JPH04107946A - Automatic visual inspector - Google Patents
Automatic visual inspectorInfo
- Publication number
- JPH04107946A JPH04107946A JP22717190A JP22717190A JPH04107946A JP H04107946 A JPH04107946 A JP H04107946A JP 22717190 A JP22717190 A JP 22717190A JP 22717190 A JP22717190 A JP 22717190A JP H04107946 A JPH04107946 A JP H04107946A
- Authority
- JP
- Japan
- Prior art keywords
- difference
- value
- threshold value
- threshold
- inspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000007 visual effect Effects 0.000 title 1
- 238000007689 inspection Methods 0.000 claims abstract description 16
- 230000007547 defect Effects 0.000 claims description 33
- 238000011179 visual inspection Methods 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 5
- 230000002950 deficient Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 33
- 239000004065 semiconductor Substances 0.000 abstract description 14
- 238000003860 storage Methods 0.000 abstract description 14
- 239000000758 substrate Substances 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 230000007812 deficiency Effects 0.000 abstract 2
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 235000012431 wafers Nutrition 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体ウェハなどの物体の表面の外観を検査す
る技術、特に、半導体装置の製造工程における外観検査
を自動的に行うために用いて効果のある技術に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a technology for inspecting the appearance of the surface of an object such as a semiconductor wafer, and in particular, to a technology used to automatically perform an appearance inspection in the manufacturing process of semiconductor devices. It's about techniques that work.
例えば、LSI(大規模集積回路)の量産をするに際し
て最も問題となるのは、半導体素子を形成するウェハ処
理工程の歩留り向上である。この歩留り低下の殆どの原
因が外観不良であり、この低減は重要な課題になってい
る。このたt、ウェハ外観検査の自動化が必要になる。For example, when mass producing LSIs (Large Scale Integrated Circuits), the most important issue is improving the yield of the wafer processing process for forming semiconductor elements. Most of the causes of this decrease in yield are poor appearance, and reducing this has become an important issue. For this reason, it is necessary to automate the wafer visual inspection.
ところで、本発明者は、半導体ウニノー1基板、マスク
、レチクル、液晶などの外観検査を差分値処理を用いて
行う場合のしきい値の設定の問題について検討した。By the way, the present inventor has studied the problem of setting a threshold value when visual inspection of semiconductor Unino 1 substrates, masks, reticles, liquid crystals, etc. is performed using differential value processing.
以下は、本発明者によって検討された技術であり、その
概要は次の通りである。The following are the techniques studied by the present inventor, and the outline thereof is as follows.
この種の外観検査のための画像処理においては、検査対
象をテレビカメラなどで撮像し、その2チップ間の画像
パターンを比較して得た差分値を用い、さらに、しきい
値を設定して欠陥判定を行っている。In image processing for this type of appearance inspection, the inspection target is imaged with a television camera, etc., the difference value obtained by comparing the image patterns between the two chips is used, and a threshold value is further set. Performing defect determination.
しきい値を設定する方法として、例えば、画像の差分面
積を求め、その最大面積の変化に応じて自動的にしきい
値を設定する方法、正常パターン部の誤検出率を基にし
きい値を設定する方法などが知られている。Methods for setting the threshold include, for example, determining the difference area of images and automatically setting the threshold according to the change in the maximum area, and setting the threshold based on the false detection rate of normal pattern areas. There are known methods to do this.
なお、検査対象が半導体ウェハの場合、半導体ウェハを
搭載したX−Yステージの移動の際の僅かな振動、及び
半導体ウェハのパターンの寸法差(製品の精度ばらつき
、例えば、チップの層形成段階でのパターンの幅の違い
など)などが誤検出の原因になる。このたと、機械的精
度及び製品精度によって検出感度が決定され、しきい値
は機械的精度及び製品精度を考慮して決定する必要があ
る。In addition, when the inspection target is a semiconductor wafer, there may be slight vibrations during the movement of the X-Y stage on which the semiconductor wafer is mounted, and dimensional differences in the pattern of the semiconductor wafer (product accuracy variations, for example, during the layer formation stage of the chip). (such as differences in the width of the patterns) can cause false detections. In this case, detection sensitivity is determined by mechanical precision and product precision, and the threshold value needs to be determined in consideration of mechanical precision and product precision.
ところが、前記の如く差分面積の最大面積を判断規準と
する方法では、入力画像点に欠陥が含まれている場合、
欠陥部が最大面積として検出されるためにしきい値を求
めることができず、また、正常パターン部の誤検出率を
基にしきい値を設定する方法では、欠陥の含まれていな
い正常パターン部を識別する点についての配慮がなされ
ておらず、欠陥のを無を目視によって確認しなければな
らないという問題のあることが本発明者によって見出さ
れた。However, in the method that uses the maximum area of the difference area as the criterion as described above, if the input image point contains a defect,
It is not possible to determine the threshold because the defective area is detected as the largest area, and the method of setting the threshold based on the false detection rate of the normal pattern area detects the normal pattern area that does not contain defects. The inventors of the present invention have found that there is a problem in that no consideration is given to identification, and defects must be visually confirmed.
そこで、本発明の目的は、簡単かつ的確にしきい値の設
定を行うことのできる技術を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique that can easily and accurately set a threshold value.
本発明の前菖己目的と新規な特徴は、本胡細書の記述お
よび添付図面から胡らかになるであろう。The objectives and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、以下の通りである。A brief overview of typical inventions disclosed in this application is as follows.
