JPS62237089A - Vane made of fiber-reinforced metallic composite material for vane type compressor - Google Patents

Vane made of fiber-reinforced metallic composite material for vane type compressor

Info

Publication number
JPS62237089A
JPS62237089A JP7794186A JP7794186A JPS62237089A JP S62237089 A JPS62237089 A JP S62237089A JP 7794186 A JP7794186 A JP 7794186A JP 7794186 A JP7794186 A JP 7794186A JP S62237089 A JPS62237089 A JP S62237089A
Authority
JP
Japan
Prior art keywords
vane
rotor
fiber
vanes
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7794186A
Other languages
Japanese (ja)
Inventor
Masahiro Kubo
雅洋 久保
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Hidetoshi Hirai
秀敏 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7794186A priority Critical patent/JPS62237089A/en
Priority to EP19870302754 priority patent/EP0240294B1/en
Priority to DE8787302754T priority patent/DE3762059D1/en
Publication of JPS62237089A publication Critical patent/JPS62237089A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve resistance to wear, resistance to seizure, and bending strength, by a method wherein a vane is formed using a fiber-reinforced metallic composite material compositely reinforced by tow oriented along a plane extending vertically to an axis of rotation and at two-dimensional random. CONSTITUTION:Each vane 36 is formed by a composite material consisting of a metal compositely reinforced with tow 46, and the tow 46 is oriented along a plane extending substantially vertically to an axis 6, i.e., a plane X-Z in a Fig., and at two-dimensional random. Thus, since an angle of the tow 46 with both an outer end surface 40 and both sides 42, 44 is higher than that in the case of any other fiber orientation, the vane 36 has excellent resistance to wear and resistance to seizure. Further, since the tow 46 is oriented along a plane extending along a direction, in which bending stress is exerted on the vane 36 by the edge part of a rotor 26, the bending stress of the vane 36 can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ベーン式圧縮機に係り、更に詳細にはベーン
式圧縮機のためのm維強化金瓜複合材料製のベーンに係
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to vane compressors, and more particularly to vanes made of m-fiber reinforced gold melon composite material for vane compressors.

従来の技術 周知の如く、ベーン式圧縮機は、シリンダと、該シリン
ダ内にて回転するロータと、該ロータに設けられたベー
ン受入れ溝内に嵌入されシリンダ及びロータと共働して
容積可変のシリンダ室を郭定する?82数個のベーンと
を有し、ロータの回転によってシリンダ室の容積が繰返
し増減することにより、シリンダ室内へ気体が導入され
、シリンダ室内にて気体が圧縮され、シリンダ室より圧
縮された気体がすL出されるようになっている。
As is well known in the prior art, a vane compressor includes a cylinder, a rotor rotating within the cylinder, and a vane receiving groove provided in the rotor that cooperates with the cylinder and rotor to have a variable volume. Determine the cylinder chamber? The volume of the cylinder chamber increases and decreases repeatedly with the rotation of the rotor, which introduces gas into the cylinder chamber, compresses the gas in the cylinder chamber, and releases the compressed gas from the cylinder chamber. It is now available.

かかるベーン式圧縮機の運転に際しては、各ベーンは[
1−夕と共に高速度にて回転運妨し、また外端面にてシ
リンダの内面に沿って開動しつつベーン受入れ溝内を実
質的にロータの半径方向に往復動するため、各ベーンは
その外端面及び両側面に於て過酷な摺動条件に曝される
。そのためベーンは従来より一般に、ベーンの軽量化を
図り、また耐摩耗性及び耐焼き付性を確保する目的で、
AA規格△390の如き高ケイ素アルミニウム合金にて
形成されている。またベーンの耐摩耗性等を更に向上さ
せる目的で、例えば特開昭58−91141号公報及び
特開昭59−34496号公報に記載されている如く、
アルミニウム合金製のベーンを実質的に三次元ランダム
にて配向された炭素短繊維にて強化したり、ベーンの両
側面に垂直な方向に一方向に配向された炭素長繊維にて
強化することが既に提案されている。
When operating such a vane compressor, each vane is [
1- Each vane rotates at a high speed with the blade, and reciprocates substantially in the radial direction of the rotor within the vane receiving groove while opening along the inner surface of the cylinder at the outer end surface, so each vane Exposed to harsh sliding conditions on end and both sides. For this reason, vanes have traditionally been manufactured with the aim of reducing their weight and ensuring wear resistance and seizure resistance.
It is made of high silicon aluminum alloy such as AA standard Δ390. In addition, for the purpose of further improving the wear resistance of the vanes, for example, as described in JP-A-58-91141 and JP-A-59-34496,
Aluminum alloy vanes can be reinforced with short carbon fibers oriented in a substantially three-dimensional random manner, or with long carbon fibers oriented in one direction perpendicular to both sides of the vane. Already proposed.

