JPS6224133A - Automatic binary-coding system - Google Patents

Automatic binary-coding system

Info

Publication number
JPS6224133A
JPS6224133A JP16204385A JP16204385A JPS6224133A JP S6224133 A JPS6224133 A JP S6224133A JP 16204385 A JP16204385 A JP 16204385A JP 16204385 A JP16204385 A JP 16204385A JP S6224133 A JPS6224133 A JP S6224133A
Authority
JP
Japan
Prior art keywords
image
semiconductor device
divided
brightness
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16204385A
Other languages
Japanese (ja)
Inventor
Fumiaki Uchida
内田 文明
Hitoshi Tateishi
仁 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP16204385A priority Critical patent/JPS6224133A/en
Publication of JPS6224133A publication Critical patent/JPS6224133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To achieve a better result of the recognition in the appearance inspection of a flaw or the like, by a method wherein the image of the appearance of a resin sealed type semiconductor device to be inspected is divided into multiple parts in terms of the brightness thereof to be memorized and the memorized divided image are further subdivided so that a binary image will be obtained at slice levels determined by the average brightness of the subdivided image segments. CONSTITUTION:The appearance of a resin sealed type semiconductor device to be inspected is photographed with an ITV camera, the image thereof is inputted into an image processor and the input signal is divided in terms of the brightness classified, for example, by 256 graduations to be memorized into a memory section of the image processor. The image memorized is further subdivided and the average brightness of the subdivided image segments are calculated to determine the slice levels and finally, a binary coded image is obtained. Furthermore, an arithmetic processing of the average brightness of the divided image is made on the basis of experimentally determined coefficients to obtain the optimum slice levels and thus, a binary coding of the memory image is implemented based on the resulting levels.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は樹脂封止型半導体装置の外観検査即ち巣、欠け
、4&、リード、曲がり、リード長さならびにダムカッ
ト偏芯を自動的に調べる装置に主に適用する自動2値化
方式に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an apparatus for automatically inspecting the appearance of resin-sealed semiconductor devices, that is, checking for holes, chips, 4&, leads, bends, lead lengths, and dam cut eccentricity. Mainly related to the applied automatic binarization method.

〔発明の技術的背景〕[Technical background of the invention]

半導体製品の製造はウェーハへの素子や回路を造り込む
前工程と、ペレット単位に分割された素子を組み立てる
後工程に分けられるが、プロセスの複雑さ及びゴミを極
端に嫌う作業環境を必要とする前工程の自動化は後工程
のそれより遅れているのが現状である。
The manufacturing of semiconductor products can be divided into the pre-process of building elements and circuits onto wafers, and the post-process of assembling the elements divided into pellets, but the process is complex and requires a work environment that is extremely dust-free. Currently, the automation of front-end processes lags behind that of back-end processes.

一方、半導体製品の生産規模増大に伴ない、生産性の高
い製造ラインを確立することが求められており、その−
環として半導体ウェーハのサイズ 。
On the other hand, as the production scale of semiconductor products increases, there is a need to establish highly productive manufacturing lines.
Semiconductor wafer size as a ring.

は大口径化の方向にあり、現実には120mφも使用さ
れ半導体単結晶の引上げはすでに200 nmφまでも
が可能となっている。
There is a trend toward larger diameters, and in reality, as much as 120 mφ is used, and it is already possible to pull semiconductor single crystals up to 200 nmφ.

このようなウェーハの大口径化に伴って人手によるハン
ドリングが困難となり、ウェーハの搬送や装置へのセツ
ティング等は必然的に自動化が要求される。
As wafers become larger in diameter, it becomes difficult to handle them manually, and automation is inevitably required for wafer transport, setting in equipment, and the like.

超LSIに代表されるように最近の半導体デバイスは高
集積化や高性能化の進歩が著るしく、それにつれて製造
プロセスも複雑多岐にわたっており、それゆえ製造ライ
ンの清浄度が歩留りに与える影響は大きく、じんあいの
発生源である人体を遠ざける意味でも自動化が従来に増
して叫ばれ、かつその波が押寄せている。その−環とし
て半導体装置とりわけ樹脂封止型半導体装置の外観検査
を自動化的に実施する装置が開発され始めている。
Recent semiconductor devices, as exemplified by VLSI, have made remarkable progress in becoming highly integrated and high-performance, and as a result, manufacturing processes have become more complex and diverse, so the impact of the cleanliness of the manufacturing line on yield is Automation is being called for more than ever in order to keep the human body away from the source of dust, and the wave of automation is coming. As a link to this, devices have begun to be developed that automatically perform visual inspections of semiconductor devices, particularly resin-sealed semiconductor devices.

