces 18 and IB of the laser element 1.
The length l of the resonator formed by B and the length L of the resonator formed between the laser element 1 and the reflecting mirror 3 are different. Different standing waves can be obtained.

そのため、2つの共振器で形成される定在波が競合して
いる場合、その何れの定在波が強くなるかは、そのレー
ザ素子より出射されるレーザ光の発振波長で定まる。
Therefore, when standing waves formed by two resonators compete with each other, which of the standing waves becomes stronger is determined by the oscillation wavelength of the laser light emitted from the laser element.

即ち、このレーザ光の発振波長以外の波長を有する定在
波は互いに束縛し合いながら、発振しているレーザ光に
対してエネルギーを集中させ、このエネルギーの集中に
より、レーザ素子より出射されるレーザ光の線幅が減少
するようになる。
In other words, the standing waves having wavelengths other than the oscillation wavelength of the laser beam bind each other and concentrate energy on the oscillating laser beam, and due to this concentration of energy, the laser beam emitted from the laser element The line width of the light begins to decrease.

〔発明が解決しようとする問題点〕 然し、平面鏡のような反射鏡を用いてレーザ素子より出
射される光を戻し、この戻し光でレーザ光の線幅を減少
させようとすると、この反射鏡はレーザ素子より出射さ
れる光の全波長領域の範囲の光が戻り光となって戻るた
め、特定の波長のみ強度を増す場合や、波長を選択する
場合にはエネルギーの集中性に欠け、レーザ素子より出
射されるレーザ光の線幅は広(なる欠点が生じる。
[Problems to be Solved by the Invention] However, if you use a reflecting mirror such as a plane mirror to return the light emitted from the laser element and use this returned light to reduce the line width of the laser beam, this reflecting mirror Since the light in the entire wavelength range of the light emitted from the laser element returns as return light, when increasing the intensity only at a specific wavelength or when selecting a wavelength, the concentration of energy is poor and the laser The line width of the laser beam emitted from the element is wide (this causes a drawback).

そのため、単一波長で発振するレーザ素子を用いて、反
射鏡の代わりに回折格子を用いてレーザ光を戻す方法が
あるが、この方法であると装置が大規模のものとなり、
またこの装置を使用する際に、回折格子の温度制御を正
確に行わないと所望の線幅が得られない欠点がある。
Therefore, there is a method that uses a laser element that oscillates at a single wavelength and uses a diffraction grating instead of a reflecting mirror to return the laser beam, but this method requires a large-scale device.
Furthermore, when using this device, there is a drawback that a desired line width cannot be obtained unless the temperature of the diffraction grating is accurately controlled.

本発明は上記した欠点を除去し、簡単な構造でかつ装置
が小型でかつレーザ光の線幅が容易に狭くできる半導体
レーザ装置の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser device which eliminates the above-mentioned drawbacks, has a simple structure, is compact, and can easily narrow the line width of the laser beam.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体レーザ装置は、同一基板に同一工程で形
成された複数のレーザ素子と、前記レーザ素子より出射
されるレーザ光を反射する反射体を前記基板に一体的に
設け、前記レーザ素子より出射されるレーザ光を前記反
射体で反射させ、該反射光をレーザ素子に戻り光として
照射することで、レーザ素子より発振するレーザ光の線
幅を減少するようにする。
The semiconductor laser device of the present invention includes a plurality of laser elements formed on the same substrate in the same process, and a reflector that reflects the laser light emitted from the laser element, which is integrally provided on the substrate, and The emitted laser light is reflected by the reflector and the reflected light is irradiated to the laser element as return light, thereby reducing the line width of the laser light emitted from the laser element.

〔作用〕[Effect]

本発明の半導体レーザ装置は、半導体基板上に複数個の
レーザ素子を□形成するとともに、このレーザ素子より
出射される光を戻す反射体を同一基板に、レーザ素子を
形成するのと同様な工程で形成することで、温度変動が
ある場合に於いても、発振波長が略同−なレーザ素子を
多数形成し、レーザ素子より出射されるレーザ光のモー
ドと類似のモードの戻り光を形成し、この戻り光を用い
ることで、波長選択性を高めエネルギー集中性を良くす
ることにより、レーザ光より出射されるレーザ光の線幅
を効果的に減少させるようにする。
The semiconductor laser device of the present invention is manufactured using a process similar to that of forming a plurality of laser elements on a semiconductor substrate, and a reflector for returning light emitted from the laser elements on the same substrate. Even when there are temperature fluctuations, a large number of laser elements with approximately the same oscillation wavelength can be formed, and return light in a mode similar to the mode of the laser beam emitted from the laser element can be formed. By using this returned light, wavelength selectivity is enhanced and energy concentration is improved, thereby effectively reducing the line width of the laser beam emitted from the laser beam.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の半導体レーザ装置の構造を示す平面図
で、第2図はそのn−n’線に沿った断面図である。
FIG. 1 is a plan view showing the structure of a semiconductor laser device of the present invention, and FIG. 2 is a sectional view taken along the line nn'.