発明が解決しようとする問題点 しかし圧縮機の高性能化及びコンパクト化に伴ない、高
ケイ素アルミニウム合金製のベーン及び上述の如き繊維
強化金属複合材料製のベーンに於てら、耐摩耗性や耐焼
付き性が不十分となってきている。また圧縮機のコンパ
クト化によりベーンも薄肉化されてきており、ベーンに
要求される曲げ強さを確保することが困難になってきて
いる。
Problems to be Solved by the Invention However, as compressors become more efficient and more compact, vanes made of high-silicon aluminum alloys and vanes made of fiber-reinforced metal composite materials such as those mentioned above have less wear resistance and fire resistance. Adherence is becoming insufficient. Furthermore, as compressors have become more compact, vanes have also become thinner, making it difficult to ensure the bending strength required for vanes.

即ちベーンはその外端部と内端部とを支点としてロータ
のベーン受入れ溝のエツジより曲げ応力を受けるため、
ベーンは外端面及び両側面に於ける耐摩耗性や耐焼付き
性に優れているだけでなく、曲げ強さにも優れているこ
とが必要であり、これらの要件は益々厳しくなってきて
いる。
That is, since the vane receives bending stress from the edge of the vane receiving groove of the rotor with its outer and inner ends as fulcrums,
Vanes must not only have excellent wear resistance and seizure resistance on the outer end surface and both side surfaces, but also have excellent bending strength, and these requirements are becoming increasingly strict.

本発明は、従来のベーン式圧縮機のベーンに於ける上述
の如き問題に鑑み、従来のベーンに比して耐摩耗性、耐
焼付き性及び曲げ強さに優れたベーン式圧縮機用ベーン
を提供することを目的としている。
In view of the above-mentioned problems with the vanes of conventional vane compressors, the present invention provides vanes for vane compressors that have superior wear resistance, seizure resistance, and bending strength compared to conventional vanes. is intended to provide.

問題点を解決するための手段 上述の如ぎ目的は、本発明によれば、シリンダと、該シ
リンダ内にて回転軸線の周りに回転するベーン付〇−夕
とを有し、前記ロータの回転に伴なって前記ベーンがそ
の外端面にて前記シリンダの内面に沿って摺動しつつ前
記0−夕に設けられた溝内を実質的に前記ロータの半径
方向に往復動するベーン式圧縮機のためのベーンにして
、短繊維にて複合強化された繊維強化金属複合材料にて
形成され、前記短繊維は前記回転軸線に対し実質的に垂
直な平面に沿う二次元ランダムにて配向されているベー
ンによって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned object comprises a cylinder and a vaned cylinder rotating around a rotational axis within the cylinder, the rotation of the rotor being controlled by the cylinder. A vane type compressor in which the vane reciprocates substantially in the radial direction of the rotor within a groove provided at the 0 side while sliding an outer end surface of the vane along the inner surface of the cylinder. The vane is made of a fiber-reinforced metal composite material reinforced with short fibers, and the short fibers are oriented in a two-dimensional random manner along a plane substantially perpendicular to the axis of rotation. This is achieved by the vanes that are present.

発明の作用及び効果 本発明によれば、ベーンは強化繊維としての短繊維にて
複合強化された金属にて形成され、短繊維はロータの回
転輪線に対し実質的に垂直な平面に沿う二次元ランダム
にて配向され、従ってベーンの外端面及び両側面の両方
に於て’fsJ繊維がこれらの面に対しなす角度が池の
如何なる配向の場合よりも大きくなるので、これらの面
の耐摩耗性及び耐焼付き性を向上させることができ、ま
lζ上述の如き二次元ランダム配向によればベーンがロ
ータより受ける曲げ応力の作用方向に平行な平面に沿っ
て短繊維が配向されるので、ベーンの曲げ強さをも向−
ヒさせることができる。
Functions and Effects of the Invention According to the present invention, the vane is formed of a metal composite reinforced with short fibers as reinforcing fibers, and the short fibers are formed in two directions along a plane substantially perpendicular to the rotational line of the rotor. Because they are dimensionally randomly oriented and therefore the angles that the 'fsJ fibers make with these planes on both the outer end face and both sides of the vane are greater than with any orientation of the vane, the wear resistance of these faces is The two-dimensional random orientation as described above allows the short fibers to be oriented along a plane parallel to the direction of bending stress that the vane receives from the rotor. The bending strength of
It can cause a person to die.

