JPS62240778A - Metallic electrode coated with carbonaceous substance and its production - Google Patents

Metallic electrode coated with carbonaceous substance and its production

Info

Publication number
JPS62240778A
JPS62240778A JP61083583A JP8358386A JPS62240778A JP S62240778 A JPS62240778 A JP S62240778A JP 61083583 A JP61083583 A JP 61083583A JP 8358386 A JP8358386 A JP 8358386A JP S62240778 A JPS62240778 A JP S62240778A
Authority
JP
Japan
Prior art keywords
coating layer
electrode
carbonaceous
tungsten
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61083583A
Other languages
Japanese (ja)
Other versions
JPH0768626B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Masashi Hosonuma
正志 細沼
Toshiki Goto
後藤 利樹
Hisaaki Yokota
横田 久昭
Shingo Yoshida
紳吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Kobe Steel Ltd filed Critical Permelec Electrode Ltd
Priority to JP61083583A priority Critical patent/JPH0768626B2/en
Publication of JPS62240778A publication Critical patent/JPS62240778A/en
Publication of JPH0768626B2 publication Critical patent/JPH0768626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain an electrode having characteristics of both of metallic and carbon electrodes by forming a coating layer of a carbonaceous substance contg. a prescribed percentage of graphite on a corrosion resistant metallic substrate. CONSTITUTION:A carbonaceous substance contg. 50-95wt% graphite is prepd. A corrosion resistant metallic substrate is coated with the carbonaceous substance by application or extrusion molding and the substance is dried and heated. Thus, a metallic electrode coated with a carbonaceous substance and having characteristics of both metallic and carbon electrodes is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属の電解エツチング等の表面処理や有機電
解等の腐食性液中における通電用として又はこれらの液
中において直流又は交流を通して電解を行う際に使用す
る耐食性の電極に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is useful for surface treatment such as electrolytic etching of metals, for energization in corrosive liquids such as organic electrolysis, or for electrolysis through direct current or alternating current in these liquids. This invention relates to corrosion-resistant electrodes used in the process.

(従来技術とその問題点) 耐食性の導電部材や腐食性液中で電解用の電極として従
来から炭素電極が使用されている。炭素電極は非金属と
しては電気伝導度が大きく耐食性が極めて良好であり、
陰極としても陽極としても有効に機能する。しかしなが
ら最近のように電解における高電流密度化に対しては金
属に比較して低い電気伝導度の故に無理に使おうとすれ
ば導電性確保のために極めて厚く大きいものとなってし
まう。又一般に該電極は脆く取扱が不便であり、又電解
中にも表面が崩れ易い等の欠点がある。
(Prior Art and its Problems) Carbon electrodes have conventionally been used as corrosion-resistant conductive members and electrodes for electrolysis in corrosive liquids. Carbon electrodes have high electrical conductivity for a non-metal and extremely good corrosion resistance.
It functions effectively as both a cathode and an anode. However, in response to the recent high current densities in electrolysis, they have lower electrical conductivity than metals, so if you try to use them forcibly, they will have to be extremely thick and large to ensure conductivity. In addition, the electrodes are generally brittle and inconvenient to handle, and their surfaces tend to collapse during electrolysis.

このような問題点を解決するため、チタンを代表とする
弁金属基体(芯)上に白金族金属やその酸化物を主成分
とする被覆層を設けたいわゆる金属電極が開発され、広
く使用されている(例えば特公昭48−3954号)。
To solve these problems, so-called metal electrodes, which have a coating layer mainly composed of platinum group metals or their oxides on a valve metal substrate (core) typically made of titanium, have been developed and are now widely used. (For example, Japanese Patent Publication No. 48-3954).

しかしながらこのような金属電極は、弁金属を使用した
ものは陽極として使用すると極めて安定であるが陰極と
して使用すると基材の水素化や腐食等が生じ短寿命であ
るという欠点を存し、陰極基体として使用されるステン
レス、ニッケル等は陽極として使用すると電解液にもよ
るが短時間で腐食してしまう。従ってこれらの金属電極
は陰陽いずれかの電極として使用される場合はその材料
を選択すれば使用可能であるが、交流のような陰陽両方
の電荷がかかる交番電流の場合にはいずれも短時間に腐
食するという欠点を有している。
However, such metal electrodes have the disadvantage that valve metal is extremely stable when used as an anode, but when used as a cathode, hydrogenation and corrosion of the base material occur, resulting in a short lifespan. When used as an anode, stainless steel, nickel, etc. will corrode in a short period of time, depending on the electrolyte. Therefore, when these metal electrodes are used as either negative or negative electrodes, they can be used by selecting the appropriate material, but in the case of alternating current that carries both negative and negative charges, such as alternating current, they can be used in a short period of time. It has the disadvantage of being corroded.

