JPS62240772A - Production of corrosion resistant member - Google Patents

Production of corrosion resistant member

Info

Publication number
JPS62240772A
JPS62240772A JP8455086A JP8455086A JPS62240772A JP S62240772 A JPS62240772 A JP S62240772A JP 8455086 A JP8455086 A JP 8455086A JP 8455086 A JP8455086 A JP 8455086A JP S62240772 A JPS62240772 A JP S62240772A
Authority
JP
Japan
Prior art keywords
coating
vapor deposition
electroless plating
electroplating
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8455086A
Other languages
Japanese (ja)
Inventor
Satoru Takano
悟 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8455086A priority Critical patent/JPS62240772A/en
Publication of JPS62240772A publication Critical patent/JPS62240772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a corrosion resistant member nearly free from pinholes and having superior durability for a long period by forming a coating layer on a metallic base material by electropolating or electroless plating combined with vapor deposition different from the plating in coating mechanism. CONSTITUTION:A metallic coating layer is formed on a metallic base material by electroplating or electroless plating. The metallic coating layer is then coated with the same metal as the metal of the coating layer by vapor deposition perfectly different from the plating in coating mechanism.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、たとえば橋梁等の構造物、化学薬品用モー
タインペラー、化学反応装置容器、電線等に利用される
耐食性部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing corrosion-resistant members used for structures such as bridges, motor impellers for chemicals, chemical reaction equipment containers, electric wires, and the like.

特に、塗装のように吸湿性で光により劣化するような材
料を使用することなく、半永久的な寿命を有する耐食性
部材を製造するための方法に関するものである。
In particular, the present invention relates to a method for manufacturing a corrosion-resistant member that has a semi-permanent life without using materials that are hygroscopic and deteriorate due to light, such as paint.

[従来の技術]および[発明が解決しようとする問題点
] 被覆は、素材の性質を変えることなく耐食性を向上させ
ることができるものであり、しがち陰極防食のように使
途が制限されることがないため、最も汎用される防食法
である。被覆法としては、電気めっき、無電解めっき、
溶射、塗装、化成処理、陽極酸化等多くの方法がある。
[Prior art] and [Problems to be solved by the invention] Coatings can improve corrosion resistance without changing the properties of the material, and their uses tend to be limited like cathodic protection. This is the most widely used corrosion prevention method. Coating methods include electroplating, electroless plating,
There are many methods such as thermal spraying, painting, chemical conversion treatment, and anodizing.

これらの被覆法には、それぞれ以下のような問題点があ
る。まず、電気めっき法および無電解めっき法による被
覆では、被覆できる物質が限定され、また金属を主体と
する被覆物質自体にも耐食性に限界がある。塗装による
被覆では、被覆材料が素地と異質で、しかも吸湿性、耐
光性等に限界のある有機物を主体とするものであるので
、たとえば屋外に設置されるような部材に対しては数年
に一度の塗り替え等が必要となる。陽極酸化による被覆
では、使用できる材料がアルミニウム等に限定されると
いう欠点がある。また、従来の被覆法のどれを見ても、
被覆された部材が厳しい腐食環境下に置かれたとき、絶
対的な耐食性を示すことはなかった。
Each of these coating methods has the following problems. First, when coating by electroplating and electroless plating, the materials that can be coated are limited, and the coating material itself, which is mainly made of metal, has a limit in corrosion resistance. When coating with paint, the coating material is different from the base material and is mainly composed of organic substances that have limited moisture absorption and light resistance. Repainting is required once. Coating by anodic oxidation has the disadvantage that the materials that can be used are limited to aluminum and the like. Also, no matter which conventional coating method you look at,
When the coated member was placed in a severe corrosive environment, it did not exhibit absolute corrosion resistance.

このような状況を鑑みて、近年では、物理蒸着法または
化学蒸着法によって被覆を施し、防食することが検討さ
れている。しかしながら、これらの蒸着法を用いて厚い
被覆を得ようとするためには、長時間を必要とし、さら
に多額の費用を必要とする。また成膜中にピンホールが
一旦発生すると、そのピンホールを塞ぐことは至難であ
った。
In view of this situation, in recent years, it has been considered to apply a coating using a physical vapor deposition method or a chemical vapor deposition method to prevent corrosion. However, trying to obtain thick coatings using these deposition methods requires a long time and also requires a large amount of money. Moreover, once a pinhole occurs during film formation, it is extremely difficult to close the pinhole.