すなわち、被検査物の同一のパターン部分の画像を比較
し、その差分値及びしきい値に基づいて欠陥を判定する
自動外観検査装置であって、被検査物上の複数点の差分
量データの統計量に基づいてしきい値を決定するもので
ある。In other words, it is an automatic visual inspection device that compares images of the same pattern part of an object to be inspected and determines defects based on the difference value and threshold value. The threshold value is determined based on statistics.
上記した手段によれば、被検査物上の複数点の差分量デ
ータの統計量に基づいて決定されたしきい値は、最適し
きい値のおおよその決定値として設定でき、或いは基準
となる中心値として用いることができる。したがって、
最適な欠陥検出しきい値の設定を自動かつ短時間に行う
ことが可能になる。According to the above-mentioned means, the threshold determined based on the statistics of the difference amount data at multiple points on the object to be inspected can be set as an approximate determination value of the optimal threshold, or Can be used as a value. therefore,
It becomes possible to automatically and quickly set the optimal defect detection threshold.
〔実施例1〕
第1図は本発明による自動外観検査装置の一実施例を示
すブロック図である。[Embodiment 1] FIG. 1 is a block diagram showing an embodiment of an automatic visual inspection apparatus according to the present invention.
X方向及びY方向へ自在に移動可能なX−Yステージ1
の上面には試料台2が取り付けられ、この試料台上に試
料(半導体ウェハ)3がセットされる。一方、被検査物
である試料3の表面を照明するために光源4が設けられ
、その光路上に集光レンズ5が配設されている。X-Y stage 1 that can freely move in the X and Y directions
A sample stage 2 is attached to the upper surface of the sample stage 2, and a sample (semiconductor wafer) 3 is set on this sample stage. On the other hand, a light source 4 is provided to illuminate the surface of a sample 3, which is an object to be inspected, and a condenser lens 5 is provided on the optical path thereof.
試料3の上部には対物レンズ6が配設され、この上部で
かつ集光レンズ5の出射光路上にハーフミラ−7が配設
されている。さらに、対物レンズ6の合焦位置には撮像
手段8が配設されている。An objective lens 6 is disposed above the sample 3, and a half mirror 7 is disposed above this and on the output optical path of the condenser lens 5. Furthermore, an imaging means 8 is arranged at the focal position of the objective lens 6.
この撮像手段8は、試料3からの反射光を光電変換する
もので、−次元ラインセンサあるいは二次元的なrTV
(工業用テレビ)カメラを用いて構成される。撮像手
段8には、その画像信号を増幅、歪み補正、A/D変換
などを行うための信号処理回路9が接続され、この信号
処理回路9にはデジタル化された画像信号を記憶するた
袷の画像記憶部10が接続されている。This imaging means 8 photoelectrically converts the reflected light from the sample 3, and is a -dimensional line sensor or a two-dimensional rTV.
(Industrial TV) Constructed using a camera. A signal processing circuit 9 is connected to the image pickup means 8 for amplifying the image signal, correcting distortion, A/D conversion, etc., and this signal processing circuit 9 has a circuit for storing the digitized image signal. An image storage unit 10 is connected thereto.
信号処理回路9には、画像8己憶部10の出力信号と信
号処理回路9との間の信号との差分を検出する差分検出
回路11が接続され、この差分検出回路11にはパター
ン上の欠陥を判定する欠陥判定部12が接続されている
。The signal processing circuit 9 is connected to a difference detection circuit 11 that detects the difference between the output signal of the image 8 self-memory section 10 and the signal between the signal processing circuit 9. A defect determination section 12 that determines defects is connected.
差分検出回路11には、その検出結果を記憶する差分画
像記憶部13が接続され、欠陥判定部12にはしきい値
を記憶するしきい値レジスタ14が接続されている。さ
らに、差分画像記憶部13の差分データに基づいてしき
い値レジスタ14のしきい値を選択するためにマイクロ
コンピュータなどを用いた主制御部15が設けられてい
る。The difference detection circuit 11 is connected to a difference image storage section 13 that stores the detection results, and the defect determination section 12 is connected to a threshold register 14 that stores a threshold value. Further, a main control section 15 using a microcomputer or the like is provided to select the threshold value of the threshold register 14 based on the difference data of the difference image storage section 13.
以上の構成において、外観検査を行うには、まず、試料
台2上に試料3を載置し、光源4を点灯する。その出力
光は集光レンズ5を経てハーフミラ−7に到達し、さら
に対物レンズ6によって試料3上に到達する。試料3の
照明部分の反射光は、ハーフミラ−7を通過して撮像手
段8にパターンを結做する。撮像手段8によって光電変
換された画像信号は、信号処理回路9によって信号処理
ののち、画像記憶部10に一時的に記憶される。In the above configuration, in order to conduct an external appearance inspection, first, the sample 3 is placed on the sample stage 2, and the light source 4 is turned on. The output light reaches the half mirror 7 through the condenser lens 5, and further reaches the sample 3 through the objective lens 6. The reflected light from the illuminated portion of the sample 3 passes through the half mirror 7 and forms a pattern on the imaging means 8. The image signal photoelectrically converted by the imaging means 8 is subjected to signal processing by the signal processing circuit 9, and then temporarily stored in the image storage section 10.