これらの他にフェライトを代表とするセラミック電極が
知られているが、導電性が不十分であり炭素電極と同様
の欠点を有する。又形状の自由度も少ない。
In addition to these, ceramic electrodes typified by ferrite are known, but they have insufficient conductivity and have the same drawbacks as carbon electrodes. There is also less freedom in shape.

(発明の目的) 本発明の目的は、従来の金属電極及び炭素電極の特性を
合わせ持つ電極、特に腐食性液中での通電用として又こ
のような液中での電解用の電極としてを用で陰陽の交番
電流を流すことができる炭素質被覆金属電極とその製造
方法を提供することにある。
(Objective of the Invention) The object of the present invention is to provide an electrode that has both the characteristics of conventional metal electrodes and carbon electrodes, which can be used particularly for current conduction in corrosive liquids and as electrodes for electrolysis in such liquids. An object of the present invention is to provide a carbonaceous-coated metal electrode capable of passing a yin-yang alternating current, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明は、第1に耐食性金属基体上に被覆層を形成して
成る電極において、該被覆層の主成分が炭素質物質であ
ることを特徴とする炭素質被覆金属電極であり、第2に
金属基体上に被覆層を形成して成る電極において、金属
基体上に炭素質物質を含む組成物を塗布又は押出成形し
て被覆し、乾燥後加熱して炭素質物質を主成分とする被
覆層を形成することを特徴とする炭素質電極の製造方法
である。
(Means for Solving the Problems) The present invention provides, firstly, an electrode formed by forming a coating layer on a corrosion-resistant metal substrate, characterized in that the main component of the coating layer is a carbonaceous material. Second, in an electrode formed by forming a coating layer on a metal substrate, a composition containing a carbonaceous substance is coated on the metal substrate by coating or extrusion molding, and then heated after drying. This is a method for manufacturing a carbonaceous electrode characterized by forming a coating layer containing a carbonaceous material as a main component.

以下本発明をより具体的に説明する。The present invention will be explained in more detail below.

本発明の電極の金属基体としては、タングステン、モリ
ブデン、チタン、ジルコニウム、ニオブ等の弁金属ある
いはこれらの合金を用いることが好ましく、用途によっ
てはステンレススチール、インコネル(商品名)、ハス
テロイ (商品名)等の鉄−ニッケル−クロム系等の耐
食性合金を使用することもでき、使用する電解液等の電
解条件によって適宜選択する。このような耐食性金属や
合金を使用する理由は、被覆層が緻密であっても完全に
電解液や該電解液中のイオンが被覆層内へ浸入すること
を防止できず、これらに対する耐性を向上させるためで
ある。
As the metal base of the electrode of the present invention, it is preferable to use valve metals such as tungsten, molybdenum, titanium, zirconium, and niobium, or alloys thereof, and depending on the use, stainless steel, Inconel (trade name), Hastelloy (trade name) are used. It is also possible to use corrosion-resistant alloys such as iron-nickel-chromium based alloys, which are appropriately selected depending on the electrolytic conditions such as the electrolytic solution used. The reason for using such corrosion-resistant metals and alloys is that even if the coating layer is dense, it cannot completely prevent the electrolyte and the ions in the electrolyte from penetrating into the coating layer. This is to make it happen.

該金属基体上に被覆層を被覆する前に、被覆層と金属基
体との耐着性を向上させるために金属基体表面をブラス
トによる粗面化処理あるいはエツチング等の化学処理に
よる表面活性化処理等を行うことができる。
Before coating the coating layer on the metal substrate, the surface of the metal substrate is roughened by blasting or surface activated by chemical treatment such as etching in order to improve the adhesion resistance between the coating layer and the metal substrate. It can be performed.

該被覆層は炭素質物質を主成分とするもので、その化学
組成はその使用目的によって変えることができる。
The coating layer is mainly composed of carbonaceous material, and its chemical composition can be changed depending on the purpose of use.