また本発明によれば、ベーンの耐摩耗性等が向上するの
で1圧縮機の耐久性を向上させることができ、またベー
ンの肉厚を小さくし、これによりシリンダの形状を変更
せずにシリンダ室の容積を、従って圧縮機の容量を増大
させることができる。
Further, according to the present invention, the wear resistance of the vanes is improved, so the durability of the compressor 1 can be improved, and the wall thickness of the vanes can be reduced, thereby making it possible to improve the durability of the compressor without changing the shape of the cylinder. The volume of the chamber and thus the capacity of the compressor can be increased.

尚本発明に於ける′E1繊維は炭化ケイ素ホイスカ、窒
化ケイ素ボイス力、チタン酸カリウムボイス力の如きボ
イス力、アルミナ短繊維、アルミナ−シリカ短繊維、炭
化ケイ素短繊維の如きセラミック短繊維、ステンレス鋼
短繊維の如き金属短繊維、炭素短繊維の如き任意の短繊
維であってよく、その体積率は5〜50%程度であるこ
とが好ましい。
In the present invention, 'E1 fibers include silicon carbide whiskers, silicon nitride voice, potassium titanate voice, ceramic short fibers such as alumina short fiber, alumina-silica short fiber, silicon carbide short fiber, and stainless steel. Any short fibers such as metal short fibers such as steel short fibers or carbon short fibers may be used, and the volume percentage thereof is preferably about 5 to 50%.

また本発明に於ける金属はベーンを軽量化し得るよう、
アルミニウム合金やマグネシウム合金であることが好ま
しい。
In addition, the metal in the present invention is used to reduce the weight of the vane.
Preferably, it is an aluminum alloy or a magnesium alloy.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例 第1図は本発明によるベーンが組込まれたベーン式圧縮
機を示す断面図、第2図は第1図に示された一つのベー
ンを示す拡大斜視図である。
Embodiment FIG. 1 is a sectional view showing a vane type compressor incorporating vanes according to the present invention, and FIG. 2 is an enlarged perspective view showing one vane shown in FIG. 1.

これらの図に於て、2はハウジング4内に配置されたシ
リンダを示している。シリンダ4は軸線6に垂直な断面
で見て実質的に楕円形をなすシリンダ室空間を郭定する
内面8を有している。シリンダ室空間は軸線に対し実質
的に径方向に互いに隔置された一対の吸気ボート10及
び12を経゛Cそれぞれ吸気ブレナム14及び16と連
通しており、また軸線に対し実質的に径方向に隔置され
た一対の排気ボート18.20及び図には示されていな
い逆止弁を経てそれぞれ排気ブレナム22及び24と連
通している。
In these figures, 2 indicates a cylinder arranged within the housing 4. The cylinder 4 has an inner surface 8 delimiting a cylinder chamber space which is substantially oval in cross-section perpendicular to the axis 6 . The cylinder chamber space communicates with intake brenums 14 and 16, respectively, through a pair of intake boats 10 and 12 spaced apart from each other substantially radially relative to the axis, and communicates substantially radially relative to the axis. A pair of spaced apart exhaust boats 18, 20 communicate with exhaust brenums 22 and 24, respectively, via check valves not shown.

シリンダ室空間内には軸線6を回転軸線とするベーン付
ロータ26が配置されている。ロータ26は軸線6に沿
って延在する円筒状をなしており、軸線の周りに互いに
90°隔置された位置に四つのベーン受入れ溝28〜3
4を有している。合溝は軸線に沿って延在しており、ま
た実質的に半径方向に延在している。各溝内には板状の
ベーン36が嵌入されており、各ベーンは互いに共働し
てシリンダ4とロータ26との間に容積可変のシリンダ
室38を郭定している。かくしてロータが回転すると、
吸気ボート10及び12と連通するシリンダ室38内へ
気体が導入され、排気ボート18及び2oと連通するシ
リンダ室内にて気体が圧縮され、該シリンダ室内の気体
の圧力が所定値になった時点に於て図には示されていな
い逆止弁が開弁じ、これによりシリンダ室内の高圧の気
体が排気ボート18及び20を経て排気プレナム22及
び24へ吐出されるようになっている。
A vaned rotor 26 having the axis 6 as its rotational axis is disposed within the cylinder chamber space. The rotor 26 has a cylindrical shape extending along the axis 6, and has four vane receiving grooves 28 to 3 located at 90 degrees apart from each other around the axis.
It has 4. The mating groove extends along the axis and also extends substantially in the radial direction. A plate-shaped vane 36 is fitted into each groove, and the vanes cooperate with each other to define a cylinder chamber 38 of variable volume between the cylinder 4 and the rotor 26. Thus, when the rotor rotates,
Gas is introduced into the cylinder chamber 38 communicating with the intake boats 10 and 12, compressed in the cylinder chamber communicating with the exhaust boats 18 and 2o, and when the pressure of the gas in the cylinder chamber reaches a predetermined value. A check valve (not shown) opens, thereby allowing high pressure gas within the cylinder chamber to be discharged through exhaust boats 18 and 20 to exhaust plenums 22 and 24.