結局、物理蒸着法または化学蒸着法だけで耐食性にイ灸
れた被覆を形成することは、実用上問題があった。
As a result, it is practically problematic to form a corrosion-resistant coating using only physical vapor deposition or chemical vapor deposition.

一般的に、従来、耐食性部材を製造する場合には、単一
の被覆を形成したり、あるいは同一または類似の被覆法
によって被覆を形成しているので、下地から発生したピ
ンホールについては、極めて厚い被覆を施さない限りそ
れを閉塞させることができなかった。そのために、たと
えばT i N。
Generally, when manufacturing corrosion-resistant parts, a single coating is formed or the coating is formed using the same or similar coating method, so pinholes generated from the base are extremely difficult to prevent. It could not be occluded without applying a thick coating. For that purpose, for example, T i N.

Al1zOaのごとき極めて化学的に安定な物質を基材
上に被覆したとしても、耐食性に限界があった。
Even when a very chemically stable substance such as Al1zOa is coated on a substrate, there are limits to corrosion resistance.

このような問題点を回避するために、たとえば鋼上に、
鋼に対して犠牲陽極的に作用する亜鉛を被覆することは
よく知られている。しかしながら、この被覆法では、被
覆層が犠牲陽極的に作用するという必要条件から、1&
覆層自体の耐食性に限界があり、その寿命は限られてい
た。
To avoid such problems, for example, on steel,
It is well known to coat steel with zinc, which acts as a sacrificial anode. However, this coating method requires that the coating layer act as a sacrificial anode.
The corrosion resistance of the covering layer itself was limited, and its lifespan was limited.

それゆえに、この発明の目的は、ピンホールを仔してお
らず、しかも長期間にわたって優れた耐食性を発揮する
耐食性部材を製造するための方法を提供することである
Therefore, an object of the present invention is to provide a method for manufacturing a corrosion-resistant member that is free from pinholes and exhibits excellent corrosion resistance over a long period of time.

[問題点を解決するための手段]および[作用効果コ この発明に従った耐食性部材の製造方法は、金属基材上
に電気めっき法または無電解めっき法によって被覆を形
成し、次いで蒸着法によってその上に被覆を形成するこ
とを特徴としている。
[Means for Solving the Problems] and [Operations and Effects] In the method for manufacturing a corrosion-resistant member according to the present invention, a coating is formed on a metal base material by electroplating or electroless plating, and then by vapor deposition. It is characterized by forming a coating thereon.

電気めっき法または無電解めっき法によって被覆形成し
た後、その上に全く異なる被覆法である蒸着法によって
被覆形成することによって、ピンホールが少なく、しか
も長期間にわたって優れた耐食性を発揮する耐食性部材
を得ることができる。
By forming a coating using electroplating or electroless plating and then using a completely different coating method, evaporation, we can create a corrosion-resistant member that has fewer pinholes and exhibits excellent corrosion resistance over a long period of time. Obtainable.

このような効果が得られる理由は、以下のように考えら
れる。
The reason why such an effect is obtained is thought to be as follows.