被覆層の炭素質物質はグラファイトや無定形炭素から成
り、通常50〜95%のグラファイトを含み、かつ該グ
ラファイト原料粒子の粒度は94メツシユ以下であるこ
とが望ましい。炭素質物質中のグラファイト量が50%
以下であると炭素質物質自体の導電性及び耐食性が悪く
なり長期間の安定使用が困難となり、更に被覆層形成の
際の収縮が大き過ぎて良質の被覆層を形成することが困
難になる。又グラファイト量が95%より大きくなると
被覆層形成時の収縮は小さくなるが被覆層が脆くなり・
更に加熱した際に被覆層自身の焼き締まりが悪くなる。
The carbonaceous material of the coating layer is made of graphite or amorphous carbon, and preferably contains 50 to 95% graphite, and the particle size of the graphite raw material particles is preferably 94 mesh or less. The amount of graphite in the carbonaceous material is 50%
If it is below, the conductivity and corrosion resistance of the carbonaceous material itself will deteriorate, making it difficult to use it stably for a long period of time, and furthermore, the shrinkage during formation of the coating layer will be too large, making it difficult to form a high-quality coating layer. Also, if the amount of graphite is greater than 95%, the shrinkage during coating layer formation will be reduced, but the coating layer will become brittle.
When heated further, the coating layer itself becomes less compact.

なお、本発明では被覆層の導電性を向上させるために該
被覆層にタングステン及び/又は炭化タングステン等の
タングステン化合物を含ませることができ、その含量は
被覆層全体のO〜40モル%程度とすることが好ましい
In addition, in the present invention, in order to improve the conductivity of the coating layer, the coating layer can contain tungsten and/or a tungsten compound such as tungsten carbide, and the content thereof is about 0 to 40 mol% of the entire coating layer. It is preferable to do so.

なお、被覆層にはグラファイト等の炭素質物質のほか後
述する有機バインダーあるいは粘結剤の加熱処理による
残留物が含まれ、これら残留物を特定することができな
いので厳密な意味でのタングステンのモル%を算出する
ことができない。ここでは前記残留物が全部炭素質物質
であると仮定してタングステンのモル%を算出した。こ
の「0〜40モル%」を重量%に換算すると「0〜95
重量%」となり、あたかもタングステンが被覆層の主成
分であるようにも思えるが、これは炭素質の原子量が1
2、タングステンの原子量が184という両者の原子量
の差が重量%に大きく影響するからであり、モル%ある
いは容量%によれば炭素質物質が主成分であることに変
わりはない。
In addition, the coating layer contains carbonaceous substances such as graphite, as well as residues from the heat treatment of the organic binder or binder described later, and since these residues cannot be identified, the molarity of tungsten in a strict sense cannot be determined. % cannot be calculated. Here, the mole percent of tungsten was calculated assuming that the residue was entirely carbonaceous material. When converting this “0 to 40 mol%” to weight percent, it is “0 to 95% by weight”.
% by weight," and it seems as if tungsten is the main component of the coating layer, but this is because the atomic weight of carbonaceous material is 1.
2. The atomic weight of tungsten is 184, which is because the difference in atomic weight between the two greatly affects the weight percent, and the carbonaceous material is still the main component according to mole percent or volume percent.

タングステンの含量が40モル%を越えると被覆層が脆
くなり強度が低下する。被覆層にタングステン成分を添
加すると被覆層の導電性を向上させ、しかも陰分極時に
発生水素等を全く吸収しないため安定性が低下せず、陰
極過電圧が極めて小さく、更に陽分極時には弁金属とし
て機能し耐食性が良好となる。
If the tungsten content exceeds 40 mol%, the coating layer becomes brittle and its strength decreases. Adding a tungsten component to the coating layer improves the conductivity of the coating layer, and since it does not absorb any hydrogen generated during cathodic polarization, stability does not decrease, the cathode overvoltage is extremely small, and it also functions as a valve metal during anodic polarization. This results in better corrosion resistance.

被覆層の成分としてはこれらの他に、次記する被覆組成
物に含ませた有機バインダーあるいは粘結剤の加熱処理
により形成される炭素質物質の残留物が含まれる。
In addition to these components, the coating layer also includes carbonaceous material residues formed by heat treatment of the organic binder or binder contained in the coating composition described below.

前記金属基体上に緻密な炭素質物質から成る被覆層を例
えば次のような手順で形成する。
A coating layer made of a dense carbonaceous material is formed on the metal substrate, for example, by the following procedure.

まず前記炭素質物質に必要に応じてタングステン及び/
又はタングステン化合物、フェノール樹脂、ポリビニル
アルコールやカルボキシメチルセルロース(CMC)等
の有機バインダーあるいは粘結剤を加えて混練し泥状の
被覆組成物とする。
First, if necessary, tungsten and/or
Alternatively, a tungsten compound, phenolic resin, organic binder or binder such as polyvinyl alcohol or carboxymethyl cellulose (CMC) is added and kneaded to form a slurry-like coating composition.