この画像ε己憶部10に記憶された他のチップの画像信
号と信号処理回路9から直接出力された現チップの画像
信号とが差分検出回路11によって比較され、両画像信
号の差分がとられ、その差分信号は差分画像記憶部13
に記憶される。The image signal of the other chip stored in the image ε memory unit 10 and the image signal of the current chip directly output from the signal processing circuit 9 are compared by the difference detection circuit 11, and the difference between the two image signals is calculated. , the difference signal is stored in the difference image storage section 13
is memorized.
主制御部15は、差分画像記憶部13に記憶されている
差分データに基づいて最適なしきい値を演算し、しきい
値レジスタ14にしきい値を設定する。The main control unit 15 calculates an optimal threshold value based on the difference data stored in the difference image storage unit 13 and sets the threshold value in the threshold register 14 .
つぎに、半導体ウェハを例にとり、欠陥を検出する方法
について説明する。Next, a method for detecting defects will be described using a semiconductor wafer as an example.
第2図は半導体ウェハの構成を示す平面図である。試料
3は、円板状のシリコン基板3aの片面に多数のチップ
3bが格子状に配設されている。FIG. 2 is a plan view showing the structure of a semiconductor wafer. In the sample 3, a large number of chips 3b are arranged in a grid on one side of a disk-shaped silicon substrate 3a.
このような半導体ウェハ3に対し、例えば、CCD(電
荷結合素子〉などの−次元ラインセンサを撮像手段8に
用いた場合、第3図に示すように、隣接する2つのチッ
プ3bに対し、まず左側のチップ3bを検査幅W7で画
像信号Aを取り込み、これを信号処理回路9による処理
加工ののち画像記憶部10へ格納する。ついで、同一の
検査幅W。によって右側のチップ3bを画像信号Bとし
て撮像し、信号処理回路9によって処理ののち画像記憶
部10へ格納することなく差分検出回路11へ送出する
。差分検出回路11では、第3図の2つの画像信号(斜
J1部〉を比較し、その差が一定以上であるときに欠陥
を判定する。When a -dimensional line sensor such as a CCD (charge-coupled device) is used as the imaging means 8 for such a semiconductor wafer 3, as shown in FIG. The left chip 3b receives an image signal A with an inspection width W7, and after being processed by the signal processing circuit 9, it is stored in the image storage unit 10. Next, the right chip 3b receives an image signal with the same inspection width W. B is imaged, processed by the signal processing circuit 9, and then sent to the difference detection circuit 11 without being stored in the image storage unit 10.The difference detection circuit 11 receives the two image signals (diagonal J1 part) in FIG. A defect is determined when the difference is greater than a certain value.
また、ITVにより撮像手段8を構成した場合、第4図
に示すように、隣接する2つのチップ3bに対し、まず
左側のチップ3bを検査幅WTで画像信号Cを取り込み
、第3r!lJの場合と同様に、これを信号処理回路9
による処理加工ののち画像記憶部10へ格納する。つい
で、同一の検査l1WIIIによって右側のチップ3b
を画像信号りとして撮像し、信号処理回路9によって処
理ののち画像記憶部10へ格納することなく差分検出回
路11へ送出する。差分検出回路11では、第3図の2
つの画像信号(斜線部)を比較し、その差が一定以上で
あるときに欠陥を判定する。In addition, when the imaging means 8 is constituted by ITV, as shown in FIG. 4, among the two adjacent chips 3b, the left chip 3b first captures the image signal C with the inspection width WT, and the third r! As in the case of lJ, this is processed by the signal processing circuit 9
After processing, the image is stored in the image storage unit 10. Next, the right chip 3b is tested by the same test l1WIII.
is imaged as an image signal, processed by the signal processing circuit 9, and then sent to the difference detection circuit 11 without being stored in the image storage section 10. In the difference detection circuit 11, 2 in FIG.
The two image signals (shaded areas) are compared, and a defect is determined when the difference is greater than a certain value.
第5図及び′!J6図は2つのチップの同一位置におけ
るパターンを比較したときの差分信号の表れ方を説明し
たものである。第5図に示すように、パターン1が比較
の基準となる正常部を示し、パターン2が欠陥16を含
んだ比較対象である。なあ、パターン幅(パターン寸法
)が、両者で僅かに異なるが、他の寸法差は欠陥ではな
いものとする。このようなパターンの画像信号の差の絶
対値をとると、第6図のように、欠陥部の差分信号も出
るが、同時にパターン寸法差のために正常部でも差分信
号が出る。Figure 5 and '! Figure J6 explains how a differential signal appears when patterns at the same position on two chips are compared. As shown in FIG. 5, pattern 1 shows a normal part as a reference for comparison, and pattern 2 is a comparison target including a defect 16. Although the pattern widths (pattern dimensions) are slightly different between the two, other dimensional differences are not considered defects. When the absolute value of the difference between the image signals of such a pattern is taken, as shown in FIG. 6, a difference signal is produced in the defective part, but at the same time, a difference signal is also produced in the normal part due to the difference in pattern dimensions.
欠陥のみを正しく検出し、正常部を欠陥として検出しな
いようにするためには、正常部での差分信号の値が問題
になる。したがって、欠陥検出のたとのしきい値が正常
部を欠陥と判定しないような値にする必要がある。In order to correctly detect only defects and not detect normal parts as defects, the value of the difference signal in the normal part becomes a problem. Therefore, it is necessary to set the threshold value for defect detection to a value that does not determine a normal part as a defect.