すなわち、電気めっき法または無電解めっき法と、蒸着
法とでは、その被覆機構が全く異なっている。ピンホー
ルの発生原因も、それぞれの機構によって異なっている
。たとえば、機械加工や塑性変形によって得た通常の金
属素材に被覆を施そうとする場合、通常の表面処理を行
なっても化学蒸着法または物理蒸着法ではピンホールの
ない薄膜を得ることは至難である。しかし、電気めっき
法や無電解めっき法によれば、このような金属素材に対
しても容易にピンホールのない薄膜を得ることができる
。一般的に言えば、化学蒸着法または物理蒸着法では、
金属基材に段差や凹みがある場合、その部分にピンホー
ルを発生しやすい。一方、電気めっき法または無電解め
っき法による被覆では、基材上に油分や加工時の巻込異
物等がある場合それらの異物のところでピンホールが発
生しやすい。しかし、化学蒸着法または物理蒸着法によ
れば、それらの異物の上にも薄膜を形成することができ
る。たとえば、極端な場合、化学蒸着法または物理蒸着
法によれば、金属表面上に埋込まれたセラミック上にも
薄膜を形成することができる。このように、電気めっき
法または無電解めっき法と、蒸着法とでは、ピンホール
の発生原因が異なっているので、たとえば電気めっき法
または無電解めっき法による被覆に発生したピンホール
は、その後になされる化学蒸着法または物理蒸着法によ
る被覆よって容易に閉じることができる。
That is, the coating mechanism is completely different between electroplating or electroless plating and vapor deposition. The cause of pinhole generation also differs depending on the mechanism. For example, when applying a coating to an ordinary metal material obtained by machining or plastic deformation, it is extremely difficult to obtain a pinhole-free thin film using chemical vapor deposition or physical vapor deposition, even with ordinary surface treatments. be. However, by electroplating or electroless plating, a pinhole-free thin film can be easily obtained even on such metal materials. Generally speaking, in chemical vapor deposition or physical vapor deposition,
If there are steps or depressions in the metal base material, pinholes are likely to occur in those areas. On the other hand, when coating by electroplating or electroless plating, if there is oil or foreign matter caught up during processing on the base material, pinholes are likely to occur at the location of the foreign matter. However, according to chemical vapor deposition or physical vapor deposition, a thin film can be formed even on these foreign substances. For example, in extreme cases, chemical or physical vapor deposition techniques can also form thin films on ceramics embedded on metal surfaces. In this way, the cause of pinhole generation is different between electroplating or electroless plating and vapor deposition, so for example, pinholes that occur in coatings by electroplating or electroless plating can be It can be easily closed by chemical vapor deposition or physical vapor deposition coatings.

こうして得られた耐食性部材では、その最表面にピンホ
ールがほとんど存在していないので、ピンホールからの
腐食がなくなる。また、最終的には化学蒸芒法または物
理蒸着法によって被覆を形成するものであるので、基材
最表面に酸化物、炭化物、窒化物等の化学的に極めて安
定な物質の薄膜を形成することが容易であり、優れた耐
食性を発揮する耐食性部材を得ることができる。このよ
うな耐食性部材は、長期にわたる耐食性が必要とされる
ような構造物、部品、電線等に採用された場合、半永久
的な寿命ををするようになる。
The corrosion-resistant member thus obtained has almost no pinholes on its outermost surface, so corrosion from pinholes is eliminated. In addition, since the coating is ultimately formed by chemical vapor deposition or physical vapor deposition, a thin film of chemically extremely stable substances such as oxides, carbides, and nitrides is formed on the outermost surface of the base material. Therefore, a corrosion-resistant member exhibiting excellent corrosion resistance can be obtained. When such corrosion-resistant members are used in structures, parts, electric wires, etc. that require long-term corrosion resistance, they have a semi-permanent lifespan.

なお、前述したように、蒸着法には化学蒸着法および物
理蒸着法がある。化学蒸着法としては、たとえば熱CV
D法、プラズマCVD法、光CVD法などが採用され得
る。また、物理蒸着法としては、スパッタリング法、イ
オンブレーティング法などが採用され得る。
Note that, as described above, vapor deposition methods include chemical vapor deposition and physical vapor deposition. As a chemical vapor deposition method, for example, thermal CV
D method, plasma CVD method, photo CVD method, etc. may be employed. Further, as the physical vapor deposition method, a sputtering method, an ion blating method, etc. can be adopted.

金属基材の材質および被覆材料の材質に関しては、特に
限定されるものではない。しかし、電気めっき法または
無電解めっき法によって被覆される材料と、金属基材と
は、同種の材質とするのがよい。ここで同種の材質とは
、同一の材質であることに加えて、成る金属とその合金
との組合わせをも含む。たとえば、Cu合金からなる金
属基材上にCuめっきを施したり、鉄鋼基材上にFeや
Fe−Ni合金めっきを施すことも含まれる。このよう
に、金属基材とめっきによる被覆材とを同種の材質にす
れば、基材と波膜との密着性が向4−し、またピンホー
ルの発生が少なくなる。
There are no particular limitations on the material of the metal base material and the material of the coating material. However, it is preferable that the material coated by electroplating or electroless plating and the metal base material are of the same type. Here, the same type of material includes not only the same material but also a combination of a metal and its alloy. For example, it includes applying Cu plating on a metal base material made of a Cu alloy, and applying Fe or Fe-Ni alloy plating on a steel base material. In this way, if the metal base material and the coating material formed by plating are made of the same material, the adhesion between the base material and the corrugated film will be improved, and the occurrence of pinholes will be reduced.