その手法としては被検査樹脂封止型半導体装置を工業用
ITVカメラで得られる画像信号を特定のスライスレベ
ルで2値画像に変換の上でその外観検査を行っているの
が実情である。この場合スライスレベルは一定である。
The actual method is to convert the image signal of the resin-sealed semiconductor device to be inspected using an industrial ITV camera into a binary image at a specific slice level, and then conduct an external inspection of the image signal. In this case, the slice level is constant.

これに対してパターン認識技術によって外観検査を自動
的に実施する方法も考えられるが、その誤差限界は3〜
4%であるため半導体装置における微少な外観不良即ち
誤差限界0.1%を目指すのには不適当である。
On the other hand, it is possible to automatically perform visual inspection using pattern recognition technology, but the error limit for this method is 3 to 3.
Since it is 4%, it is inappropriate for aiming at minute appearance defects in semiconductor devices, that is, an error limit of 0.1%.

前述の外観検査装置は画像処理に必要な専用プロセッサ
とミニコンを内蔵し画像処理を高速に実施する視覚セン
サ応用機器を使用する。
The above-mentioned visual inspection device uses visual sensor application equipment that has a built-in dedicated processor and minicomputer necessary for image processing and performs image processing at high speed.

〔背景技術の問題点〕[Problems with background technology]

前述の被検査樹脂封止型半導体装置をITVカメラで撮
像するに当っては適正な照明の許で行われるが、その被
写体の表面状態により面内均一なな明るさが得られない
ことが判明し、これは2値化画像を得るのに問題となる
The above-mentioned resin-sealed semiconductor device to be inspected is imaged with an ITV camera under proper lighting, but it was found that uniform brightness within the surface could not be obtained due to the surface condition of the object. However, this poses a problem in obtaining a binarized image.

この照明方法として正反射照明とリング照明について照
明条件を一定として分布状態を調査したところ面内にバ
ラツキがあるばかりでなく被写体毎に明るさのレベルが
異なる。更にリング照明についても被写体毎に明るさの
レベルが異なるが面内でのバラツキは前者より少ないこ
とが判明した。
When we investigated the distribution state of specular reflection lighting and ring lighting as lighting methods under constant lighting conditions, we found that not only were there variations within the plane, but the brightness level was different for each subject. Furthermore, although the brightness level of ring lighting differs depending on the subject, it was found that the variation within the plane was smaller than the former.

従って被写体である樹脂封止型半導体装置検査面に明る
さの異なる部分が存在した場合一定のスライスレベルで
2値化すると得られる画像の忠実度が損われる難点を生
じる。
Therefore, if there are portions of different brightness on the inspection surface of the resin-sealed semiconductor device that is the subject, there is a problem in that the fidelity of the image obtained is impaired when binarized at a constant slice level.

〔発明の目的〕[Purpose of the invention]

本発明は上記難点を除去する新規な2値化方式を提供す
るもので、特に認識結果の向上を図るものである。
The present invention provides a new binarization method that eliminates the above-mentioned drawbacks, and is particularly intended to improve recognition results.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明では被検査樹脂封止
型半導体装置の外観をITVカメラで撮像し、その画像
を画像処理装置に入力し、この入力信号を256階調の
明るさに分割してこの画像装置のメモリ部で記憶させる
。この記憶された画像を複数に分割し、この分割画像の
平均明るさを計算してスライスレベルを決定してこれに
より2値化画像を得る方式を採用した。更に分割画像の
平均明るさに実験的に求めた係数による演算処理を行っ
て最適のスライスレベルを求めこれに基づく記憶画像の
2値化を実施する手法も採用した。
In order to achieve the above object, the present invention images the external appearance of a resin-sealed semiconductor device to be inspected using an ITV camera, inputs the image to an image processing device, and divides this input signal into 256 gradations of brightness. and stored in the memory section of this image device. A method was adopted in which this stored image is divided into a plurality of parts, the average brightness of the divided images is calculated, a slice level is determined, and a binarized image is thereby obtained. Furthermore, a method was adopted in which the average brightness of the divided images is subjected to arithmetic processing using an experimentally determined coefficient to determine the optimal slice level, and the stored image is binarized based on this.

