JPH0768626B2 - Carbonaceous coated metal electrode and method for producing the same - Google Patents

Carbonaceous coated metal electrode and method for producing the same

Info

Publication number
JPH0768626B2
JPH0768626B2 JP61083583A JP8358386A JPH0768626B2 JP H0768626 B2 JPH0768626 B2 JP H0768626B2 JP 61083583 A JP61083583 A JP 61083583A JP 8358386 A JP8358386 A JP 8358386A JP H0768626 B2 JPH0768626 B2 JP H0768626B2
Authority
JP
Japan
Prior art keywords
coating layer
electrode
tungsten
carbonaceous
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61083583A
Other languages
Japanese (ja)
Other versions
JPS62240778A (en
Inventor
孝之 島宗
正志 細沼
利樹 後藤
久昭 横田
紳吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61083583A priority Critical patent/JPH0768626B2/en
Publication of JPS62240778A publication Critical patent/JPS62240778A/en
Publication of JPH0768626B2 publication Critical patent/JPH0768626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属の電解エッチング等の表面処理や有機電
解等の腐食性液中における通電用として又はこれらの液
中において直流又は交流を通して電解を行う際に使用す
る耐食性の電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to electrolysis in corrosive liquids such as surface treatments such as electrolytic etching of metals and organic electrolysis, or electrolysis through direct current or alternating current in these liquids. The present invention relates to a corrosion-resistant electrode used when performing.

(従来技術とその問題点) 耐食性の導電部材や腐食性液中で電解用の電極として従
来から炭素電極が使用されている。炭素電極は非金属と
しては電気伝導度が大きく耐食性が極めて良好であり、
陰極としても陽極としても有効に機能する。しかしなが
ら最近のように電解における高電流密度化に対しては金
属に比較して低い電気伝導度の故に無理に使おうとすれ
ば導電性確保のために極めて厚く大きいものとなってし
まう。又一般に該電極は脆く取扱が不便であり、又電解
中にも表面が崩れ易い等の欠点がある。
(Prior art and its problems) A carbon electrode has been conventionally used as an electrode for electrolysis in a corrosion-resistant conductive member or a corrosive liquid. As a non-metal, the carbon electrode has a large electric conductivity and excellent corrosion resistance,
It effectively functions as both a cathode and an anode. However, as in recent years, in order to increase the current density in electrolysis, if it is forcibly used because of its low electric conductivity as compared with metal, it becomes extremely thick and large in order to secure conductivity. Further, the electrode is generally fragile and inconvenient to handle, and the surface thereof is easily broken during electrolysis.

このような問題点を解決するため、チタンを代表とする
弁金属基体(芯)上に白金族金属やその酸化物を主成分
とする被覆層を設けたいわゆる金属電極が開発され、広
く使用されている(例えば特公昭48−3954号)。しかし
ながらこのような金属電極は、弁金属を使用したものは
陽極として使用すると極めて安定であるが陰極として使
用すると基材の水素化や腐食等が生じ短寿命であるとい
う欠点を有し、陰極基体として使用されるステンレス、
ニッケル等は陽極として使用すると電解液にもよるが短
時間で腐食してしまう。従ってこれらの金属電極は陰陽
いずれかの電極として使用される場合はその材料を選択
すれば使用可能であるが、交流のような陰陽両方の電荷
がかかる交番電流の場合にはいずれも短時間に腐食する
という欠点を有している。
In order to solve such a problem, a so-called metal electrode has been developed and widely used in which a coating layer containing a platinum group metal or its oxide as a main component is provided on a valve metal substrate (core) typified by titanium. (For example, Japanese Patent Publication No. 48-3954). However, such a metal electrode has a drawback that when a valve metal is used as an anode, it is extremely stable, but when it is used as a cathode, hydrogenation or corrosion of the base material occurs and the life is short. Used as stainless steel,
When nickel or the like is used as the anode, it corrodes in a short time depending on the electrolytic solution. Therefore, these metal electrodes can be used by selecting the material when they are used as either of the positive and negative electrodes, but in the case of alternating current such as alternating current, which has both positive and negative charges, it takes a short time. It has the drawback of corrosion.

これらの他にフェライトを代表とするセラミック電極が
知られているが、導電性が不十分であり炭素電極と同様
の欠点を有する。又形状の自由度も少ない。
Other than these, ceramic electrodes typified by ferrite are known, but they have insufficient conductivity and have the same drawbacks as carbon electrodes. In addition, there is little freedom in shape.