同様の理由から、電気めっき法または無電解めっき法に
よって被覆される材料と、蒸着法によって被覆される材
料とは、同一の元素を含有するようにするのが好ましい
。たとえば、Cuからなる金属基材上にNiめっきを施
し、その後蒸着法によってNi−Ti合金やN1−Af
L−0化合物層の被覆を施すようにすれば、耐食性は一
層向上する。
For the same reason, it is preferable that the material coated by electroplating or electroless plating and the material coated by vapor deposition contain the same element. For example, Ni plating is applied on a metal base material made of Cu, and then Ni-Ti alloy or N1-Af
Corrosion resistance is further improved by coating with an L-0 compound layer.

被覆材料として、電気めっき法または無電解めっき法を
適用できる汎用金属の中では、特にニッケルが耐食性に
優れている。したがって、好ましくは、電気めっき法ま
たは無電解めっき法によって被覆される材料としてはニ
ッケルが用いられる。
Among general-purpose metals to which electroplating or electroless plating can be applied as a coating material, nickel has particularly excellent corrosion resistance. Therefore, nickel is preferably used as the material to be coated by electroplating or electroless plating.

[実施例] 炭素を1.2%含む鋼板、5056AQ、合金板、およ
び電気銅を溶解伸線した2、5mmφの丸銅線をそれぞ
れ基材とし、それらの上に各種の薄膜を形成した。そし
て、薄膜形成後、1000時間の塩水噴霧試験によって
ピンホールの発生の有無を調べた。前処理、めっきを含
む薄膜形成加工はすべて、クラス1000のクリンルー
ム内で行ない、埃によるピンホールの発生を抑制した。
[Example] A steel plate containing 1.2% carbon, 5056AQ, an alloy plate, and a round copper wire of 2.5 mmφ made by melting and drawing electrolytic copper were used as base materials, and various thin films were formed thereon. After forming the thin film, the presence or absence of pinholes was examined by a salt spray test for 1000 hours. All thin film forming processes, including pretreatment and plating, were performed in a class 1000 clean room to suppress the formation of pinholes due to dust.

こうして得られた結果を第、1表に示す。なお、試料番
号1〜16が本発明例であり、試料番号17〜25が比
較例である。
The results thus obtained are shown in Table 1. Note that sample numbers 1 to 16 are examples of the present invention, and sample numbers 17 to 25 are comparative examples.

(以下余白)(Margin below)

Claims (4)

【特許請求の範囲】[Claims] (1)金属基材上に電気めっき法または無電解めっき法
によって被覆を形成し、次いで蒸着法によつてその上に
被覆を形成する、耐食性部材の製造方法。
(1) A method for producing a corrosion-resistant member, which comprises forming a coating on a metal base material by electroplating or electroless plating, and then forming a coating thereon by vapor deposition.
(2)前記電気めっき法または無電解めっき法によって
被覆される材料と、前記金属基材とは、同種の材質であ
る、特許請求の範囲第1項に記載の耐食性部材の製造方
法。
(2) The method for manufacturing a corrosion-resistant member according to claim 1, wherein the material coated by the electroplating method or the electroless plating method and the metal base material are the same kind of material.
(3)前記電気めっき法または無電解めっき法によって
被覆される材料と、前記蒸着法によって被覆される材料
とは、同一の元素を含有している、特許請求の範囲第1
項または第2項に記載の耐食性部材の製造方法。
(3) The material coated by the electroplating method or electroless plating method and the material coated by the vapor deposition method contain the same element.
A method for manufacturing a corrosion-resistant member according to item 1 or 2.
(4)前記電気めっき法または無電解めっき法によって
被覆される材料は、ニッケルである、特許請求の範囲第
1項ないし第3項のいずれかに記載の耐食性部材の製造
方法。
(4) The method for manufacturing a corrosion-resistant member according to any one of claims 1 to 3, wherein the material coated by the electroplating method or electroless plating method is nickel.
JP8455086A 1986-04-11 1986-04-11 Production of corrosion resistant member Pending JPS62240772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8455086A JPS62240772A (en) 1986-04-11 1986-04-11 Production of corrosion resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8455086A JPS62240772A (en) 1986-04-11 1986-04-11 Production of corrosion resistant member