〔発明の実施例〕[Embodiments of the invention]

第1図乃至第7図により本発明を詳述する。 The present invention will be explained in detail with reference to FIGS. 1 to 7.

本発明方式に採用した画像処理装置は画像処理に不可欠
な専用プロセッサとミニコンを内蔵し、2値化処理等基
本的な画像装置が可能な視覚センサ応用機器でTO3P
IX−II(商品名、株式会社東芝製)又ミニコンとし
てはT−7/20E(株式会社東芝製、製品番号)を適
用した。その基本コマンド主要機能の一部を第1表とし
て記載する。
The image processing device adopted in the method of the present invention has a built-in dedicated processor and minicomputer essential for image processing, and is a TO3P visual sensor application device capable of basic image processing such as binarization processing.
IX-II (trade name, manufactured by Toshiba Corporation) and T-7/20E (manufactured by Toshiba Corporation, product number) were used as the minicomputer. Some of the main functions of the basic commands are listed in Table 1.

第1表 第1図には本方式を採用した外観自動検査装置の概略図
を示し、その検査項目を第3図に示した。
Table 1, Figure 1 shows a schematic diagram of an automatic appearance inspection device that employs this method, and the inspection items are shown in Figure 3.

この装置は表示パネル(6)を備えた架台(1)に被検
査樹脂封止型半導体装置(2)を搬送する搬送路(3)
を設け、その中間ならびに終端には転送部材(4)(4
)を配置する。この転送部材(4)から架台(1)端に
延長径路(7) (7)の終端には転送部材(4)によ
って区分された半導体装置(2)が納入されるアンロー
ダからなるストッカ(5) (5)を設置する。架台(
1)の他端には被検査樹脂封止型半導体装置(2)・・
・を収納するローダ(8)を配置する他、前述の画像処
理装置(9)を設置し、試験ステーション毎に設置する
ITVカメラ(10)・・・と電気的に接続する。
This device has a transport path (3) that transports a resin-sealed semiconductor device (2) to be inspected to a stand (1) equipped with a display panel (6).
are provided, and transfer members (4) (4) are provided in the middle and at the end.
). An extension path (7) extends from the transfer member (4) to the end of the pedestal (1). At the end of the (7) is a stocker (5) consisting of an unloader into which the semiconductor devices (2) separated by the transfer member (4) are delivered. (5) will be installed. Mount (
1) At the other end is a resin-sealed semiconductor device to be inspected (2)...
In addition to arranging the loader (8) that houses the above-mentioned image processing device (9), it is electrically connected to the ITV camera (10) installed at each test station.

前記ステーション毎に搬送した被検査樹脂封止型半導体
装置(2)は下記の手段によって位置規制を行う。この
半導体装置を封止した樹脂部は第2図に示すように断面
が六角形をした一方向が長い形状を持ちその対向する面
は平坦になっている。
The position of the resin-sealed semiconductor device (2) to be inspected transported to each station is controlled by the following means. As shown in FIG. 2, the resin portion that encapsulates this semiconductor device has a hexagonal cross section, long in one direction, and flat on the opposite surface.

この樹脂部の長手方向の位置決めは試験ステーションに
対応する搬送路(3)に設ける図示しない位置決めピン
により、この搬送路には断面六角形の樹脂部が嵌合する
ように側壁部(6)を設けしかも樹脂部とクリアランス
を0.1+aとして幅方向を規制する。更にこの位置決
めピンによって試験ステーションに対応する搬送路に静
止した半導体装置はこの搬送路に設けた減圧機構に連通
ずる排気孔(7)による減圧によって固定されると共に
傾きをなくす。
The longitudinal position of this resin part is determined by positioning pins (not shown) provided in the conveyance path (3) corresponding to the test station. In addition, the clearance with the resin part is set to 0.1+a to regulate the width direction. Further, by means of the positioning pins, the semiconductor device that is stationary on the transport path corresponding to the test station is fixed by being depressurized by the exhaust hole (7) communicating with the decompression mechanism provided in this transport path, and is prevented from tilting.

ITVカメラ(10)・・・は合計5台配置し、第2表
に示した役割分担に基づいて被検査樹脂封止半導体装置
(2)・・・を最適条件下で撮像する。
A total of five ITV cameras (10) are arranged to take images of the resin-sealed semiconductor devices to be inspected (2) under optimal conditions based on the roles shown in Table 2.