(発明の目的) 本発明の目的は、従来の金属電極及び炭素電極の特性を
合わせ持つ電極、特に腐食性液中での通電用として又こ
のような液中での電解用の電極として有用で陰陽の交番
電流を流すことができる炭素質被覆金属電極とその製造
方法を提供することにある。
(Object of the invention) The object of the present invention is useful as an electrode having the characteristics of conventional metal electrodes and carbon electrodes, especially as an electrode for energizing in a corrosive liquid and as an electrode for electrolysis in such a liquid. An object of the present invention is to provide a carbonaceous coated metal electrode capable of passing an alternating current of Yin and Yang and a method for producing the same.

(問題点を解決するための手段) 本発明は、第1に耐食性金属基体上に被覆層を形成して
成る電極において、該被覆層がグラファイト及び無定形
炭素から成る炭素質物質と0〜40モル%のタングステン
及び/又はタングステン化合物とから成るものであるこ
とを特徴とする炭素質被覆金属電極であり、第2に金属
基体上に被覆層を形成して成る電極において、金属基体
上に炭素質物質を含む組成物を塗布又は押出成形して被
覆し、乾燥後加熱して炭素質物質と0〜40モル%のタン
グステン及び/又はタングステン化合物とから成る被覆
層を形成することを特徴とする炭素質電極の製造方法で
ある。
(Means for Solving the Problems) First, the present invention relates to an electrode formed by forming a coating layer on a corrosion-resistant metal substrate, wherein the coating layer comprises a carbonaceous material composed of graphite and amorphous carbon, and 0-40. A carbonaceous coated metal electrode comprising a mol% of tungsten and / or a tungsten compound. Secondly, in the electrode formed by forming a coating layer on a metal substrate, carbon is formed on the metal substrate. Characterized in that a composition containing a carbonaceous material is applied or extrusion-molded to be coated, dried and then heated to form a coating layer comprising a carbonaceous material and 0 to 40 mol% of tungsten and / or a tungsten compound. It is a manufacturing method of a carbonaceous electrode.

以下本発明をより具体的に説明する。The present invention will be described in more detail below.

本発明の電極の金属基体としては、タングステン、モリ
ブデン、チタン、ジルコニウム、ニオブ等の弁金属ある
いはこれらの合金を用いることが好ましく、用途によっ
てはステンレススチール、インコネル(商品名)、ハス
テロイ(商品名)等の鉄−ニッケル−クロム系等の耐食
性合金を使用することもでき、使用する電解液等の電解
条件によって適宜選択する。このような耐食性金属や合
金を使用する理由は、被覆層が緻密であっても完全に電
解液や該電解液中のイオンが被覆層内へ浸入することを
防止できず、これらに対する耐性を向上させるためであ
る。
As the metal substrate of the electrode of the present invention, it is preferable to use a valve metal such as tungsten, molybdenum, titanium, zirconium, niobium or an alloy thereof, and depending on the application, stainless steel, Inconel (trade name), Hastelloy (trade name). Corrosion-resistant alloys such as iron-nickel-chromium based alloys can also be used, and they are appropriately selected depending on the electrolysis conditions such as the electrolytic solution used. The reason for using such a corrosion-resistant metal or alloy is that even if the coating layer is dense, it is not possible to completely prevent the electrolytic solution or ions in the electrolytic solution from penetrating into the coating layer, and improve the resistance to these. This is to allow it.

該金属基体上に被覆層を被覆する前に、被覆層と金属基
体との附着性を向上させるために金属基体表面をブラス
トによる粗面化処理あるいはエッチング等の化学処理に
よる表面活性化処理等を行うことができる。
Before coating the metal substrate with the coating layer, in order to improve the adhesiveness between the coating layer and the metal substrate, the surface of the metal substrate is roughened by blasting or surface activated by chemical treatment such as etching. It can be carried out.

該被覆層は炭素質物質を主成分とするもので、その化学
組成はその使用目的によって変えることができる。
The coating layer contains a carbonaceous substance as a main component, and its chemical composition can be changed depending on its intended use.