該被覆組成物は刷毛等で適宜形状の金属基体に塗布し焼
き付けてもよいが、望ましくは混練した被覆組成物を棒
状の金属基体の周囲に押出成型して緻密で強度の大きい
被覆層を形成する。被覆層の厚みは通常0.2〜51程
度とする。
The coating composition may be applied to an appropriately shaped metal substrate with a brush or the like and baked, but preferably, the kneaded coating composition is extruded around a rod-shaped metal substrate to form a dense and strong coating layer. do. The thickness of the coating layer is usually about 0.2 to 51 mm.

続いて被覆層中に残存している溶媒の除去、被覆層の安
定化並びに金属基体と被覆層の耐着性を向上さるために
熱処理を行う。この熱処理は被覆層の組成等によって異
なるが通常100〜1800℃で30分〜10時間、特
に残留水素量が問題にならない場合には100〜680
℃で、真空又は不活性雰囲気中で行うことが望ましい。
Subsequently, heat treatment is performed to remove the solvent remaining in the coating layer, stabilize the coating layer, and improve the adhesion resistance between the metal substrate and the coating layer. This heat treatment varies depending on the composition of the coating layer, etc., but is usually at 100 to 1,800°C for 30 minutes to 10 hours, especially at 100 to 680°C when the amount of residual hydrogen is not a problem.
Preferably, the reaction is carried out at 0.degree. C. in vacuum or in an inert atmosphere.

これで十分に緻密な被覆層を形成することができるが、
更に金属基体表面全体に完全に被覆層が形成されずその
極く一部が露出している場合等に必要に応じて、例えば
前記被覆組成物中に浸して含浸処理することもできる。
This allows a sufficiently dense coating layer to be formed, but
Furthermore, if a coating layer is not completely formed on the entire surface of the metal substrate and only a small portion of the coating layer is exposed, the metal substrate may be impregnated by being immersed in the coating composition, for example, as necessary.

(実施例) 以下本発明の実施例を記載するが、これらの実施例は本
発明を限定するものではない。
(Examples) Examples of the present invention will be described below, but these Examples do not limit the present invention.

実施例1 100〜200メソシユのグラファイト粉、325メソ
シユ以下のグラファイト粉、325メツシユ以下の無定
形炭素粉、ポリビニルアルコール及びフェノール樹脂を
重量比でそれぞれ25:25:15:5:60  (百
分率比約19.2:19.2:11.6:3.8二46
.2)にて配合した後混練し、該混練物を線引後機械研
摩を施した純度99%以上のタングステン基体線(直径
3龍、長さ200mm)の周囲に真空押出成形してll
4の炭素質物質被覆層を形成し、次いで120℃で乾燥
した。更に非酸化性雰囲気下400℃で3時間加熱処理
を行った。この被覆層の組成をX線回折法で測定したと
ころグラフアイ)57.4%及び無定形炭素42.6%
(重量及びモル)から成っていることが分かった。
Example 1 Graphite powder of 100 to 200 mesh, graphite powder of 325 mesh or less, amorphous carbon powder of 325 mesh or less, polyvinyl alcohol, and phenol resin in a weight ratio of 25:25:15:5:60 (percentage ratio of approx. 19.2:19.2:11.6:3.8246
.. After blending in step 2), kneading is carried out, and the kneaded product is vacuum extruded around a tungsten base wire (diameter 3 mm, length 200 mm) with a purity of 99% or more that has been subjected to mechanical polishing after drawing.
A carbonaceous material coating layer No. 4 was formed and then dried at 120°C. Further, heat treatment was performed at 400° C. for 3 hours in a non-oxidizing atmosphere. The composition of this coating layer, measured by X-ray diffraction, was 57.4% (Graphai) and 42.6% amorphous carbon.
(by weight and moles).