第3図による役割分担によって樹脂封止型半導体装置の
撮像部分は表面、裏面ならびに左右リード面であり、検
査項目としては巣、欠け、傷、リード曲がり、リード長
、折れおよびダムカッ1−偏芯である。このダムカット
とは半導体素子の実装時に使用するリードフレームに形
成したいわゆるタイバー(連結棒)を切断した除土ずる
偏芯程度を表示する項目である。
Due to the division of roles shown in Figure 3, the imaging portions of the resin-sealed semiconductor device are the front surface, back surface, and left and right lead surfaces, and the inspection items include cavities, chips, scratches, lead bends, lead length, bends, and dam cuts and eccentricity. It is. This dam cut is an item that indicates the degree of eccentricity caused by removing earth when a so-called tie bar (connecting rod) formed on a lead frame used when mounting a semiconductor element is cut.

さて、樹脂封止型半導体装置の外観即ち樹脂部にはその
表面を最適の照明を施しても明るさが部分的に異なる頻
度が大きい。
Now, even if the exterior of a resin-sealed semiconductor device, that is, the resin part, is illuminated to the optimum level, the brightness often varies locally.

そこで、ある領域毎にスライスレベルを設定する手法を
採用したのは前述の通りであり、この自動2値化する撮
像画像を10分割した状態を第4図に、この分割領域毎
に決めたスライスレベルを第5図に示した。この図は最
適の照明下でITV力。
Therefore, as mentioned above, we adopted the method of setting the slice level for each region. Figure 4 shows the state in which the captured image to be automatically binarized is divided into 10 slices, which are determined for each divided region. The levels are shown in Figure 5. This figure shows ITV power under optimal lighting.

メラ(10)によって撮像した画像を画像処理装置(9
)に入力し、この入力信号を256階調(0〜255)
の明るさに分割してこれをメモリ部に記憶させる。この
記憶された画像を前述の分割そしてスライスレベル決定
を実施した状態を第4図及び第5図に図示したことを付
記する。
The image captured by the camera (10) is processed by the image processing device (9).
) and convert this input signal into 256 gradations (0 to 255).
The brightness is divided into two parts and stored in the memory section. It should be noted that the state in which this stored image has been divided and the slice level determined as described above is illustrated in FIGS. 4 and 5.

第4図において、(11)は半導体装置(2)の周辺部
、これを含む2値化対象領域を(12)、この対象領域
の長手方向を10等分した状態を(13)、明るさのサ
ンプリングラインを(14)に示し、第4図における2
値化スライスレベル(16)は各領域毎の明るさの平均
によって求めるか、更に実験によって求めた常数との演
算により決定したものである。又得られた各領域毎の明
るさの分布を第5図(15)により表示した。
In FIG. 4, (11) is the peripheral area of the semiconductor device (2), (12) is the binarization target area including this, and (13) is the state in which the longitudinal direction of this target area is divided into ten equal parts, and (13) is the brightness. The sampling line of 2 in Fig. 4 is shown in (14).
The valued slice level (16) is determined by averaging the brightness of each area or by calculating it with a constant determined experimentally. Further, the obtained brightness distribution for each region is shown in FIG. 5 (15).

次に傷、巣等の具体的手段について説明する。Next, specific measures such as scratches and nests will be explained.

先ず検査エリアの設定とマスキングから説明する。前述
の自動検査装置ではローダから被検査樹脂封止型半導体
装置が搬送路にセットされ、各試験ステーションに搬送
され、そのステーション毎で前述の位置決め機構によっ
て標準位置に配置される。この標準位置は画像処理装置
(9)でも当然得られるが、実際の半導体装置(2)よ
り拡大される。
First, setting of the inspection area and masking will be explained. In the above-mentioned automatic inspection apparatus, the resin-sealed semiconductor device to be tested is set on a transport path from a loader, transported to each test station, and placed at a standard position at each station by the above-mentioned positioning mechanism. This standard position can naturally be obtained by the image processing device (9), but it is enlarged compared to the actual semiconductor device (2).