本実施例ではDistributed−Feedbac
k−Laser(以下DFBレーザ素子と称する)を用
いた半導体レーザ装置に例をとって説明する。
In this example, Distributed-Feedback
An example of a semiconductor laser device using a k-Laser (hereinafter referred to as a DFB laser element) will be explained.

第1図および第2図に図示するように、インジウム−燐
(InP )よりなる基板11に回折格子12がホトリ
ソグラフィ法を用いて形成され、その上にはレーザ発振
したレーザ光を伝達するためのガリウム−インジウム−
砒素−燐(InGaAsP )よりなる導波層13が液
相エピタキシャル成長法により形成され、更にその上に
はレーザ光を発振して出射する1nGaAsPよりなる
活性層14が液相エピタキシャル成長法により形成され
ている。
As shown in FIGS. 1 and 2, a diffraction grating 12 is formed on a substrate 11 made of indium-phosphorous (InP) using a photolithography method, and a diffraction grating 12 is provided on the substrate 11 for transmitting laser light. gallium-indium-
A waveguide layer 13 made of arsenic-phosphorus (InGaAsP) is formed by a liquid phase epitaxial growth method, and an active layer 14 made of 1nGaAsP that oscillates and emits a laser beam is further formed thereon by a liquid phase epitaxial growth method. .

更にその上には活性層で発振したレーザ光を閉じ込め、
発振効率を高めるためのInPよりなるクラフト層15
が設けられ、更にその上にはレーザ素子を動作させるた
めの金(Au)等よりなる電極16が蒸着により形成さ
れている。
Furthermore, on top of that, the laser light oscillated in the active layer is confined,
Craft layer 15 made of InP to increase oscillation efficiency
Further, an electrode 16 made of gold (Au) or the like is formed by vapor deposition on the electrode 16 for operating the laser element.

そしてこのようなレーザ素子17は基板11上に複数個
形成され、このレーザ素子17のレーザ光が出射される
活性層14の端面14Aに対向する位置に、前記レーザ
素子17を形成する際に形成した導波層13、活性層1
4、クラッド層15よりなる結晶層18が、端面14A
より所定の距@1’を隔てて、エツチングにより溝19
を形成されることで反射体20と成って形成されている
A plurality of such laser elements 17 are formed on the substrate 11, and when forming the laser elements 17, the laser elements 17 are formed at a position facing the end surface 14A of the active layer 14 from which the laser light of the laser elements 17 is emitted. waveguide layer 13, active layer 1
4. The crystal layer 18 made of the cladding layer 15 is formed on the end surface 14A.
A groove 19 is formed by etching at a predetermined distance @1'.
The reflector 20 is formed by forming the reflector 20.

この反射体20は、レーザ素子17の形成工程と同一工
程で同一基板11上に形成されるため、簡単な方法で手
間をかけずに容易に形成される。
Since the reflector 20 is formed on the same substrate 11 in the same process as the laser element 17, it can be easily formed by a simple method and without much effort.

また端面14Aに対向して形成された反射体20の端面
21はエツチングによって鏡面仕上げされているので、
平面鏡と同様な反射鏡の機能を有する。
Furthermore, since the end surface 21 of the reflector 20 formed opposite to the end surface 14A is mirror-finished by etching,
It has the function of a reflecting mirror similar to a plane mirror.

このようにすれば、反射体20を有することで、半導体
レーザ素子17、および22より出射されたレーザ光を
反射体20を用いて光の散逸を防ぎながらもう一方のレ
ーザ素子17.22に互いに入射させることができ、レ
ーザ素子17.22より出射されるレーザ光の出射光の
線幅を狭くすることができる。
In this way, by having the reflector 20, the laser beams emitted from the semiconductor laser elements 17 and 22 are directed to the other laser elements 17 and 22 while preventing the light from dissipating using the reflector 20. The line width of the laser beam emitted from the laser element 17.22 can be narrowed.

また以上の実施例の他に、第3図に示すように反射体2
0を囲うように、該反射体20と略同−の高さて、コの
字状の第2の反射体31を設けることで、より効果的に
戻り光をレーザ素子17.22に注入することができる
In addition to the above embodiments, as shown in FIG.
By providing a U-shaped second reflector 31 at approximately the same height as the reflector 20 so as to surround the reflector 20, the returned light can be more effectively injected into the laser element 17.22. I can do it.