この場合各ベーンはロータと共に軸線6の周りに高速度
にて回転運動し、外端部40にてシリングの内面8に沿
って摺動しつつベーン受入れ溝内を実質的にロータの半
径方向に往復動するので、外端面40及び両側面42.
44に於て過酷な摺動条件に曝される。また各ベーンは
外端部及び内端部を支点としてロータのベーン受入れ満
のエツジ部より曲げ応力を受ける。
In this case, each vane rotates together with the rotor around the axis 6 at a high speed, sliding along the inner surface 8 of the sill with its outer end 40 and moving substantially in the radial direction of the rotor in the vane receiving groove. Since it reciprocates, the outer end surface 40 and both side surfaces 42.
44, exposed to harsh sliding conditions. Further, each vane receives bending stress from the edge portion of the rotor that receives the vane, with the outer end and the inner end serving as fulcrums.

第2図に詳細に示されている如く、各ベーン36は短繊
維46にて複合強化された金属よりなる複合材料にて形
成されており、短繊維46は軸線6に対し実質的に垂直
な平面、即ち第2図のX−Z平面に沿う二次元ランダム
にて配向されている。
As shown in detail in FIG. 2, each vane 36 is formed from a metal composite material reinforced with short fibers 46, the short fibers 46 being substantially perpendicular to the axis 6. They are oriented in a two-dimensional random manner along a plane, that is, the X-Z plane in FIG.

従って外信面40及び両側面42.44の両方に於て短
繊維46がこれらの面となす角度は他の如何なる繊維配
向の場合よりも大きいので、図示のベーンはこれらの面
の耐摩耗性及び耐焼付き性に優れている。また短繊維は
ベーンがロータのエツジ部より受ける曲げ応力の作用方
向に沿う平面に沿って配向されているので、図示のベー
ンは曲げ強さにも優れている。
Therefore, since the angles that the staple fibers 46 make with both the external face 40 and the sides 42, 44 are greater than for any other fiber orientation, the vane shown has a high resistance to abrasion on these faces. and has excellent seizure resistance. Furthermore, since the short fibers are oriented along a plane along the direction of the bending stress that the vane receives from the edge of the rotor, the illustrated vane also has excellent bending strength.

次に本発明のベーンの幾つかの具体例を比較例と対比し
て説明する。
Next, some specific examples of the vanes of the present invention will be explained in comparison with comparative examples.

具体例1 平均繊維径約3μm1平均繊維長約1mmの非晶質アル
ミナ−シリカ短編1ft(イソライト・パブコック耐火
株式会社製「カオウールJ、48wt%Al2O3、残
部実質的に5top>に対し熱処理を行って、ムライト
結晶量が5owt%である結晶質アルミナルシリカ短繊
維を用意した。次いで98X50X200mmの寸法を
有し、それぞれ第3図〜第6図に示されている如く、個
々の結晶質アルミナ−シリカ短繊維48が実質的にX−
7平面に平行な二次元ランダム(A配向)、実質的にY
−2平面に平行な二次元ランダム(B配向)、実質的に
X−Y平面に平行な二次元ランダム(C配向)、実質的
に三次元ランダム配向くD配向〉にて配向された繊維体
積率15%の4種類の繊維成形体50〜56をコロイダ
ルシリ力をバインダとして形成した。
Specific example 1 1 ft. of amorphous alumina-silica short film with an average fiber diameter of about 3 μm and an average fiber length of about 1 mm (“Kaowool J, 48 wt% Al2O3, balance substantially 5 top” manufactured by Isolite Pubcock Fireproof Co., Ltd.) was heat-treated. , crystalline alumina-silica short fibers having a mullite crystal content of 5 owt% were prepared.Next, individual crystalline alumina-silica fibers having dimensions of 98 x 50 x 200 mm were prepared, as shown in Figs. 3 to 6, respectively. Short fibers 48 are substantially X-
Two-dimensional random parallel to 7 planes (A orientation), essentially Y
- Fiber volume oriented in two-dimensional random parallel to two planes (B orientation), two-dimensional random substantially parallel to the X-Y plane (C orientation), substantially three-dimensional random orientation (D orientation) Four types of fiber molded bodies 50 to 56 with a ratio of 15% were formed using colloidal silicon as a binder.