前述のように被検査樹脂封止型半導体装置(2)の樹脂
部はその長手方向を位置決めピンで、幅は搬送路に設け
た側壁部で、その傾むきは搬送路の各ステーションに対
応した搬送路に形成した減圧機構によって規制され、標
準位置に配置される。
As mentioned above, the resin part of the resin-sealed semiconductor device to be inspected (2) has a positioning pin in its longitudinal direction, a side wall part provided in the transport path in width, and an inclination corresponding to each station on the transport path. It is regulated by a pressure reduction mechanism formed in the conveyance path and placed at the standard position.

この被検査樹脂封止型半導体装置はITVカメラにより
最適な照射条件下で撮像の上画像処理装置(9)に入力
される。この装置の画像は正方形をなしその左上を予め
原点として定められており、その画面は縦横とも512
画素で構成されている。次にこの画像に撮し出された半
導体装置の位置出し即ち検査エリアの測定を行なうが、
この場合この半導体装置は互いに平行な線分で構成され
るものとした上でそのX方向及びY方向における各画素
における濃度を調査した上で、これを表示し易いように
洛画素毎の濃い個数Eの合計を線状に別のライン上に表
示する。この状況を第6図に示した。
This resin-sealed semiconductor device to be inspected is imaged by an ITV camera under optimal irradiation conditions and then input to an image processing device (9). The image of this device is a square, and the upper left of the square is predetermined as the origin, and the screen has 512 pixels both vertically and horizontally.
It is made up of pixels. Next, the position of the semiconductor device taken in this image is determined, that is, the inspection area is measured.
In this case, this semiconductor device is assumed to be composed of line segments parallel to each other, and after investigating the density of each pixel in the X and Y directions, Display the sum of E linearly on a separate line. This situation is shown in Figure 6.

このA−A’、D−D’は各コーナーからの画素毎の検
査状況を示すものである。
AA' and DD' indicate the inspection status of each pixel from each corner.

この方法によりXsum、 Ysumを求めた上でこの
合計値から前述の原点を参照の上で左右端X座標XI2
、XRを求め同様にYsum資料から上下端Y座標YL
、 VDを求める。このXL、 XR,YU、 VDで
囲まれたエリアから一定値内側部分を検査対象エリアと
して設定する。この常数としては経験から0.045 
X 4画素(バラツキ量)とした。尚この測定に際する
画像では被検査樹脂封止型半導体装置を濃い部分として
例示したがこ゛の逆にすることも可能である。又濃い部
分の個数を測定するに当っては、合計個数が標準値を超
えた場合カウントすることを付記する。
After determining Xsum and Ysum using this method, the left and right end X coordinates XI2 are determined from the total value with reference to the origin mentioned above.
, XR is obtained and the upper and lower end Y coordinates YL are obtained from the Ysum data in the same way.
, find VD. The area within the constant value from the area surrounded by XL, XR, YU, and VD is set as the area to be inspected. From experience, this constant is 0.045
x 4 pixels (amount of variation). In the image used for this measurement, the resin-sealed semiconductor device to be inspected is illustrated as a dark area, but it is also possible to do the opposite. It should also be noted that when measuring the number of dark areas, if the total number exceeds the standard value, it will be counted.

被検査樹脂封止型半導体装置(2)の樹脂部にはイジェ
クタピン跡がその平坦表面中央部にありそのピン跡の下
には樹脂層が存在しいているためこのピン跡の円をマス
クして誤差を少なくする外に、樹脂層の一端縁部分には
半円状の切り欠き部がこの一端縁の厚さ方向全体に形成
されている。従って、この切り欠き部全面をXL、 Y
U、 YDを基準にして第5図に示すようにマスクA、
Bを行う。
The resin part of the resin-sealed semiconductor device to be inspected (2) has an ejector pin mark in the center of its flat surface, and a resin layer exists below the pin mark, so the circle of this pin mark is masked. In addition to reducing errors, a semicircular notch is formed at one end edge of the resin layer in the entire thickness direction of the one end edge. Therefore, the entire surface of this notch is XL, Y
As shown in FIG. 5, masks A,
Do B.

次に不良部の検出を第7図(a) (b)によって実施
する。
Next, defective parts are detected as shown in FIGS. 7(a) and 7(b).

前記周辺分布測定によって検査エリア即ち半導体装置の
位置を測定した後ステーション1.5では巣と欠けの面
積S工〜S4を求め夫々について最大値が基準値を超え
た場合不良と判断する。
After measuring the inspection area, ie, the position of the semiconductor device, by the peripheral distribution measurement, the area of the cavity and chip S4 is determined at station 1.5, and if the maximum value of each exceeds the reference value, it is determined to be defective.