次に、本発明の特徴である最適しきい値の設定原理につ
いて説明する。Next, the principle of setting the optimum threshold value, which is a feature of the present invention, will be explained.
第7図はしきい値と欠陥検出率および誤検出の関係を定
性的に示した説明図である。FIG. 7 is an explanatory diagram qualitatively showing the relationship between the threshold value, defect detection rate, and false detection.
一般に、しきい値を低くしていくと、成るしきい値以下
で急激に誤検出が増加する。一方、欠陥検出率は、誤検
出率はど急激には増加しない。したがって最適しきい値
は、第8図中に示すように、誤検出がそれほど多くなら
ない値に設定すれば、効率のよい検査が可能になる。Generally, as the threshold value is lowered, the number of false detections increases rapidly below the threshold value. On the other hand, the defect detection rate does not increase as rapidly as the false detection rate. Therefore, as shown in FIG. 8, if the optimal threshold value is set to a value that does not result in a large number of false positives, efficient testing becomes possible.
第8図は一定範囲の2つの画像信号を比較し、その差分
信号の値と頻度の関係を示す説明図である。図より胡ら
かなように、差分値の頻度は差分値が大きくなると急激
に減少する。しかし、欠陥部が画像内に存在すると、最
適しきい値より高い値の点に差分値が発生する。したが
って、複数点の画像を基に、第8図に示す差分値の頻度
分布をとり、各画像入力点での最大差分値(a+>をと
り、最大差分値が比較的大きな値となった画像人力点を
欠陥の存在する可能性がある領域とみなし、これ以外の
画像入力点での最大差分値をもとに最適しきい値を算出
する。FIG. 8 is an explanatory diagram that compares two image signals in a certain range and shows the relationship between the value of the difference signal and the frequency. As is clear from the figure, the frequency of difference values decreases rapidly as the difference value increases. However, if a defect exists in the image, a difference value will occur at a point with a value higher than the optimal threshold. Therefore, based on images at multiple points, the frequency distribution of difference values shown in Figure 8 is taken, and the maximum difference value (a+>) at each image input point is taken, and the image has a relatively large maximum difference value. The human input point is regarded as an area where a defect may exist, and the optimal threshold value is calculated based on the maximum difference value at other image input points.
次に、第9図〜第13図を参照して本発明の最適しきい
値決定処理の詳細について説明する。第9図は本発明に
おける初期しきい値推定処理を示すフローチャート、第
10図は最適しきい値を自動設定する処理を示すフロー
チャート、第11図は最大差分値と頻度の関係を示す説
明図、第12図はしきい値と検出数の関係を示す説明図
、第13図は差分値と累積頻度(比率)の関係を示す説
明図である。なお、以下においては、差分検出から以降
についての処理を説明する。Next, details of the optimum threshold value determination process of the present invention will be explained with reference to FIGS. 9 to 13. FIG. 9 is a flowchart showing the initial threshold estimation process in the present invention, FIG. 10 is a flowchart showing the process for automatically setting the optimal threshold, and FIG. 11 is an explanatory diagram showing the relationship between the maximum difference value and frequency. FIG. 12 is an explanatory diagram showing the relationship between the threshold value and the number of detections, and FIG. 13 is an explanatory diagram showing the relationship between the difference value and cumulative frequency (ratio). In the following, processing from difference detection to subsequent steps will be explained.
差分を検出(ステップ91)したのち、差分の最大値を
検出する(ステップ92)。ついで、差分最大値のヒス
トグラムを算出する(ステップ93)。すなわち、j3
11図に示すように、画像人力点が異なるとパターンの
形状も異なり、最大差分値にばらつきが生じる。After detecting the difference (step 91), the maximum value of the difference is detected (step 92). Next, a histogram of the maximum difference value is calculated (step 93). That is, j3
As shown in FIG. 11, when the image human effort points differ, the shape of the pattern also differs, and the maximum difference value varies.
ここで、最大差分値の平均値をSAY@、最大差分値の
標準偏差をσ3、最適しきい値をTHとすると、最適し
きい値THは次式で表される。Here, when the average value of the maximum difference values is SAY@, the standard deviation of the maximum difference values is σ3, and the optimal threshold value is TH, the optimal threshold value TH is expressed by the following equation.
T H=S AY@ + nσ。TH=SAY@+nσ.
ここで、nは実数であり、発明者らの実験によれば、n
=2程度で最良の結果が得られた。Here, n is a real number, and according to the inventors' experiments, n
The best results were obtained at approximately =2.
ヒストグラム算出は、予め設定した回数Nに達するまで
続けられ(ステップ94)、N回に達した時点で差分最
大値のヒストグラムの平均値を算出し、これを初期しき
い値THOとする(ステップ95)。The histogram calculation continues until a preset number N is reached (step 94), and when the number N is reached, the average value of the histogram of the maximum difference value is calculated and this is set as the initial threshold value THO (step 95). ).
次に、検査領域を指定(複数のチップのどれを検査対象
とするかの指定)シ(ステップ101)、ステップ95
による初期しきい値THOをしきい値THOとしてしき
い値レジスタ14に格納する(ステップ102)。つい
で、x−yステージ1を駆動して自動検査を開始しくス
テップ103)、さらに欠陥候補の検出数をデータテー
ブルへ格納する(ステップ104)。Next, specify the inspection area (specify which of the plurality of chips is to be inspected) (step 101), and step 95
The initial threshold value THO is stored in the threshold value register 14 as the threshold value THO (step 102). Next, the x-y stage 1 is driven to start automatic inspection (step 103), and the number of detected defect candidates is stored in a data table (step 104).