このように製造したタングステン基体線に炭素質物質を
被覆した炭素質被覆電極の周囲を長さ方向に20鰭を残
してフッ素樹脂製のシールテープで覆い電解用試料とし
た(n山部分の面積は0.0314d+*2)。この電
解用試料を2本、液温60℃、濃度200g/A’の塩
酸中で極間距離がioamとなるように平行に配置し、
1秒毎に電流の方向を反転させながら100 A /d
m”の電流密度で電解を行った。
The periphery of the carbonaceous coated electrode, in which the tungsten base wire produced in this way was coated with a carbonaceous substance, was covered with a sealing tape made of fluororesin, leaving 20 fins in the length direction, and was used as a sample for electrolysis (the area of the n-crest part was is 0.0314d+*2). Two of these electrolytic samples were placed in parallel in hydrochloric acid with a liquid temperature of 60°C and a concentration of 200 g/A' so that the distance between the electrodes was ioam,
100 A/d while reversing the direction of current every second
Electrolysis was carried out at a current density of m''.

比較のため同じ形状、即ち直径5龍のグラファイト製棒
状電極の周囲を同様にシールテープで2cmの長さを残
して覆い、同条件で電解試験を行った。
For comparison, an electrolytic test was conducted under the same conditions by covering the circumference of a rod-shaped graphite electrode of the same shape, that is, diameter 5 mm, with a sealing tape leaving a length of 2 cm.

その結果本実施例の電極では2000時間以上安定な電
解がm続したのに対し、グラファイト製棒状電極では発
熱のため液温を一定にすることが困難であったほか、1
0時間程度経過した後から電極の電解面が崩れ始め、3
0時間経過後にその太さが半分程度となり、35時間後
には通電不能となった。
As a result, stable electrolysis continued for more than 2,000 hours with the electrode of this example, whereas with the graphite rod-shaped electrode, it was difficult to keep the liquid temperature constant due to heat generation.
After about 0 hours, the electrolytic surface of the electrode started to collapse, and 3
After 0 hours, the thickness was reduced to about half, and after 35 hours, it became impossible to apply electricity.

実jl引l グラファイト粉末、無定形炭素粉、増粘材、フェノール
樹脂及びタングステン粉を重量比でそれぞれ75:25
=4二60:20(百分率比約40.8:13.6:2
.17:32.(3:10.9)にて配合した後混練し
、該混練物を線引後機械研磨を施した純度99.9%以
上のモリブデン基体線(直径3龍、長さ200鰭)の周
囲に真空押出成形して1鶴厚のタングステン粉末を含む
炭素質物質被覆層を形成し、更に110℃で乾燥し非酸
化性雰囲気下600℃で2時間熱処理を行った。炭素質
物質被覆層の組成をX線回折法及び螢光X線法で測定し
たところ、グラファイト53.1重量%、無定形炭素3
2.8重量%及びタングステン14.1重量%であった
Weight ratio of graphite powder, amorphous carbon powder, thickener, phenolic resin, and tungsten powder is 75:25, respectively.
=4260:20 (percentage ratio approximately 40.8:13.6:2
.. 17:32. (3:10.9), then kneaded, and the kneaded material was drawn around a molybdenum base wire (diameter: 3 fins, length: 200 fins) with a purity of 99.9% or higher, which was mechanically polished. A carbonaceous material coating layer containing tungsten powder was formed by vacuum extrusion molding, and was further dried at 110° C. and heat treated at 600° C. for 2 hours in a non-oxidizing atmosphere. When the composition of the carbonaceous material coating layer was measured by X-ray diffraction method and fluorescent X-ray method, it was found that 53.1% by weight of graphite and 3% by weight of amorphous carbon.
2.8% by weight and 14.1% by weight of tungsten.

このようにして得たモリブデン基体線上に炭素質物質を
被覆した炭素質電極2本を液温70″Cの200 g/
lの塩酸中において極間距離10mm、電解面積0. 
0314dm”となるように平行に配置しモリブデン基
体線から100 A /dm”の5011z交流を供給
しながら電解試験を行った。この炭素質被覆層の比抵抗
は0.13Ω・備であり、電流100 A/dm” 、
層厚1flではO,0L3Vの電圧降下を生ずるにすぎ
ない。セル電圧は0.94〜1.02Vを示し2000
時間経過した時点でも変化は観察されなかった。この時
点で電解を停止し電極の切断面をXMA (XvAマイ
クロアナライザー)で分析したがモリブデン基体線と炭
素質被覆層の間に空隙は生じておらず又化合物層も観察
されなかった。
Two carbonaceous electrodes coated with a carbonaceous substance on the molybdenum base wire obtained in this manner were heated at 200 g/200 g/m at a liquid temperature of 70″C.
1 of hydrochloric acid, the distance between electrodes is 10 mm, and the electrolytic area is 0.1 mm.
An electrolytic test was conducted while arranging the electrodes in parallel so that the current was 0.0314 dm'' and supplying 5011z alternating current of 100 A/dm'' from the molybdenum base wire. The specific resistance of this carbonaceous coating layer is 0.13 Ω, and the current is 100 A/dm.
A layer thickness of 1 fl only causes a voltage drop of 0.0L3V. Cell voltage shows 0.94-1.02V 2000
No changes were observed over time. At this point, the electrolysis was stopped and the cut surface of the electrode was analyzed using an XMA (XvA microanalyzer), but no voids were formed between the molybdenum base wire and the carbonaceous coating layer, and no compound layer was observed.