被覆層の炭素質物質はグラファイトや無定形炭素から成
り、通常50〜95%のグラファイトを含み、かつ該グラフ
ァイト原料粒子の粒度は94メッシュ以下であることが望
ましい。炭素質物質中のグラファイト量が50%以下であ
ると炭素質物質自体の導電性及び耐食性が悪くなり長期
間の安定使用が困難となり、更に被覆層形成の際の収縮
が大き過ぎて良質の被覆層を形成することが困難にな
る。又グラファイト量が95%より大きくなると被覆層形
成時の収縮は小さくなるが被覆層が脆くなり、更に加熱
した際に被覆層自身の焼き締まりが悪くなる。
The carbonaceous material of the coating layer is preferably made of graphite or amorphous carbon, usually contains 50 to 95% of graphite, and the particle size of the graphite raw material particles is preferably 94 mesh or less. If the amount of graphite in the carbonaceous material is 50% or less, the electrical conductivity and corrosion resistance of the carbonaceous material itself deteriorate, making stable use difficult for a long period of time, and the shrinkage during the formation of the coating layer is too large, resulting in a good quality coating. It becomes difficult to form layers. On the other hand, if the amount of graphite is more than 95%, the shrinkage at the time of forming the coating layer becomes small, but the coating layer becomes brittle, and the heating of the coating layer itself becomes poor when heated.

なお、本発明では被覆層の導電性を向上させるために該
被覆層にタングステン及び/又は炭化タングステン等の
タングステン化合物を含ませることができ、その含量は
被覆層全体の0〜40モル%程度とすることが好ましい。
In the present invention, the coating layer may contain a tungsten compound such as tungsten and / or tungsten carbide in order to improve the conductivity of the coating layer, and the content thereof is about 0 to 40 mol% of the entire coating layer. Preferably.

なお、被覆層にはグラファイト等の炭素質物質のほか後
述する有機バインダーあるいは粘結剤の加熱処理による
残留物が含まれ、これら残留物を特定することができな
いので厳密な意味でのタングステンのモル%を算出する
ことができない。ここでは前記残留物が全部炭素質物質
であると仮定してタングステンのモル%を算出した。こ
の「0〜40モル%」を重量%に換算すると「0〜95重量
%」となり、あたかもタングステンが被覆層の主成分で
あるようにも思えるが、これは炭素質の原子量が12、タ
ングステンの原子量が184という両者の原子量の差が重
量%に大きく影響するからであり、モル%あるいは容量
%によれば炭素質物質が主成分であることに変わりはな
い。
In addition to carbonaceous substances such as graphite, the coating layer contains residues due to the heat treatment of the organic binder or binder described later, and these residues cannot be specified. % Cannot be calculated. Here, the mol% of tungsten was calculated assuming that all the residues were carbonaceous materials. When this "0-40 mol%" is converted to wt%, it becomes "0-95 wt%", and it seems as if tungsten is the main component of the coating layer. This is because the difference between the atomic weights of 184, which has an atomic weight of 184, has a large effect on the weight%.

タングステンの含量が40モル%を越えると被覆層が脆く
なり強度が低下する。被覆層にタングステン成分を添加
すると被覆層の導電性を向上させ、しかも陰分極時に発
生水素等を全く吸収しないため安定性が低下せず、陰極
過電圧が極めて小さく、更に陽分極時には弁金属として
機能し耐食性が良好となる。
If the content of tungsten exceeds 40 mol%, the coating layer becomes brittle and the strength decreases. Addition of a tungsten component to the coating layer improves the conductivity of the coating layer, and does not absorb the hydrogen generated during negative polarization at all, so the stability does not decrease, the cathode overvoltage is extremely small, and it functions as a valve metal during positive polarization. Good corrosion resistance.

被覆層の成分としてはこれらの他に、次記する被覆組成
物に含ませた有機バインダーあるいは粘結剤の加熱処理
により形成される炭素質物質の残留物が含まれる。
In addition to these, the components of the coating layer include the residue of the carbonaceous substance formed by the heat treatment of the organic binder or the binder contained in the coating composition described below.

前記金属基体上に緻密な炭素質物質から成る被覆層を例
えば次のような手順で形成する。
A coating layer made of a dense carbonaceous material is formed on the metal substrate by the following procedure, for example.