そして、初期しきい値THOを中心に、その上下の複数
点く本実施例ではM=5の5点)のしきい値を求める(
ステップ105,106)。M点のしきい値を求め終わ
ったら、第12図のようなグラフを作成する(ステップ
107)。Then, centering on the initial threshold THO, find the threshold value at multiple points above and below (in this example, 5 points, M=5).
Steps 105, 106). After determining the threshold value at point M, a graph as shown in FIG. 12 is created (step 107).
第12図において、曲線の平坦部は実欠陥検出領域を示
し、勾配部は誤検出領域を示している。In FIG. 12, the flat part of the curve indicates an actual defect detection area, and the slope part indicates an erroneous detection area.
ここで、初期しきい値THOを中心に求めた上下のしき
い値THI、TH2、TH3、TH4の相互間の検出数
(欠陥候補の)の差を求と1検出数の差すなわち第12
図の曲線の傾きの急変する点(図中のTHO)が最適し
きい値として妥当か否かを判定する(ステップ108)
。Here, the difference in the number of detections (of defect candidates) between the upper and lower thresholds THI, TH2, TH3, and TH4 found around the initial threshold THO is calculated.
It is determined whether the point where the slope of the curve in the figure suddenly changes (THO in the figure) is appropriate as the optimal threshold (step 108).
.
仮に、THO付近の曲線の差が小さい場合、しきい値の
値が高すぎるので低くなるように最適しきい値を修正す
る。逆に、曲線の傾きが急すぎれば、しきい値の値が低
すぎるので高くなるように最適しきい値を修正する。If the difference between the curves near THO is small, the threshold value is too high, so the optimal threshold value is modified to be lower. On the other hand, if the slope of the curve is too steep, the threshold value is too low, so the optimal threshold value is corrected to be higher.
なお、以上の処理においては、初期しきい値THOを求
めることなく、一定間隔に多数のしきい値を設定して検
出数を求め、各しきい値開の傾きの急変するところを求
めることにより最適しきい値を末的ることができる。In the above process, instead of determining the initial threshold THO, a large number of thresholds are set at regular intervals to determine the number of detections, and the point where the slope of each threshold value changes suddenly is determined. The optimal threshold value can be determined.
〔実施例2〕
第13図は本発明による最適しきい値の他の求め方の他
の実施例を示す説明図である。[Embodiment 2] FIG. 13 is an explanatory diagram showing another embodiment of another method of determining the optimum threshold value according to the present invention.
この例では、複数点の正常パターン部の画像入力点での
差分値累積頻度分布を全て累積し、図中の斜線部の比率
Sが一定比率以下になる値を最適しきい値THにしてい
る。この場合、比率Sの値は実験的に10−s程度であ
り、画像入力点の数は前転比率Sを高信頼度に求め得る
だけのデータを取れるようにする。In this example, all the cumulative frequency distributions of difference values at the image input points of the normal pattern portion of multiple points are accumulated, and the value at which the ratio S of the shaded area in the figure is equal to or less than a certain ratio is set as the optimal threshold value TH. . In this case, the value of the ratio S is experimentally about 10-s, and the number of image input points is set so that enough data can be obtained to determine the forward rotation ratio S with high reliability.
以上、本発明によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることは言うまでもない。Although the invention made by the present invention has been specifically explained based on Examples above, it goes without saying that the present invention is not limited to the above-mentioned Examples and can be modified in various ways without departing from the gist thereof. .
例えば、以上の実施例では、最適しきい値を求めるに際
し、差分値の分布を基に統計的に処理する方法であれば
、他のどのような方法を用いてもよい。For example, in the embodiments described above, when determining the optimal threshold value, any other method may be used as long as it performs statistical processing based on the distribution of difference values.
以上の説明では、主として本発明者によってなされた発
明をその利用分野である半導体ウェハの外観検査に適用
する場合について説明したが、これに限定されるもので
はなく、例えば、プリント基板、液晶、レチクル、マス
クなどの外観検査に適用することも可能である。In the above description, the invention made by the present inventor is mainly applied to the visual inspection of semiconductor wafers, which is the field of application of the invention, but it is not limited to this. It is also possible to apply this method to the appearance inspection of masks, etc.
本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば下記の通りである
。Among the inventions disclosed in this application, the effects obtained by typical ones are as follows.
すなわち、被検査物の同一のパターン部分の画像を比較
し、その差分値及びしきい値に基づいて欠陥を判定する
自動外観検査装置であって、被検査物上の複数点の差分
量データの統計量に基づいてしきい値を決定するように
したので、最適な欠陥検出しきい値の設定を自動、かつ
短時間に行うことが可能になり、装置稼働率の向上及び
作業者の負担を軽減することができる。In other words, it is an automatic visual inspection device that compares images of the same pattern part of an object to be inspected and determines defects based on the difference value and threshold value. Since the threshold value is determined based on statistics, it is possible to automatically and quickly set the optimal defect detection threshold value, improving equipment utilization rate and reducing the burden on workers. It can be reduced.