次いで各繊維成形体を600℃に加熱した侵、250 
”Cの鋳型内に配置し、該鋳型内に湯11m710℃の
アルミニウム合金(JIS規格ACIA>の溶湯を注渇
し、該溶湯を約200℃のプランジャにより1000k
g/ClI2の圧力にて加圧した。
Next, each fiber molded body was heated to 600°C and heated to 250°C.
Place it in a mold of "C", pour 11 m of hot water into the mold, pour molten aluminum alloy (JIS standard ACIA) at 10°C into the mold, and pour the molten metal into a 1,000 kg mold using a plunger at about 200°C.
Pressure was applied at a pressure of g/ClI2.

そしてその加圧状態をアルミニウム合金の溶湯が完全に
凝固するまで保持した。かくして鋳型内の溶湯が完全に
凝固した侵、鋳型より凝固体を取出し、該凝固体より結
晶質アルミナ−シリカ短繊維にて複合強化されたアルミ
ニウム合金よりなる複合材料を切出した。
The pressurized state was maintained until the molten aluminum alloy solidified completely. After the molten metal in the mold was completely solidified, the solidified body was removed from the mold, and a composite material made of an aluminum alloy reinforced with crystalline alumina-silica short fibers was cut from the solidified body.

次いで各複合材料に対し500℃にて6時間に屋る溶体
化処理と、180℃にて6時間に屋る人工時効処理を施
し、各複合材料に対し切削等の機械加工を行って、第3
図乃至第6図のX軸、Y軸、Z軸がそれぞれ第2図のX
軸、Y軸、Z軸に対応するようベーンを形成した。
Next, each composite material was subjected to solution treatment at 500°C for 6 hours and artificial aging treatment at 180°C for 6 hours, and each composite material was subjected to mechanical processing such as cutting. 3
The X-axis, Y-axis, and Z-axis in Figures 6 to 6 correspond to the X axis in Figure 2, respectively.
Vanes were formed to correspond to the axis, Y axis, and Z axis.

次いで各ベーンを第1図に示された圧縮機に順次組込み
、強度及び耐摩耗性についての評価試験を行った。尚使
用された圧縮機のシリンダ及びロータの構成材料は高ケ
イ素アルミニウム合金(AΔ規格△390)であり、強
度の評価は液化された冷媒を急激に圧縮さけ、その際の
耐久強度を計画する液圧縮試験により行われ、耐摩耗性
の評価は圧縮機を所定の高″a度にて所定時間運転し、
その場合にベーンの両側面、即ちロータとの摺動向にス
カッフィングが生じるか否かを判定し、またベーンの外
側り即らシリンダの内面との摺動向に過大な摩紘が生じ
るか否かを判定することにより行われた。
Next, each vane was sequentially assembled into the compressor shown in FIG. 1, and an evaluation test for strength and wear resistance was conducted. The constituent material of the cylinder and rotor of the compressor used is a high-silicon aluminum alloy (AΔ standard △390), and the strength evaluation is based on a fluid that avoids rapid compression of liquefied refrigerant and plans the durability strength at that time. A compression test is performed, and the wear resistance is evaluated by operating the compressor at a predetermined high temperature for a predetermined period of time.
In this case, it is determined whether scuffing occurs on both sides of the vane, that is, the sliding movement with the rotor, and whether or not excessive scuffing occurs on the outside of the vane, that is, the sliding movement with the inner surface of the cylinder. This was done by making a judgment.