まず前記炭素質物質に必要に応じてタングステン及び/
又はタングステン化合物、フェノール樹脂、ポリビニル
アルコールやカルボキシメチルセルロース(CMC)等の
有機バインダーあるいは粘結剤を加えて混練し泥状の被
覆組成物とする。該被覆組成物は刷毛等で適宜形状の金
属基体に塗布し焼き付けてもよいが、望ましくは混練し
た被覆組成物を棒状の金属基体の周囲に押出成型して緻
密で強度の大きい被覆層を形成する。被覆層の厚みは通
常0.2〜5mm程度とする。
First, if necessary, tungsten and / or
Alternatively, an organic binder or a binder such as a tungsten compound, a phenol resin, polyvinyl alcohol or carboxymethyl cellulose (CMC) is added and kneaded to obtain a muddy coating composition. The coating composition may be applied to a metal substrate having an appropriate shape with a brush or the like and baked, but preferably, the kneaded coating composition is extruded around a rod-shaped metal substrate to form a dense and strong coating layer. To do. The thickness of the coating layer is usually about 0.2-5 mm.

続いて被覆層中に残存している溶媒の除去、被覆層の安
定化並びに金属基体と被覆層の附着性を向上さるために
熱処理を行う。この熱処理は被覆層の組成等によって異
なるが通常100〜1800℃で30分〜10時間、特に残留水素
量が問題にならない場合には100〜680℃で、真空又は不
活性雰囲気中で行うことが望ましい。これで十分に緻密
な被覆層を形成することができるが、更に金属基体表面
全体に完全に被覆層が形成されずその極く一部が露出し
ている場合等に必要に応じて、例えば前記被覆組成物中
に浸して含浸処理することもできる。
Subsequently, heat treatment is performed to remove the solvent remaining in the coating layer, stabilize the coating layer, and improve the adhesiveness between the metal substrate and the coating layer. Although this heat treatment varies depending on the composition of the coating layer, etc., it is usually carried out at 100 to 1800 ° C for 30 minutes to 10 hours, and particularly at 100 to 680 ° C when the residual hydrogen amount does not matter, in a vacuum or an inert atmosphere. desirable. With this, a sufficiently dense coating layer can be formed, but if the coating layer is not completely formed on the entire surface of the metal substrate and only a very small portion thereof is exposed, for example, the above-mentioned It is also possible to carry out the impregnation treatment by immersing it in the coating composition.

(実施例) 以下本発明の実施例を記載するが、これらの実施例は本
発明を限定するものではない。
(Examples) Examples of the present invention will be described below, but these examples do not limit the present invention.

実施例1 100〜200メッシュのグラファイト粉、325メッシュ以下
のグラファイト粉、325メッシュ以下の無定形炭素粉、
ポリビニルアルコール及びフェノール樹脂を重量比でそ
れぞれ25:25:15:5:60(百分率比約19.2:19.2:11.6:3.8:
46.2)にて配合した後混練し、該混練物を線引機械研磨
を施した純度99%以上のタングステン基体線(直径3m
m、長さ200mm)の周囲に真空押出成形して1mm厚の炭素
質物質被覆層を形成し、次いで120℃で乾燥した。更に
非酸化性雰囲気下400℃で3時間加熱処理を行った。こ
の被覆層の組成をX線回折法で測定したところグラファ
イト57.4%及び無定形炭素42.6%(重量及びモル)から
成っていることが分かった。
Example 1 100 to 200 mesh graphite powder, 325 mesh or less graphite powder, 325 mesh or less amorphous carbon powder,
Polyvinyl alcohol and phenolic resin in weight ratio of 25: 25: 15: 5: 60, respectively (percentage ratio about 19.2: 19.2: 11.6: 3.8:
46.2) and then kneading the mixture, and subjecting the kneaded product to drawing mechanical polishing to obtain a tungsten substrate wire having a purity of 99% or more (diameter: 3 m).
m, length 200 mm) by vacuum extrusion to form a 1 mm thick carbonaceous material coating layer and then dried at 120 ° C. Furthermore, heat treatment was performed at 400 ° C. for 3 hours in a non-oxidizing atmosphere. The composition of this coating layer was determined by X-ray diffractometry and found to consist of 57.4% graphite and 42.6% amorphous carbon (weight and moles).