第1図は本発明による自動外観検査装置の一実施例を示
すブロック図、
第2図は半導体ウェハの構成を示す平面図、第3図は一
次元ラインセンサを用いた場合の比較検査説明図、
第4図はITVを用いた場合の比較検査説明図、第5図
は正常パターンと欠陥パターンの一例を示す説明図、
第6図は第5図のパターンに対応する差分値出力特性図
、
第7図はしきい値と欠陥検出率および誤検出の関係を定
性的に示した説明図、
第8図は一定範囲の2つの画像信号を比較し、その差分
信号の値と頻度の関係を示す説明図、第9図は本発明に
おける初期しきい値推定処理を示すフローチャート、
第10図は最適しきい値を自動設定する処理を示すフロ
ーチャート、
第11図は最大差分値と頻度の関係を示す説明図、
第12図はしきい値と検出数の関係を示す説明図、
第13図は差分値と累積頻度(比率)の関係の他の実施
例を示す説明図である。
1・・・X−Yステージ、2・・・試料台、3・・・試
料、3a・・・シリコン基板、3b・・・チップ、4・
・・光源、5・・・集光レンズ、6・・・対物レンズ、
7・・・ハーフミラ−18・・・撮像手段、9・・・信
号処理回路、10・・・画像記憶部、11・・・差分検
出回路、12・・・欠陥判定部、13・・・差分画像記
憶部、14・・・しきい値レジスタ、15・・・主制紳
部、16・・・欠陥。
代理人 弁理士 筒 井 大 和
第2図
第3図 6b:“″。
第4図
第5図
第6図
第7図
−〉シきい値
第8図
第9図
第10図
第11図Fig. 1 is a block diagram showing an embodiment of an automatic visual inspection device according to the present invention, Fig. 2 is a plan view showing the configuration of a semiconductor wafer, and Fig. 3 is an explanatory diagram for comparative inspection when a one-dimensional line sensor is used. , Fig. 4 is an explanatory diagram of comparative inspection when using ITV, Fig. 5 is an explanatory diagram showing an example of a normal pattern and a defective pattern, Fig. 6 is a differential value output characteristic diagram corresponding to the pattern of Fig. 5, Figure 7 is an explanatory diagram that qualitatively shows the relationship between the threshold value, defect detection rate, and false detection. Figure 8 compares two image signals in a certain range and shows the relationship between the value of the difference signal and the frequency. 9 is a flowchart showing the initial threshold estimation process in the present invention, FIG. 10 is a flowchart showing the process for automatically setting the optimal threshold, and FIG. 11 is a flowchart showing the relationship between the maximum difference value and frequency. FIG. 12 is an explanatory diagram showing the relationship between the threshold value and the number of detections. FIG. 13 is an explanatory diagram showing another example of the relationship between the difference value and the cumulative frequency (ratio). DESCRIPTION OF SYMBOLS 1... X-Y stage, 2... Sample stand, 3... Sample, 3a... Silicon substrate, 3b... Chip, 4...
... light source, 5 ... condensing lens, 6 ... objective lens,
7... Half mirror 18... Imaging means, 9... Signal processing circuit, 10... Image storage section, 11... Difference detection circuit, 12... Defect determination section, 13... Difference Image storage unit, 14... Threshold register, 15... Master control unit, 16... Defect. Agent: Daiwa Tsutsui, Patent Attorney Figure 2, Figure 3, 6b: “”. Figure 4 Figure 5 Figure 6 Figure 7 - Threshold Figure 8 Figure 9 Figure 10 Figure 11
Claims (1)
の差分値及びしきい値に基づいて欠陥を判定する自動外
観検査装置であって、被検査物上の複数点の差分量デー
タの統計量に基づいてしきい値を決定することを特徴と
する自動外観検査装置。 2、差分値分布のうち、欠陥部に対応して差分値が異常
に大きくなる部分を処理データから除去することを特徴
とする請求項1記載の自動外観検査装置。 3、被検査物上の複数点での画像信号の差分値の最大値
または差分値の累積頻度分布を求め、差分値の最大値か
ら一定比率の差分値をしきい値として設定することを特
徴とする請求項1記載の自動外観検査装置。 4、被検査物の同一のパターン部分の画像を比較し、そ
の差分値及びしきい値に基づいて欠陥を判定する自動外
観検査装置であって、被検査物の品種毎のしきい値を記
憶するしきい値設定手段と、しきい値を所定間隔に求め
、その各々における検出欠陥数が急増する変化点を最適
しきい値として設定するしきい値設定手段とを具備する
ことを特徴とする自動外観検査装置。 5、前記しきい値設定手段は、被検査物上の複数点での
画像信号の差分値の最大値または差分値の累積頻度分布
を求め、差分値の最大値から一定比率の差分値をしきい
値として設定し、このしきい値を基準にして前後に複数
のしきい値を決定する手段を含むことを特徴とする請求
項4記載の自動外観検査装置。[Claims] 1. An automatic visual inspection device that compares images of the same pattern portion of an object to be inspected and determines defects based on a difference value and a threshold value, the apparatus comprising: An automatic visual inspection device characterized in that a threshold value is determined based on statistics of point difference amount data. 2. The automatic visual inspection apparatus according to claim 1, wherein a portion of the difference value distribution where the difference value becomes abnormally large corresponding to a defective portion is removed from the processed data. 3. The feature is that the maximum value of the difference value of image signals at multiple points on the object to be inspected or the cumulative frequency distribution of the difference values is determined, and the difference value of a certain ratio from the maximum value of the difference value is set as a threshold value. The automatic visual inspection device according to claim 1. 4. An automatic visual inspection device that compares images of the same pattern part of the object to be inspected and determines defects based on the difference value and threshold value, and stores the threshold value for each type of object to be inspected. and a threshold setting means that determines the threshold values at predetermined intervals and sets a changing point at each of which the number of detected defects rapidly increases as an optimal threshold value. Automatic appearance inspection equipment. 5. The threshold setting means determines the maximum value of the difference values of the image signals at a plurality of points on the object to be inspected or the cumulative frequency distribution of the difference values, and calculates the difference value at a fixed ratio from the maximum value of the difference values. 