またその他の実施例として、レーザ光が出射される活性
層14の端面14^に対向する反射体20.31の面を
反射効率の大きい〜等の金属膜を蒸着するようにすると
更に効果的である。
As another example, it is more effective to deposit a metal film with high reflection efficiency on the surface of the reflector 20.31 facing the end surface 14^ of the active layer 14 from which the laser beam is emitted. be.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の半導体レーザ装置    
 )によれば、簡単な方法でレーザ素子より出射される
光の戻り光をレーザ素子に注入できるので、レーザ光の
線幅を減少させたコヒーレント光通信に通用できる高性
能な半導体レーザ装置が得られる効果がある。
As described above, the semiconductor laser device of the present invention
), the returned light emitted from the laser element can be injected into the laser element using a simple method, so a high-performance semiconductor laser device that can be used for coherent optical communication with a reduced line width of laser light can be obtained. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ装置の一実施例を示す平
面図、 第2図は第1図の■−■1線に沿った断面図、第3図は
本発明の半導体レーザ装置の第2の実施例を示す平面図
、 第4図は従来の半導体レーザ装置の要部を示す模式図で
ある。 図に於いて、 11は基板、12は回折格子、13は導波層、14は活
性層、14Aは活性層端面、15はクラッド層、16は
電極、17.22はレーザ素子、18は結晶層、19は
溝、20.31は反射体、Zlは反射体端面を示す。 杢構和月O半祷イ奎し−ザ&1の平面日葛1回の亘−X
/舅11玲、n断面ω 第2図 1至(月の第2喫オ色イクリの平面口 笛3[q
FIG. 1 is a plan view showing an embodiment of the semiconductor laser device of the present invention, FIG. 2 is a cross-sectional view taken along line 1--1 in FIG. 1, and FIG. FIG. 4 is a schematic diagram showing the main parts of a conventional semiconductor laser device. In the figure, 11 is a substrate, 12 is a diffraction grating, 13 is a waveguide layer, 14 is an active layer, 14A is an end face of the active layer, 15 is a cladding layer, 16 is an electrode, 17.22 is a laser element, and 18 is a crystal. 19 is a groove, 20.31 is a reflector, and Zl is an end face of the reflector. Heather structure Watsuki O half praying - The & 1 plane day 1 time Wataru - X
/ father-in-law 11 Rei, n cross-section ω Fig. 2 1 to (plane whistle 3 [q

Claims (1)

【特許請求の範囲】[Claims] 同一基板(11)に同一工程で形成された複数のレーザ
素子(17、22)と、前記レーザ素子(17、22)
より出射されるレーザ光を反射する反射体(20)を前
記基板(11)に一体的に設け、前記レーザ素子(17
、22)より出射されるレーザ光を前記反射体(20)
で反射させ、該反射光をレーザ素子(17、22)に戻
り光として照射するようにしたことを特徴とする半導体
レーザ装置。
A plurality of laser elements (17, 22) formed on the same substrate (11) in the same process, and the laser element (17, 22)
A reflector (20) for reflecting laser light emitted from the laser element (17) is integrally provided on the substrate (11).
, 22), the laser beam emitted from the reflector (20)
A semiconductor laser device characterized in that the reflected light is reflected by a laser element (17, 22) and irradiated as return light.
JP8464886A 1986-04-11 1986-04-11 Semiconductor laser device Pending JPS62241388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8464886A JPS62241388A (en) 1986-04-11 1986-04-11 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8464886A JPS62241388A (en) 1986-04-11 1986-04-11 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62241388A true JPS62241388A (en) 1987-10-22

Family

ID=13836520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8464886A Pending JPS62241388A (en) 1986-04-11 1986-04-11 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62241388A (en)

Similar Documents

Publication Publication Date Title
US4772082A (en) Semiconductor laser array device
US4773077A (en) Internal reflection interferometric semiconductor laser apparatus
JPH0391278A (en) Semiconductor laser diode
JPS62241388A (en) Semiconductor laser device
US4811351A (en) Semiconductor laser array device
JPS60207389A (en) Semiconductor laser device
JPH0720359A (en) Optical device
US4764936A (en) Semiconductor laser array device
JPS62262485A (en) Semiconductor laser device
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPH06140717A (en) External resonator type semiconductor laser light source
JPS61251183A (en) Two frequency semiconductor laser
JPH07123175B2 (en) Semiconductor laser device
JPS62136890A (en) Semiconductor laser device
GB2179789A (en) Semiconductor laser array device
JPS607790A (en) Semiconductor laser device
JPH05160519A (en) Very short light pulse generating device
JPS58162090A (en) Semiconductor laser
JPH01175280A (en) Semiconductor laser array device
JPS61263185A (en) Semiconductor laser array device
JPH01231387A (en) Semiconductor light emitting device
JPS6164182A (en) Optical feedback type semiconductor laser device
JPS6178190A (en) Integrated type semiconductor laser device
CA1118085A (en) Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power
JPS6139594A (en) Thin-film optical waveguide function element