これらの試験の結果を下記の表1に示す。尚表1に放て
、耐摩耗性■及び耐摩耗性■はそれぞれベーンの両側面
及び外端面の耐摩耗性を意味し、Oは耐久強度又は耐摩
耗性に優れていることを示しており、×は耐久強度又は
耐摩耗性の点で不モ分であることを示している。
The results of these tests are shown in Table 1 below. In addition, in Table 1, abrasion resistance ■ and abrasion resistance ■ mean the abrasion resistance of both sides and the outer end surface of the vane, respectively, and O indicates excellent durable strength or abrasion resistance. , × indicates that the material is inferior in terms of durable strength or abrasion resistance.

表    1 乱丸  ■  耐摩耗性I  組LLLLへ 〇  〇
   〇 B ○ ×  O CX OX D  X  X   X 表1より、本発明のA配向のベーンは比較例としての他
の何れの配向のベーンよりも強度及び耐摩耗性の点で優
れていることが解る。
Table 1 Random circle ■ Wear resistance I To group LLLL 〇 〇 〇B ○ × O CX OX D X X It can be seen that it is excellent in strength and wear resistance.

具体例2 強化繊維として平均繊維径約3μm、平均lIH長約1
1のアルミナ短編、II(ICI株式会社製しりフィル
J、95wt%A+ 203 、残部実質的にSin!
りが使用され、アルミナ短繊維の体積率が7%に設定さ
れ、マトリックス金属としてマグネシウム合金(JIS
規格MC2)が使用された点を除き、具体例1の場合と
同一の要領及び条件にて411類のベーンを製造し、各
ベーンについて具体例1の場合と同一の要領及び条件に
て強度及び耐摩耗性の評価試験を行った。尚この場合使
用された圧縮機のシリンダ及びロータの構成材料はそれ
ぞれ高ケイ素アルミニウム合金(AA規格A390) 
、調質クロム114 (J I S規格SCr 20)
であった。
Specific example 2 Reinforcing fibers have an average fiber diameter of about 3 μm and an average lIH length of about 1
1 alumina short story, II (Shirifil J manufactured by ICI Corporation, 95wt% A+ 203, the remainder is substantially Sin!
The volume fraction of alumina short fibers was set to 7%, and a magnesium alloy (JIS
Class 411 vanes were manufactured in the same manner and under the same conditions as in Example 1, except that Standard MC2) was used, and each vane was tested for strength and strength in the same manner and under the same conditions as in Example 1. A wear resistance evaluation test was conducted. The cylinder and rotor of the compressor used in this case were made of high-silicon aluminum alloy (AA standard A390).
, tempered chromium 114 (JIS standard SCr 20)
Met.

試験の結果、この具体例の場合にも本発明のA配向のベ
ーンは比較例としての他の何れの配向のベーンよりも強
度及び耐摩耗性の点で優れていることが認められた。
As a result of the test, it was found that the A-oriented vanes of the present invention were superior in strength and wear resistance to vanes with any other orientation as comparative examples.

具体@3 強化繊維として平均繊維径0.3μ勲、平均繊M長約1
00μmの炭化ケイ素ホイスカ(東海カーボン株式会社
製)が使用され、ボイス力の体積率が25%に設定され
、バインダを使用しないで繊維成形体が形成され、マト
リックス金属としてアルミニウム合金<JIS規格AC
7A)が使用された点を除き、上述の具体例1の場合と
同一の要領及び条件にて48類のベーンを製造し、各ベ
ーンについて具体例1の場合と同一の要領及び条件にて
強度及び耐摩耗性の評価試験を行った。
Concrete@3 Reinforcing fibers with average fiber diameter of 0.3 μm and average fiber length of approximately 1
00 μm silicon carbide whiskers (manufactured by Tokai Carbon Co., Ltd.) were used, the volume fraction of voice force was set to 25%, a fiber molded body was formed without using a binder, and aluminum alloy <JIS standard AC was used as the matrix metal.
Class 48 vanes were manufactured in the same manner and under the same conditions as in Example 1 above, except that 7A) was used, and each vane was tested for strength in the same manner and under the same conditions as in Example 1. And a wear resistance evaluation test was conducted.

試験の結果、この具体例の場合にも本発明のA配向のベ
ーンは比較例としての他の何れの配向のベーンよりも強
度及び耐摩耗性の点で優れていることが認められた。
As a result of the test, it was found that the A-oriented vanes of the present invention were superior in strength and wear resistance to vanes with any other orientation as comparative examples.