このように製造したタングステン基体線に炭素質物質を
被覆して炭素質被覆電極の周囲を長さ方向に20mmを残し
てフッ素樹脂製のシールテープで覆い電解用試料とした
(露出部分の面積は0.0314dm2)。この電解用試料を2
本、液温60℃、濃度200g/の塩酸中で極間距離が10mm
となるように平行に配置し、1秒毎に電流の方向を反転
させながら100A/dm2の電流密度で電解を行った。
The tungsten substrate wire thus produced was coated with a carbonaceous substance, and the periphery of the carbonaceous coated electrode was covered with a fluororesin seal tape leaving 20 mm in the lengthwise direction to obtain a sample for electrolysis (the exposed area is 0.0314dm 2 ). Two samples for this electrolysis
The distance between the electrodes is 10 mm in a hydrochloric acid solution with a temperature of 60 ° C and a concentration of 200 g /
The cells were arranged in parallel with each other so as to be electrolyzed at a current density of 100 A / dm 2 while reversing the direction of current every one second.

比較のため同じ形状、即ち直径5mmのグラファイト製棒
状電極の周囲を同様にシールテープで2cmの長さを残し
て覆い、同条件で電解試験を行った。
For comparison, a graphite rod having the same shape, that is, a graphite rod having a diameter of 5 mm was similarly covered with a sealing tape, leaving a length of 2 cm, and an electrolytic test was performed under the same conditions.

その結果本実施例の電極では2000時間以上安定な電解が
継続したのに対し、グラファイト製棒状電極では発熱の
ため液温を一定にすることが困難であったほか、10時間
程度経過した後から電極の電解面が崩れ始め、30時間経
過後にその太さが半分程度となり、35時間後には通電不
能となった。
As a result, in the electrode of this example, stable electrolysis continued for 2000 hours or more, whereas it was difficult to keep the liquid temperature constant due to heat generation in the graphite rod electrode, and after about 10 hours, The electrolytic surface of the electrode began to collapse, and after 30 hours, the thickness was reduced to about half, and after 35 hours, current flow became impossible.

実施例2 グラファイト粉末、無定形炭素粉、増粘材、フェノール
樹脂及びタングステン粉を重量比でそれぞれ75:25:4:6
0:20(百分率比約40.8:13.6:2.17:32.6:10.9)にて配合
した後混練し、該混練物を線引後機械研磨を施した純度
99.9%以上のモリブデン基体線(直径3mm、長さ200mm)
の周囲に真空押出成形して1mm厚のタングステン粉末を
含む炭素質物質被覆層を形成し、更に110℃で乾燥し非
酸化性雰囲気下600℃で2時間熱処理を行った。炭素質
物質被覆層の組成をX線回折法及び螢光X線法で測定し
たところ、グラファイト53.1重量%、無定形炭素32.8重
量%及びタングステン14.1重量%であった。
Example 2 Graphite powder, amorphous carbon powder, thickening agent, phenol resin and tungsten powder in a weight ratio of 75: 25: 4: 6, respectively.
0:20 (percentage ratio about 40.8: 13.6: 2.17: 32.6: 10.9) was blended and then kneaded, and the kneaded product was drawn and mechanically polished
99.9% or more molybdenum base wire (diameter 3 mm, length 200 mm)
Was vacuum extruded to form a carbonaceous material coating layer containing 1 mm thick tungsten powder, dried at 110 ° C., and heat-treated at 600 ° C. for 2 hours in a non-oxidizing atmosphere. When the composition of the carbonaceous material coating layer was measured by an X-ray diffraction method and a fluorescent X-ray method, it was 53.1% by weight of graphite, 32.8% by weight of amorphous carbon and 14.1% by weight of tungsten.

このようにして得たモリブデン基体線上に炭素質物質を
被覆した炭素質電極2本を液温70℃の200g/の塩酸中
において極間距離10mm、電解面積0.0314dm2となるよう
に平行に配置しモリブデン基体線から100A/dm2の50Hz交
流を供給しながら電解試験を行った。この炭素質被覆層
の比抵抗は0.13Ω・cmであり、電流100A/dm2、層厚1mm
では0.013Vの電圧降下を生ずるにすぎない。セル電圧は
0.94〜1.02Vを示す2000時間経過した時点でも変化は観
察されなかった。この時点で電解を停止し電極の切断面
をXMA(X線マイクロアナライザー)で分析したがモリ
ブデン基体線と炭素質被覆層の間に空隙な生じておらず
又化合物層も観察されなかった。
Two carbonaceous electrodes coated with a carbonaceous substance on the thus obtained molybdenum base wire were placed in parallel in 200 g / hydrochloric acid at a liquid temperature of 70 ° C. so that the distance between the electrodes was 10 mm and the electrolytic area was 0.0314 dm 2. An electrolytic test was performed while supplying 100 A / dm 2 of 50 Hz alternating current from the molybdenum substrate wire. The specific resistance of this carbonaceous coating layer is 0.13 Ωcm, current 100 A / dm 2 , layer thickness 1 mm.
Causes only 0.013V drop. Cell voltage is
No change was observed even after 2000 hours showing 0.94 to 1.02V. At this point, the electrolysis was stopped and the cut surface of the electrode was analyzed by XMA (X-ray microanalyzer), but no void was generated between the molybdenum substrate wire and the carbonaceous coating layer, and no compound layer was observed.