Publications (1)

Publication Number Publication Date
JPS62240772A true JPS62240772A (en) 1987-10-21

Family

ID=13833753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8455086A Pending JPS62240772A (en) 1986-04-11 1986-04-11 Production of corrosion resistant member

Country Status (1)

Country Link
JP (1) JPS62240772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149761U (en) * 1989-05-23 1990-12-21

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111053A (en) * 1974-07-19 1976-01-28 Nippon Kayaku Kk NAMARISENNOSEIZOHO
JPS51139881A (en) * 1975-05-29 1976-12-02 Citizen Watch Co Ltd Plastics parts
JPS5684469A (en) * 1979-12-14 1981-07-09 Seiko Epson Corp Exterior parts for watch
JPS5713195A (en) * 1980-03-22 1982-01-23 Nippon Kogaku Kk <Nikon> Spectacle frame
JPS5819474A (en) * 1981-07-27 1983-02-04 Victor Co Of Japan Ltd Manufacture of functional plated film
JPS6058307A (en) * 1983-03-18 1985-04-04 株式会社太洋商会 Molding automatic packing method of hanging section and device thereof
JPS60116787A (en) * 1983-11-30 1985-06-24 Mitsubishi Heavy Ind Ltd Method and device for plating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111053A (en) * 1974-07-19 1976-01-28 Nippon Kayaku Kk NAMARISENNOSEIZOHO
JPS51139881A (en) * 1975-05-29 1976-12-02 Citizen Watch Co Ltd Plastics parts
JPS5684469A (en) * 1979-12-14 1981-07-09 Seiko Epson Corp Exterior parts for watch
JPS5713195A (en) * 1980-03-22 1982-01-23 Nippon Kogaku Kk <Nikon> Spectacle frame
JPS5819474A (en) * 1981-07-27 1983-02-04 Victor Co Of Japan Ltd Manufacture of functional plated film
JPS6058307A (en) * 1983-03-18 1985-04-04 株式会社太洋商会 Molding automatic packing method of hanging section and device thereof
JPS60116787A (en) * 1983-11-30 1985-06-24 Mitsubishi Heavy Ind Ltd Method and device for plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149761U (en) * 1989-05-23 1990-12-21

Similar Documents

Publication Publication Date Title
CN1282762C (en) Corrosion resistance and wear-resistance decoration coatings
US4849301A (en) Multilayered coated corrosion resistant steel material
JPH05271986A (en) Aluminum-organic polymer laminate
TWI294825B (en) Precoated metal sheet with excellent corrosion resistance and little affect on environment
JPH02254178A (en) Superimposed plated steel sheet having high corrosion resistance
JPS62240772A (en) Production of corrosion resistant member
JPS61227181A (en) Highly corrosion resistant surface treated steel material
JPS60165387A (en) Thin-film corrosion-resistant laminate plated steel pipe
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JP4832083B2 (en) Synthetic resin mirror
JPH0129874B2 (en)
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JPH05320931A (en) Surface-treated steel material excellent in corrosion resistance and coating property and its production
JPS60131991A (en) Fe-p alloy plated steel sheet
JPH01177358A (en) Highly anticorrosive metallic material and its production
JPH02130140A (en) Building material
JPS60152662A (en) Steel sheet plated with ternary iron-chromium-zinc alloy and its manufacture
CN116583633A (en) Method and system for forming a multi-layer zinc alloy coating and metal article
JP3358468B2 (en) Zinc-based composite plated metal sheet and method for producing the same
JPH0551791A (en) Zn-ni-p organic composite plated steel sheet having excellent corrosion resistance, coating adhesion and pitting resistance,
JP3211413B2 (en) Surface treatment method for Al or Al alloy material
JPH02179893A (en) Blackened multilayered material and production thereof
JP2001348673A (en) Organic-coated surface treated metallic material excellent in corrosion resistance, and its production method
JPS5891188A (en) Electric zinc-iron alloy plated steel plate having excellent corrosion resistance after painting
JPH02277796A (en) Production of zn-ni double-ply plated steel sheet having superior chemical treatability