一方モリブデン基体線を用いなかった他は前記方法と同
様にタングステン粉末を含む炭素質電極を作製し電解試
験に供したところ発熱が著しく液は沸騰した(電極形状
が直径5 am、長さ200mであり、電流供給部から
電解部までの長さを100 鰭、比抵抗を0.13Ω・
値、供給電流を3.14Aとすると、オーム損は6.6
2Ωで65Wの発熱が生ずることになる)。
On the other hand, when a carbonaceous electrode containing tungsten powder was prepared in the same manner as the above method except that the molybdenum base wire was not used and subjected to an electrolytic test, heat generation was significant and the liquid boiled (the electrode shape was 5 am in diameter and 200 m in length). Yes, the length from the current supply part to the electrolytic part is 100mm, and the specific resistance is 0.13Ω・
If the value and supply current are 3.14A, the ohmic loss is 6.6
65W of heat will be generated at 2Ω).

又炭素質被覆層を形成させていない直径3fl、長さ2
00 mmのモリブデン線を同様に電解試験に供したと
ころモリブデン線は激しく溶出した。
Also, a diameter of 3fl and a length of 2 without a carbonaceous coating layer formed.
When a 00 mm molybdenum wire was similarly subjected to an electrolytic test, the molybdenum wire was violently eluted.

尖1桝ユ 実施例2と同様にして被覆層組成中のタングステンの比
率を0.10,30.50.70及び90 (重量%)
と変化させた6種類のモリブデン線に炭素質物質を被覆
した炭素質被覆金属電極を作製した。
The ratio of tungsten in the coating layer composition was 0.10, 30, 50, 70, and 90 (wt%) in the same manner as in Example 2.
Carbonaceous coated metal electrodes were fabricated by coating six types of molybdenum wires with carbonaceous substances.

この電極の陰極電位を下記条件で測定した。その結果を
下記に示す、この結果からタングステンを添加すること
により更に陰極電位が低下し、電極活性が向上すること
が分かる。
The cathode potential of this electrode was measured under the following conditions. The results are shown below, and it can be seen from the results that the addition of tungsten further lowers the cathode potential and improves the electrode activity.

測定法:電流断続法 溶液:150g/j!の塩酸水溶液 温度;28〜29℃ 電流密度: 20 A/ds+” 電解面積:0.0314dm″ 陽極二酸化ルテニウムを電極活性物質とする薄膜を表面
に被覆したチタン電極 参照電極:5CE(飽和カロメル電極)原料中のタング
ステ  陰極電位〔νvsSCE)ン比率(重量%) 0       −1.13 10       −0.83 30       −0.78 50          −0.74 70           −0.7490     
      −0. 69夫」1辻エ タンゲステン、モリブデン、チタン、ジルコニウム、タ
ンタル、ニオブ、銅、ニッケル、アルミニウム、Ti−
5Ta、ステンレス316L、30%キュプロニッケル
(Cu−30%Ni−0,5%Fe)の12種類の金属
や合金を金属基体として用い、実施例2と同様に炭素質
電極を作製した(純度はいずれも市販純度)。
Measurement method: Intermittent current method Solution: 150g/j! Hydrochloric acid aqueous solution temperature: 28-29°C Current density: 20 A/ds+” Electrolytic area: 0.0314 dm” Anode Titanium electrode whose surface is coated with a thin film containing ruthenium dioxide as the electrode active material Reference electrode: 5CE (saturated calomel electrode) Tungsten cathode potential [νvsSCE) ratio in raw materials (wt%) 0 -1.13 10 -0.83 30 -0.78 50 -0.74 70 -0.7490
-0. 69 husband" 1 Tsuji ethangestene, molybdenum, titanium, zirconium, tantalum, niobium, copper, nickel, aluminum, Ti-
Carbonaceous electrodes were prepared in the same manner as in Example 2 using 12 types of metals and alloys as metal substrates: 5Ta, stainless steel 316L, and 30% cupronickel (Cu-30%Ni-0.5%Fe) (purity was All commercially available purity).