一方モリブデン基体線を用いなかった他は前記方法と同
様にタングステン粉末を含む炭素質電極を作製し電解試
験に供したところ発熱が著しく液は沸騰した(電極形状
が直径5mm、長さ200mmであり、電流供給部から電解部ま
での長さを100mm、比抵抗を0.13Ω・cm、供給電流を3.1
4Aとすると、オーム損は6.62Ωで65Wの発熱が生ずるこ
とになる)。
On the other hand, except that the molybdenum base wire was not used, a carbonaceous electrode containing tungsten powder was prepared in the same manner as in the above method and subjected to an electrolytic test. , Length from current supply part to electrolysis part is 100mm, specific resistance is 0.13Ω ・ cm, supply current is 3.1
If it is 4A, the ohmic loss is 6.62Ω and 65W of heat is generated).

又炭素質被覆層を形成させていない直径3mm、長さ200mm
のモリブデン線を同様に電解試験に供したところモリブ
デン線は激しく溶出した。
In addition, the carbonaceous coating layer is not formed diameter 3mm, length 200mm
When the molybdenum wire of No. 1 was similarly subjected to the electrolytic test, the molybdenum wire was severely eluted.

実施例3 実施例2と同様にして被覆層組成中のタングステンの比
率を0,10,30,50,70及び90(重量%)と変化させた6種
類のモリブデン線に炭素質物質を被覆した炭素質被覆金
属電極を作製した。
Example 3 Six kinds of molybdenum wires with the ratio of tungsten in the coating layer composition changed to 0, 10, 30, 50, 70 and 90 (% by weight) were coated with a carbonaceous material in the same manner as in Example 2. A carbonaceous coated metal electrode was prepared.

この電極の陰極電位を下記条件で測定した。その結果を
下記に示す。この結果からタングステンを添加すること
により更に陰極電位が低下し、電極活性が向上すること
が分かる。
The cathode potential of this electrode was measured under the following conditions. The results are shown below. From this result, it is understood that the addition of tungsten further lowers the cathode potential and improves the electrode activity.

測定法:電流断続法 溶液:150g/の塩酸水溶液 温度:28〜29℃ 電流密度:20A/dm2 電解面積:0.0314dm2 陽極:酸化ルテニウムを電極活性物質とする薄膜を表面
に被覆したチタン電極 参照電極:SCE(飽和カロメル電極) 実施例4 タングステン、モリブデン、チタン、ジルコニウム、タ
ンタル、ニオブ、銅、ニッケル、アルミニウム、Ti−5T
a、ステンレス316L、30%キュプロニッケル(Cu−30%N
i−0.5%Fe)の12種類の金属や合金を金属基体として用
い、実施例2と同様に炭素質電極を作製した(純度はい
ずれも市販純度)。
Measurement method: Current interruption method Solution: 150 g / hydrochloric acid aqueous solution Temperature: 28-29 ° C Current density: 20 A / dm 2 Electrolytic area: 0.0314 dm 2 Anode: Titanium electrode whose surface is coated with a thin film of ruthenium oxide as an electrode active substance. Reference electrode: SCE (saturated calomel electrode) Example 4 Tungsten, molybdenum, titanium, zirconium, tantalum, niobium, copper, nickel, aluminum, Ti-5T
a, Stainless steel 316L, 30% cupro nickel (Cu-30% N
A carbonaceous electrode was produced in the same manner as in Example 2 using 12 kinds of metals or alloys of i-0.5% Fe) as the metal substrate (purity is all commercially available purity).