ステーション3についてはX方向、Y方向の傷の長さし
よ、L4を計算し基準値を超えた場合不良と判断する。
For station 3, the length of the flaw in the X and Y directions, L4, is calculated, and if it exceeds the standard value, it is determined to be defective.

尚基準値を第2表に示したが、これは経験則によるもの
である。
The reference values are shown in Table 2, which are based on empirical rules.

次にステーション2,4における測定について述べる。Next, measurements at stations 2 and 4 will be described.

この測定はステーション1,3.5と違い画像 。This measurement differs from stations 1 and 3.5 in that it is an image.

そのものを実測し、しかも測定対象物が金属部分である
ために非常に判断し易く、従ってスライスレベルは12
0番目の明るさに固定する。
It is very easy to judge because the object to be measured is a metal part, so the slice level is 12.
Fix it to the 0th brightness.

第2表ダムかつ偏芯に関する斜線部分は見易いように下
のリードのダム部分を作り変えたので、下側がリード形
状を示す。実際の測定に当ってはA、Bを含みC,Dを
側辺とする直方形の周辺分布を第6図と同様な方法で求
めることによりダムEの偏芯量りが求められる。リード
曲がりならびにリード長も第2表に示したと同様な方法
で測定することができる。
The shaded areas related to dams and eccentricity in Table 2 are the dam parts of the lower leads that have been remade to make them easier to see, so the lower side shows the lead shape. In actual measurement, the eccentricity of the dam E can be determined by determining the peripheral distribution of a rectangular parallelepiped that includes A and B and has C and D as sides in the same manner as shown in FIG. Lead bending and lead length can also be measured using methods similar to those shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

この自動2値化方式を利用することによって、被検査面
に明るさの異なる部分が存在していても2値画像のバラ
ツキを抑えることが可能となった。
By using this automatic binarization method, it has become possible to suppress variations in the binary image even if there are parts with different brightness on the surface to be inspected.

その達成方法としては2値化領域を分割することによっ
ているがこれによって金遣は充分見出し得なかった欠陥
部分をも検出することが可能になり、これに伴ってその
検出限界をも向上することが可能となり量産上の効果は
極めて大きいものである。
The method to achieve this is to divide the binarized area, which makes it possible to detect defective parts that could not be found sufficiently, and improves the detection limit accordingly. The effect on mass production is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの方式を適用した半導体外観自動検査装置の
概略を示す図、第2図はその搬送路に被検査樹脂封止半
導体装置を収容した断面図、第3図はこの検査装置の検
査方法をまとめた図、第4図乃至第B (a) (b)
図は本方式を適用した検査装置/の検査方法を説明する
図である。
Figure 1 is a diagram showing an outline of an automatic semiconductor appearance inspection device to which this method is applied, Figure 2 is a cross-sectional view of a resin-sealed semiconductor device to be inspected accommodated in its transport path, and Figure 3 is an inspection diagram of this inspection equipment. Diagrams summarizing the method, Figures 4 to B (a) (b)
The figure is a diagram illustrating an inspection method of an inspection device/to which this method is applied.

Claims (2)

【特許請求の範囲】[Claims] (1)被検査樹脂封止型半導体装置の撮像画面を画像処
理装置に入力し、得られる一定画素を持つ画像を複数に
分割してその各々毎の平均明るさにより決めるスライス
レベルで2値画像を得ることを特徴とする自動2値化方
式。
(1) Input the image capture screen of the resin-sealed semiconductor device to be inspected into an image processing device, divide the resulting image with a certain number of pixels into multiple parts, and create a binary image at a slice level determined by the average brightness of each part. An automatic binarization method characterized by obtaining.
(2)被検査樹脂封止型半導体装置の撮像画面を画像処
理装置に入力し、得られる一定画素を持つ画像を複数に
分割してその各々毎の平均明るさに常数を演算処理して
得られるスライスレベルにより2値画像を得ることを特
徴とする自動2値化方式。
(2) Input the image capture screen of the resin-sealed semiconductor device to be inspected into an image processing device, divide the resulting image with a certain number of pixels into multiple parts, and calculate a constant for the average brightness of each part. An automatic binarization method characterized by obtaining a binary image based on slice levels.
JP16204385A 1985-07-24 1985-07-24 Automatic binary-coding system Pending JPS6224133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16204385A JPS6224133A (en) 1985-07-24 1985-07-24 Automatic binary-coding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16204385A JPS6224133A (en) 1985-07-24 1985-07-24 Automatic binary-coding system