これらの電極を実施例2と同様にして電解試験に供した
。2000時間経過した時点でセル電圧、切断面とも異
状が観察されなかったのはタングステン、モリブデン、
チタン、ジルコニウム、タンタル、ニオブ、Ti−5T
a及びステンレス316してあり、銅、ニッケル、アル
ミニウム、30%キュプロニッケルは20〜150時間
程度で溶解が激しく電解不能となった。
These electrodes were subjected to an electrolytic test in the same manner as in Example 2. Tungsten, molybdenum, and
Titanium, zirconium, tantalum, niobium, Ti-5T
A and stainless steel 316 were used, and copper, nickel, aluminum, and 30% cupronickel were severely dissolved in about 20 to 150 hours, making it impossible to electrolyze them.

(発明の効果) 本発明は、第1に電極用金属基体として耐食性金属を使
用しているため該金属基体が耐食性と導電性を存しかつ
任意の形状に成形することができ、更に電極自体をコン
パクト化することが可能となる。
(Effects of the Invention) Firstly, the present invention uses a corrosion-resistant metal as the metal base for the electrode, so the metal base has corrosion resistance and conductivity and can be formed into any shape. It becomes possible to make it more compact.

第2に、炭素質被覆層が緻密な炭素質物質を主としてい
るため、従来の金属1掻では困難であった陰陽の交番電
流における使用に耐えることができる。
Second, since the carbonaceous coating layer is mainly made of a dense carbonaceous material, it can withstand use in alternating currents of negative and yang, which was difficult to do with conventional metal single-layers.

第3に、炭素質物質は耐食性が高く、更にタングステン
又はタングステン化合物を含ませる場合にはより導電性
及び電極活性が向上し、良好な耐久性の下、長期間安定
した低い電極電位での操業を行うことができる。
Thirdly, carbonaceous materials have high corrosion resistance, and when they contain tungsten or tungsten compounds, conductivity and electrode activity are further improved, allowing operation at low electrode potentials that are stable for long periods of time with good durability. It can be performed.

Claims (9)

【特許請求の範囲】[Claims] (1)耐食性金属基体上に被覆層を形成して成る電極に
おいて、該被覆層の主成分が炭素質物質であることを特
徴とする炭素質被覆金属電極。
(1) A carbonaceous coated metal electrode comprising a coating layer formed on a corrosion-resistant metal substrate, characterized in that the main component of the coating layer is a carbonaceous substance.
(2)炭素質物質の50〜95重量%がグラファイトで
ある特許請求の範囲第(1)項に記載の電極。
(2) The electrode according to claim (1), wherein 50 to 95% by weight of the carbonaceous material is graphite.
(3)被覆層が炭素質物質の他に95重量%以下のタン
グステン及び/又はタングステン化合物を含んでいる特
許請求の範囲第(1)項又は第(2)項に記載の電極。
(3) The electrode according to claim (1) or (2), wherein the coating layer contains 95% by weight or less of tungsten and/or a tungsten compound in addition to the carbonaceous material.
(4)タングステン化合物が炭化タングステン粉末であ
る特許請求の範囲第(3)項に記載の電極。
(4) The electrode according to claim (3), wherein the tungsten compound is tungsten carbide powder.
(5)金属基体がタングステン、モリブデン、チタン、
ジルコニウム、タンタル、ニオブ等の弁金属又はこれら
の合金である特許請求の範囲第(1)項から第(4)項
のいずれかに記載の電極。
(5) The metal base is tungsten, molybdenum, titanium,
The electrode according to any one of claims (1) to (4), which is a valve metal such as zirconium, tantalum, niobium, or an alloy thereof.
(6)金属基体がステンレススチール等の鉄−ニッケル
−クロム系合金である特許請求の範囲第(1)項から第
(4)項のいずれかに記載の電極。
(6) The electrode according to any one of claims (1) to (4), wherein the metal substrate is an iron-nickel-chromium alloy such as stainless steel.
(7)金属基体上に被覆層を形成して成る電極において
、金属基体上に炭素質物質を含む組成物を塗布又は押出
成形して被覆し、乾燥後加熱して炭素質物質を主成分と
する被覆層を形成することを特徴とする炭素質電極の製
造方法。
(7) In an electrode formed by forming a coating layer on a metal substrate, a composition containing a carbonaceous substance is coated on the metal substrate by coating or extrusion molding, and then heated after drying to form a composition containing a carbonaceous substance as the main component. A method for producing a carbonaceous electrode, the method comprising forming a coating layer.
(8)金属基体の表面を予め処理して粗面化あるいは活
性化するようにした特許請求の範囲第(7)項に記載の
方法。
(8) The method according to claim (7), wherein the surface of the metal substrate is pretreated to roughen or activate it.
(9)塗布又は押出成形を複数回繰り返して行って被覆
層を形成するようにした特許請求の範囲第(7)項又は
第(8)項に記載の方法。
(9) The method according to claim (7) or (8), wherein the coating layer is formed by repeating coating or extrusion multiple times.
JP61083583A 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same Expired - Lifetime JPH0768626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61083583A JPH0768626B2 (en) 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61083583A JPH0768626B2 (en) 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62240778A true JPS62240778A (en) 1987-10-21
JPH0768626B2 JPH0768626B2 (en) 1995-07-26