5. The automatic visual inspection apparatus according to claim 4, further comprising means for setting a threshold value and determining a plurality of threshold values before and after the threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22717190A JP3329805B2 (en) | 1990-08-29 | 1990-08-29 | Automatic visual inspection device and visual inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22717190A JP3329805B2 (en) | 1990-08-29 | 1990-08-29 | Automatic visual inspection device and visual inspection method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002152574A Division JP2003059991A (en) | 2002-05-27 | 2002-05-27 | Visual inspection system and visual inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04107946A true JPH04107946A (en) | 1992-04-09 |
JP3329805B2 JP3329805B2 (en) | 2002-09-30 |
Family
ID=16856601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22717190A Expired - Lifetime JP3329805B2 (en) | 1990-08-29 | 1990-08-29 | Automatic visual inspection device and visual inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3329805B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11230914A (en) * | 1998-02-18 | 1999-08-27 | Nippon Maxis:Kk | Method and apparatus for inspection of beveling of quartz crystal |
US6256091B1 (en) | 1997-08-25 | 2001-07-03 | Nippon Maxis Co., Ltd. | Transparent substrate mounting platform, transparent substrate scratch inspection device, transparent substrate bevelling inspection method and device, and transparent substrate inspection method |
JP2002081914A (en) * | 2000-06-21 | 2002-03-22 | Toshiba Corp | Method and device for inspecting dimension and method of manufacturing mask |
JP2002181722A (en) * | 2000-12-15 | 2002-06-26 | Nippon Steel Corp | Apparatus and method for determining threshold for flaw detection of steel plate, and storage medium |
WO2002071135A1 (en) * | 2001-03-05 | 2002-09-12 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Inspection device for liquid crystal driving substrate |
JP2002543463A (en) * | 1999-05-03 | 2002-12-17 | ケーエルエー−テンカー コーポレイション | Apparatus and method for collecting global data during reticle inspection |
KR100406399B1 (en) * | 1998-12-26 | 2004-01-24 | 주식회사 포스코 | A method of detecting defect on surface of a steel sheet |
JP2004260193A (en) * | 2004-03-10 | 2004-09-16 | Hitachi Ltd | Method and apparatus for testing circuit pattern |
JP2006138708A (en) * | 2004-11-11 | 2006-06-01 | Tokyo Seimitsu Co Ltd | Image flaw inspection method, image flaw inspecting device and visual inspection device |
JP2007003459A (en) * | 2005-06-27 | 2007-01-11 | Tokyo Seimitsu Co Ltd | Flaw inspection device of image, visual examination device and flaw inspection method of image |
JP2007071847A (en) * | 2005-09-09 | 2007-03-22 | Nagaoka Univ Of Technology | Method for detecting abnormal measurement value in surface roughness measurement |
US7248732B2 (en) | 2002-10-23 | 2007-07-24 | Tokyo Seimitsu Co., Ltd | Pattern inspection method and inspection apparatus |
JP2007333476A (en) * | 2006-06-13 | 2007-12-27 | Fujitsu Ltd | Defect inspection method and device |
US7330581B2 (en) | 2002-10-01 | 2008-02-12 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus and appearance inspection apparatus |
US7336815B2 (en) | 2004-12-13 | 2008-02-26 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus |
US7346207B2 (en) | 2005-01-19 | 2008-03-18 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus |
JP2018004393A (en) * | 2016-06-30 | 2018-01-11 | 東京エレクトロン株式会社 | Substrate defect inspection device, substrate defect inspection-purpose parameter value adjustment method, and recording medium |
CN109872955A (en) * | 2017-12-04 | 2019-06-11 | 株式会社斯库林集团 | Determination method and substrate board treatment |
CN115931905A (en) * | 2023-02-02 | 2023-04-07 | 北京百度网讯科技有限公司 | POY product detection method and device, electronic equipment and storage medium |
-
1990
- 1990-08-29 JP JP22717190A patent/JP3329805B2/en not_active Expired - Lifetime
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6256091B1 (en) | 1997-08-25 | 2001-07-03 | Nippon Maxis Co., Ltd. | Transparent substrate mounting platform, transparent substrate scratch inspection device, transparent substrate bevelling inspection method and device, and transparent substrate inspection method |
JPH11230914A (en) * | 1998-02-18 | 1999-08-27 | Nippon Maxis:Kk | Method and apparatus for inspection of beveling of quartz crystal |
KR100406399B1 (en) * | 1998-12-26 | 2004-01-24 | 주식회사 포스코 | A method of detecting defect on surface of a steel sheet |
JP2002543463A (en) * | 1999-05-03 | 2002-12-17 | ケーエルエー−テンカー コーポレイション | Apparatus and method for collecting global data during reticle inspection |
JP2002081914A (en) * | 2000-06-21 | 2002-03-22 | Toshiba Corp | Method and device for inspecting dimension and method of manufacturing mask |