これらの電極を実施例2と同様にして電解試験に供し
た。2000時間経過した時点でセル電圧、切断面とも異状
が観察されなかったのはタングステン、モリブデン、チ
タン、ジルコニウム、タンタル、ニオブ、Ti−5Ta及び
ステンレス316Lであり、銅、ニッケル、アルミニウム、
30%キュプロニッケルは20〜150時間程度で溶解が激し
く電解不能となった。
These electrodes were subjected to an electrolytic test in the same manner as in Example 2. After 2000 hours, the cell voltage, and no abnormalities were observed in the cut surface were tungsten, molybdenum, titanium, zirconium, tantalum, niobium, Ti-5Ta and stainless 316L, and copper, nickel, aluminum,
30% cupronickel was so strongly dissolved in 20 to 150 hours that electrolysis became impossible.

(発明の効果) 本発明は、第1に電極用金属基体として耐食性金属を使
用しているため該金属基体が耐食性と導電性を有しかつ
任意の形状に成形することができ、更に電極自体をコン
パクト化することが可能となる。
(Effects of the Invention) In the present invention, firstly, since a corrosion-resistant metal is used as the metal substrate for electrodes, the metal substrate has corrosion resistance and conductivity, and can be formed into any shape. Can be made compact.

第2に、炭素質被覆層が緻密な炭素質物質を主としてい
るため、従来の金属電極では困難であった陰極の交番電
流における使用に耐えることができる。
Secondly, since the carbonaceous coating layer is mainly composed of a dense carbonaceous material, it can withstand use in an alternating current of the cathode, which has been difficult with conventional metal electrodes.

第3に、炭素質物質は耐食性が高く、更にタングステン
又はタングステン化合物を含ませる場合にはより導電性
及び電極活性が向上し、良好な耐久性の下、長期間安定
した低い電極電位での操業を行うことができる。
Thirdly, the carbonaceous material has a high corrosion resistance, and when it contains tungsten or a tungsten compound, the conductivity and the electrode activity are further improved, and it is operated at a low electrode potential which is stable for a long period of time with good durability. It can be performed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横田 久昭 神奈川県茅ヶ崎市浜竹3−5−21 (72)発明者 吉田 紳吾 神奈川県鎌倉市手広731の1 西ケ谷神鋼 寮内 (56)参考文献 特開 昭59−6388(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisaaki Yokota 3-5-21 Hamatake, Chigasaki City, Kanagawa Prefecture (72) Inventor Shingo Yoshida 1 731 Tehiro, Kamakura City, Kanagawa Nishigaya Shinko Dormitory (56) References 59-6388 (JP, A)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】耐食性金属基体上に被覆層を形成して成る
電極において、該被覆層がグラファイト及び無定形炭素
から成る炭素質物質と0〜40モル%のタングステン及び
/又はタングステン化合物とから成る緻密なものである
ことを特徴とする炭素質被覆金属電極。
1. An electrode comprising a coating layer formed on a corrosion-resistant metal substrate, the coating layer comprising a carbonaceous material consisting of graphite and amorphous carbon and 0-40 mol% of tungsten and / or a tungsten compound. A carbonaceous-coated metal electrode characterized by being dense.
【請求項2】炭素質物質の50〜95重量%がグラファイト
である特許請求の範囲第(1)項に記載の電極。
2. The electrode according to claim 1, wherein 50 to 95% by weight of the carbonaceous material is graphite.
【請求項3】タングステン化合物が炭化タングステン粉
末である特許請求の範囲第(1)項に記載の電極。
3. The electrode according to claim 1, wherein the tungsten compound is a tungsten carbide powder.
【請求項4】金属基体がタングステン、モリブデン、チ
タン、ジルコニウム、タンタル、ニオブ等の弁金属又は
これらの合金である特許請求の範囲第(1)項から第
(3)項までのいずれかに記載の電極。
4. The metal substrate according to claim 1, which is a valve metal such as tungsten, molybdenum, titanium, zirconium, tantalum, niobium or an alloy thereof. Electrodes.
【請求項5】金属基体がステンレススチール等の鉄−ニ
ッケル−クロム系合金である特許請求の範囲第(1)項
から第(3)項までのいずれかに記載の電極。
5. The electrode according to any one of claims (1) to (3), wherein the metal substrate is an iron-nickel-chromium alloy such as stainless steel.
【請求項6】金属基体上に被覆層を形成して成る電極に
おいて、金属基体上に炭素質物質を含む組成物を塗布又
は押出成形して被覆し、乾燥後加熱して炭素質物質と0
〜40モル%のタングステン及び/又はタングステン化合
物とから成る緻密な被覆層を形成することを特徴とする
炭素質電極の製造方法。
6. An electrode formed by forming a coating layer on a metal substrate, coating or extruding a composition containing a carbonaceous substance on the metal substrate to coat, drying and heating the mixture to remove the carbonaceous substance and the carbonaceous substance.
A method for producing a carbonaceous electrode, which comprises forming a dense coating layer composed of -40 mol% of tungsten and / or a tungsten compound.
【請求項7】金属基体の表面を予め処理して粗面化ある
いは活性化するようにした特許請求の範囲第(6)項に
記載の方法。
7. The method according to claim 6, wherein the surface of the metal substrate is pretreated to roughen or activate it.
【請求項8】塗布又は押出成形を複数回繰り返して行っ
て被覆層を形成するようにした特許請求の範囲第(6)
項又は第(7)項に記載の方法。
8. A coating layer is formed by repeating coating or extrusion molding a plurality of times to form a coating layer.
Item or the method according to Item (7).
JP61083583A 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same Expired - Lifetime JPH0768626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61083583A JPH0768626B2 (en) 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61083583A JPH0768626B2 (en) 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62240778A JPS62240778A (en) 1987-10-21
JPH0768626B2 true JPH0768626B2 (en) 1995-07-26