Family

ID=13806512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61083583A Expired - Lifetime JPH0768626B2 (en) 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0768626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240779A (en) * 1986-04-11 1987-10-21 Permelec Electrode Ltd Metallic electrode coated with carbonaceous substance and its production
CN112513336A (en) * 2018-08-23 2021-03-16 昭和电工株式会社 Anode for electrolytic synthesis and method for producing fluorine gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167267A (en) * 1974-12-09 1976-06-10 Mitsui Petrochemical Ind Kihakudenkaishitsuyoekino denkaikangenho
JPS58136788A (en) * 1982-02-08 1983-08-13 Hitachi Ltd Electrode for molten salt electrolysis of silicon
JPS59153890A (en) * 1983-02-19 1984-09-01 フォルシュングスツエントルム ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Manufacture of electrode available as anode
JPS62240779A (en) * 1986-04-11 1987-10-21 Permelec Electrode Ltd Metallic electrode coated with carbonaceous substance and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167267A (en) * 1974-12-09 1976-06-10 Mitsui Petrochemical Ind Kihakudenkaishitsuyoekino denkaikangenho
JPS58136788A (en) * 1982-02-08 1983-08-13 Hitachi Ltd Electrode for molten salt electrolysis of silicon
JPS59153890A (en) * 1983-02-19 1984-09-01 フォルシュングスツエントルム ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Manufacture of electrode available as anode
JPS62240779A (en) * 1986-04-11 1987-10-21 Permelec Electrode Ltd Metallic electrode coated with carbonaceous substance and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240779A (en) * 1986-04-11 1987-10-21 Permelec Electrode Ltd Metallic electrode coated with carbonaceous substance and its production
CN112513336A (en) * 2018-08-23 2021-03-16 昭和电工株式会社 Anode for electrolytic synthesis and method for producing fluorine gas
EP3842571A4 (en) * 2018-08-23 2021-10-13 Showa Denko K.K. Electrolytic synthesis anode and method for producing fluorine gas
CN112513336B (en) * 2018-08-23 2024-03-19 株式会社力森诺科 Anode for electrolytic synthesis and method for producing fluorine gas

Also Published As

Publication number Publication date
JPH0768626B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
US4140813A (en) Method of making long-term electrode for electrolytic processes
EP1640479B1 (en) Conductive diamond electrode and process for producing the same
US3657102A (en) Electrolytic anode
KR890001070B1 (en) Cathode for electrolyzing acid solutions and process for producing the same
JPS636636B2 (en)
CN85108093A (en) The electrode that is used for electrochemical process, the method and the application of electrode in electrolyzer of making this electrode
MXPA01003960A (en) Cathode for electrolysing aqueous solutions.
JP2003503598A (en) Copper foil manufacturing method
JPH02247393A (en) Electrolytic electrode with durability and its production
JPH0633492B2 (en) Electrolytic cathode and method of manufacturing the same
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JPH04231491A (en) Electric catalyzer cathode and its manufacture
US6103299A (en) Method for preparing an electrode for electrolytic processes
JPS62240778A (en) Metallic electrode coated with carbonaceous substance and its production
JP3430479B2 (en) Anode for oxygen generation
JPH0257159B2 (en)
JPH0633481B2 (en) Electrolytic cathode and method of manufacturing the same
JP3676554B2 (en) Activated cathode
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
RU2551327C1 (en) Modified galvanic silver coating and method for production thereof
JPH10330998A (en) Electroplating method
EP1923487B1 (en) Method of reactivating electrode for electrolysis
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JPS62240779A (en) Metallic electrode coated with carbonaceous substance and its production