具体例4 強化tU維として平均m維径1μ11平均繊維長約10
0μmの窒化ケイ素ホイスカ(タテホ化学株式会礼製)
が使用され、ボイス力の体積率が40%に設定され、マ
トリックス金属としてアルミニウム合金(JIS規格A
C8A>が使用され/、一点を除き、上述の具体例1の
場合と同一の要領及び条件にて4種類のベーンを製造し
、各ベーンについて具体例1の場合と同一の要領及び条
件にて強度及び耐摩耗性の評価試験を行った。
Specific example 4 Reinforced tU fiber with average m fiber diameter of 1μ11 and average fiber length of about 10
0 μm silicon nitride whisker (manufactured by Tateho Chemical Co., Ltd.)
was used, the volume fraction of voice force was set to 40%, and aluminum alloy (JIS standard A) was used as the matrix metal.
C8A> was used/, except for one point, four types of vanes were manufactured in the same manner and conditions as in Example 1 above, and each vane was manufactured in the same manner and under the same conditions as in Example 1. Evaluation tests for strength and abrasion resistance were conducted.

試験の結果、この具体例の場合にも本発明の△配向のベ
ーンは比較例としての他の何れの配向のベーンよりも強
度及び耐摩耗性の点で優れていることが認められた。
As a result of the test, it was found that the Δ-oriented vanes of the present invention were superior in strength and wear resistance to vanes with any other orientation as comparative examples.

尚上述の各具体例に於ては、ベーンの両側面に垂直に一
方向に配向された繊維にて強化されたべ−ンとの比較は
行われていないが、本発明のベーンは強度及び外端面の
耐摩耗性の点でかかるベーンよりも遥かに優れているこ
とは明らかである。
In each of the above-mentioned examples, a comparison was not made with a vane reinforced with fibers oriented in one direction perpendicular to both sides of the vane, but the vane of the present invention has excellent strength and external strength. It is clear that the end face wear resistance is far superior to such vanes.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はかかる実施例に限定されるものでは
なく、本発明の範囲内にて他の種々の実施例が可能であ
ることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるベーンが組込まれたベーン式圧縮
機を示す断面図、第2図は第1図に示された一つのベー
ンを示す拡大斜視図、第3図乃至第6図は種々の配向状
態の繊維成形体を示す斜視図である。 2・・・シリンダ、4・・・ハウジング、6・・・@線
、8・・・内面、10.12・・・吸気ボート、14.
16・・・吸気プレナム、18.20・・・排気ボート
、22.24・・・排気ブレナム、26・・・ベーン付
ロータ、28〜34・・・ベーン受入れ溝、36・・・
ベーン、38・・・シリンダ室、40・・・外端面、4
2.44・・・側面。 46・・・短繊維、48・・・結晶質アルミナ−シリカ
短繊維、50〜56・・・繊維成形体 特 許 出 願 人  トヨタ自動車株式会社代   
理   人  弁理士  明石 昌毅第 1 図 第 2 図
Fig. 1 is a sectional view showing a vane compressor incorporating vanes according to the present invention, Fig. 2 is an enlarged perspective view showing one vane shown in Fig. 1, and Figs. 3 to 6 are various views. FIG. 2 is a perspective view showing a fiber molded article in an oriented state. 2...Cylinder, 4...Housing, 6...@ wire, 8...Inner surface, 10.12...Intake boat, 14.
16... Intake plenum, 18.20... Exhaust boat, 22.24... Exhaust blenum, 26... Rotor with vane, 28-34... Vane receiving groove, 36...
Vane, 38... Cylinder chamber, 40... Outer end surface, 4
2.44...side. 46...Short fiber, 48...Crystalline alumina-silica short fiber, 50-56...Fiber molded article patent Applicant: Toyota Motor Corporation representative
Attorney Patent Attorney Masatake Akashi Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  シリンダと、該シリンダ内にて回転軸線の周りに回転
するベーン付ロータとを有し、前記ロータの回転に伴な
って前記ベーンがその外端面にて前記シリンダの内面に
沿って摺動しつつ前記ロータに設けられた溝内を実質的
に前記ロータの半径方向に往復動するベーン式圧縮機の
ためのベーンにして、短繊維にて複合強化された繊維強
化金属複合材料にて形成され、前記短繊維は前記回転軸
線に対し実質的に垂直な平面に沿う二次元ランダムにて
配向されているベーン。
It has a cylinder and a vaned rotor that rotates around a rotational axis within the cylinder, and as the rotor rotates, the vanes slide on their outer end surfaces along the inner surface of the cylinder. A vane for a vane compressor that reciprocates substantially in the radial direction of the rotor in a groove provided in the rotor, and is made of a fiber-reinforced metal composite material composite reinforced with short fibers, The short fibers are two-dimensionally randomly oriented along a plane substantially perpendicular to the rotation axis.
JP7794186A 1986-04-04 1986-04-04 Vane made of fiber-reinforced metallic composite material for vane type compressor Pending JPS62237089A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7794186A JPS62237089A (en) 1986-04-04 1986-04-04 Vane made of fiber-reinforced metallic composite material for vane type compressor
EP19870302754 EP0240294B1 (en) 1986-04-04 1987-03-31 Fiber reinforced metal vanes for rotary compressor
DE8787302754T DE3762059D1 (en) 1986-04-04 1987-03-31 FIBER REINFORCED METALLIC BLADES FOR ROTARY PISTON COMPRESSORS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7794186A JPS62237089A (en) 1986-04-04 1986-04-04 Vane made of fiber-reinforced metallic composite material for vane type compressor