Publications (1)

Publication Number Publication Date
JPS6224133A true JPS6224133A (en) 1987-02-02

Family

ID=15747000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16204385A Pending JPS6224133A (en) 1985-07-24 1985-07-24 Automatic binary-coding system

Country Status (1)

Country Link
JP (1) JPS6224133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552763A (en) * 1991-08-23 1993-03-02 Mitsubishi Electric Corp Inspecting apparatus of appearance of semiconductor device
WO2002023171A1 (en) * 1999-03-18 2002-03-21 Fujisawa Pharmaceutical Co., Ltd. Object visual inspection method and object visual inspection apparatus
US20080017613A1 (en) * 2004-07-09 2008-01-24 Sekisui Chemical Co., Ltd. Method for processing outer periphery of substrate and apparatus thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106083A (en) * 1977-02-25 1978-09-14 Toshiba Corp Defect inspecting apparatus
JPS543638A (en) * 1977-06-10 1979-01-11 Mitsubishi Heavy Ind Ltd Motor for ship and others
JPS5650682A (en) * 1979-09-11 1981-05-07 Nippon Keisoku Kogyo Kk Image-split type television video test device
JPS5984522A (en) * 1982-11-08 1984-05-16 Hitachi Ltd Threshold level setting system for binalizing picture signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106083A (en) * 1977-02-25 1978-09-14 Toshiba Corp Defect inspecting apparatus
JPS543638A (en) * 1977-06-10 1979-01-11 Mitsubishi Heavy Ind Ltd Motor for ship and others
JPS5650682A (en) * 1979-09-11 1981-05-07 Nippon Keisoku Kogyo Kk Image-split type television video test device
JPS5984522A (en) * 1982-11-08 1984-05-16 Hitachi Ltd Threshold level setting system for binalizing picture signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552763A (en) * 1991-08-23 1993-03-02 Mitsubishi Electric Corp Inspecting apparatus of appearance of semiconductor device
WO2002023171A1 (en) * 1999-03-18 2002-03-21 Fujisawa Pharmaceutical Co., Ltd. Object visual inspection method and object visual inspection apparatus
US20080017613A1 (en) * 2004-07-09 2008-01-24 Sekisui Chemical Co., Ltd. Method for processing outer periphery of substrate and apparatus thereof

Similar Documents

Publication Publication Date Title
KR102139218B1 (en) Linear inspection system
US4958373A (en) Defect-recognition processing apparatus
US20220107174A1 (en) System and method of object inspection using multispectral 3d laser scanning
US5115475A (en) Automatic semiconductor package inspection method
JPH04107946A (en) Automatic visual inspector
KR20040093458A (en) Device for examining end part
Kim et al. Three-dimensional inspection of ball grid array using laser vision system
WO2021073310A1 (en) Method and apparatus for three-dimensional on-line monitoring of warpage deformation and defect of encapsulation module
JPS6224133A (en) Automatic binary-coding system
JPS63126242A (en) Appearance inspection and device therefor
JP2004251781A (en) Defect inspection method by image recognition
JP2012190935A (en) Chip position specification system, chip position specification device, chip position specification program, and chip position specification method
Morishita et al. Automated visual inspection systems for industrial applications
JPS60227431A (en) Inspecting device of die bonding state
JPH05114640A (en) Method and device for measuring lead, and lead tester using same
JPS6336543A (en) Method and apparatus for automatic inspection of semiconductor device
JP5071782B2 (en) Substrate defect inspection method and defect inspection program
JP2656249B2 (en) Surface inspection equipment
Okabe et al. Final visual inspection system for LSI packages
JP4248319B2 (en) Inspection condition evaluation program and inspection apparatus
CN117761068A (en) System and method for synchronously detecting double sides of pins of electronic package shell
JPH05335388A (en) Flatness inspection method of lead in semiconductor device
Tamamura et al. Automatic LSI package lead inspection system with CCD camera for backside lead specification
JPS57154003A (en) Detection of defect on semiconductor chip pattern
JPH04241438A (en) Inspecting device for semiconductor device