Family

ID=13806512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61083583A Expired - Lifetime JPH0768626B2 (en) 1986-04-11 1986-04-11 Carbonaceous coated metal electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0768626B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778278B2 (en) * 1986-04-11 1995-08-23 ペルメレツク電極株式会社 Carbonaceous coated metal electrode and method for producing the same
CN112513336B (en) * 2018-08-23 2024-03-19 株式会社力森诺科 Anode for electrolytic synthesis and method for producing fluorine gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167267A (en) * 1974-12-09 1976-06-10 Mitsui Petrochemical Ind Kihakudenkaishitsuyoekino denkaikangenho
JPS58136788A (en) * 1982-02-08 1983-08-13 Hitachi Ltd Electrode for molten salt electrolysis of silicon
DE3305753A1 (en) * 1983-02-19 1984-08-30 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR PRODUCING AN ELECTRODE THAT CAN BE USED AS ANODE
JPH0778278B2 (en) * 1986-04-11 1995-08-23 ペルメレツク電極株式会社 Carbonaceous coated metal electrode and method for producing the same

Also Published As

Publication number Publication date
JPS62240778A (en) 1987-10-21

Similar Documents

Publication Publication Date Title
JP7092076B2 (en) Titanium base material, manufacturing method of titanium base material, electrode for water electrolysis, water electrolysis device
US3657102A (en) Electrolytic anode
KR890001070B1 (en) Cathode for electrolyzing acid solutions and process for producing the same
TWI224632B (en) Method of producing copper foil
IL36457A (en) An electrode,its production and its use as an oxygen anode
KR860000604B1 (en) Electrolytic electrodes hohing high durokility
JP7094110B2 (en) Electrodes for the electrolysis process
JPS6318672B2 (en)
JPS59150091A (en) Electrode for electrolysis having durability and its production
KR890003861B1 (en) Electrode for electrolysis and process for production thereof
HU215398B (en) Cathode for use in electrochemical processes in cell with ionexchange membrane, especially for electrochemical cell for electrolysis of alkali-chloride and method for preparing the cathode
JPH025830B2 (en)
US4051000A (en) Non-contaminating anode suitable for electrowinning applications
GB2065171A (en) Low overvoltage hydrogen cathodes
JPH02247393A (en) Electrolytic electrode with durability and its production
JPH0633492B2 (en) Electrolytic cathode and method of manufacturing the same
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
US5164062A (en) Electrocatalytic cathodes and method of preparation
JPH04231491A (en) Electric catalyzer cathode and its manufacture
US4473454A (en) Cathode for electrolysis of acid solution and process for the production thereof
JP3430479B2 (en) Anode for oxygen generation
JPH0768626B2 (en) Carbonaceous coated metal electrode and method for producing the same
JPH0633481B2 (en) Electrolytic cathode and method of manufacturing the same
JP2023500091A (en) Electrodes for the electrochemical generation of hydrogen
JP3463966B2 (en) Manufacturing method of electrode for electrolysis