JP2002181722A (en) * | 2000-12-15 | 2002-06-26 | Nippon Steel Corp | Apparatus and method for determining threshold for flaw detection of steel plate, and storage medium |
JP4648540B2 (en) * | 2000-12-15 | 2011-03-09 | 新日本製鐵株式会社 | Steel plate wrinkle detection threshold determination device, steel plate wrinkle detection threshold determination method, and storage medium |
CN1313865C (en) * | 2001-03-05 | 2007-05-02 | 石川岛播磨重工业株式会社 | Inspection device for liquid crystal driving substrate |
WO2002071135A1 (en) * | 2001-03-05 | 2002-09-12 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Inspection device for liquid crystal driving substrate |
US7212024B2 (en) | 2001-03-05 | 2007-05-01 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Inspection apparatus for liquid crystal drive substrates |
US7330581B2 (en) | 2002-10-01 | 2008-02-12 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus and appearance inspection apparatus |
US7248732B2 (en) | 2002-10-23 | 2007-07-24 | Tokyo Seimitsu Co., Ltd | Pattern inspection method and inspection apparatus |
JP2004260193A (en) * | 2004-03-10 | 2004-09-16 | Hitachi Ltd | Method and apparatus for testing circuit pattern |
US7492942B2 (en) | 2004-11-11 | 2009-02-17 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus |
JP2006138708A (en) * | 2004-11-11 | 2006-06-01 | Tokyo Seimitsu Co Ltd | Image flaw inspection method, image flaw inspecting device and visual inspection device |
US7336815B2 (en) | 2004-12-13 | 2008-02-26 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus |
US7346207B2 (en) | 2005-01-19 | 2008-03-18 | Tokyo Seimitsu Co., Ltd. | Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus |
JP2007003459A (en) * | 2005-06-27 | 2007-01-11 | Tokyo Seimitsu Co Ltd | Flaw inspection device of image, visual examination device and flaw inspection method of image |
JP2007071847A (en) * | 2005-09-09 | 2007-03-22 | Nagaoka Univ Of Technology | Method for detecting abnormal measurement value in surface roughness measurement |
JP2007333476A (en) * | 2006-06-13 | 2007-12-27 | Fujitsu Ltd | Defect inspection method and device |
JP2018004393A (en) * | 2016-06-30 | 2018-01-11 | 東京エレクトロン株式会社 | Substrate defect inspection device, substrate defect inspection-purpose parameter value adjustment method, and recording medium |
CN109872955A (en) * | 2017-12-04 | 2019-06-11 | 株式会社斯库林集团 | Determination method and substrate board treatment |
KR20190065936A (en) * | 2017-12-04 | 2019-06-12 | 가부시키가이샤 스크린 홀딩스 | Determination method and substrate processing equipment |
US10985038B2 (en) | 2017-12-04 | 2021-04-20 | SCREEN Holdings Co., Ltd. | Determination method and substrate processing equipment |
CN109872955B (en) * | 2017-12-04 | 2023-06-16 | 株式会社斯库林集团 | Determination method and substrate processing apparatus |
CN115931905A (en) * | 2023-02-02 | 2023-04-07 | 北京百度网讯科技有限公司 | POY product detection method and device, electronic equipment and storage medium |
CN115931905B (en) * | 2023-02-02 | 2023-09-26 | 北京百度网讯科技有限公司 | POY product detection method, POY product detection device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3329805B2 (en) | 2002-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04107946A (en) | Automatic visual inspector | |
JP3051279B2 (en) | Bump appearance inspection method and bump appearance inspection device | |
JP3092892B2 (en) | Semiconductor chip appearance inspection method and apparatus | |
JP4520046B2 (en) | Reference die selection apparatus and method | |
JP4169573B2 (en) | Pattern inspection method and inspection apparatus | |
US6928185B2 (en) | Defect inspection method and defect inspection apparatus | |
JPH0671038B2 (en) | Crystal defect recognition processing method | |
KR20070002249A (en) | Method of detecting a defect of wafer | |
US7023541B2 (en) | Device inspecting for defect on semiconductor wafer surface | |
JP2647051B2 (en) | Appearance inspection device | |
JP2006145415A (en) | Surface inspection method and device | |
JP2005315792A (en) | Defect inspecting/classifying apparatus | |
CN109727887B (en) | Wafer edge defect monitoring method | |
JP2003059991A (en) | Visual inspection system and visual inspection method | |
JP2001015567A (en) | Device and method for evaluating semiconductor substrate | |
JP3314217B2 (en) | Appearance inspection device | |
Dom | Machine vision techniques for integrated circuit inspection | |
JP2000321038A (en) | Method for detecting fault of pattern | |
JPH09288989A (en) | Method and device for inspecting semiconductor device | |
JPS60120519A (en) | Photomask automatic defect inspection device | |
JP3796101B2 (en) | Foreign object inspection apparatus and method | |
JP2656249B2 (en) | Surface inspection equipment | |
JP3348059B2 (en) | Method for manufacturing semiconductor device | |
JP2565219B2 (en) | Defocus detection device | |
JPH06160063A (en) | Method for inspecting surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070719 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 8 |