Publications (1)

Publication Number Publication Date
JPS62237089A true JPS62237089A (en) 1987-10-17

Family

ID=13648084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7794186A Pending JPS62237089A (en) 1986-04-04 1986-04-04 Vane made of fiber-reinforced metallic composite material for vane type compressor

Country Status (3)

Country Link
EP (1) EP0240294B1 (en)
JP (1) JPS62237089A (en)
DE (1) DE3762059D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104733A (en) * 1987-10-16 1989-04-21 Sanyo Electric Co Ltd Manufacture of sliding parts
CN104863854A (en) * 2015-06-08 2015-08-26 江苏梅花机械有限公司 Improved vacuum pump for automobile

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905376A (en) * 1958-01-29 1959-09-22 Paul H Davey Jr Light metal vane for rotary compressor
GB1324248A (en) * 1970-11-23 1973-07-25 British Oxygen Co Ltd Rotary pumps
GB1324443A (en) * 1970-11-23 1973-07-25 British Oxygen Co Ltd Rotary pumps
DE2355996A1 (en) * 1973-11-09 1975-05-15 Pfeiffer Vakuumtechnik VALVE FOR ROTARY VALVE PUMPS
JPS569693A (en) * 1979-07-04 1981-01-31 Kanebo Ltd Vane for rotary pump and its manufacture
JPS5891141A (en) * 1981-11-25 1983-05-31 Nippon Soken Inc Sliding member
JPS5934496A (en) * 1982-08-23 1984-02-24 Nippon Denso Co Ltd Vane type compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104733A (en) * 1987-10-16 1989-04-21 Sanyo Electric Co Ltd Manufacture of sliding parts
CN104863854A (en) * 2015-06-08 2015-08-26 江苏梅花机械有限公司 Improved vacuum pump for automobile

Also Published As

Publication number Publication date
EP0240294B1 (en) 1990-03-28
DE3762059D1 (en) 1990-05-03
EP0240294A2 (en) 1987-10-07
EP0240294A3 (en) 1988-07-20

Similar Documents

Publication Publication Date Title
JPH0696188B2 (en) Fiber reinforced metal composite material
US5927130A (en) Gas turbine guide vane
JPS5893841A (en) Fiber reinforced metal type composite material
JPS62237089A (en) Vane made of fiber-reinforced metallic composite material for vane type compressor
US6165605A (en) Preform structures, composite aluminium or aluminium alloy components composited with preform structures and methods for producing these
EP0217902A1 (en) Fibre reinforced ceramics
EP1424465A1 (en) Hybrid rotor, method of manufacturing the hybrid rotor, and gas turbine
JP2525505B2 (en) Piston-cylinder assembly
JPS6336958A (en) Improvement in manufacture of engineering component and improvement related to said improvement
WO2006049066A1 (en) Pressure container, compressor and casting method of cylinder block
JP3808705B2 (en) How to get lightweight, rigid and thin metal parts
JPH02104996A (en) Compound vane for compressor and manufacture thereof
JPH08143990A (en) Wear resistant composite light alloy member and its production
JPS61157778A (en) Swash plate type compressor
JPH06192766A (en) Metal-based composite material
JPS60243239A (en) Manufacture of fiber reinforced composite material
JPH0362890A (en) Sliding structure, compressor using the same and production thereof
JPS60243240A (en) Manufacture of fiber reinforced composite material
JPH02243732A (en) Valve made of composite material for internal-combustion engine
JPS63230983A (en) Rotary compressor member
JPH068473B2 (en) Sliding member
JPH03130591A (en) Rotary compressor member
JPH0873965A (en) Fiber reinforced metal-based composite material
JPH04274862A (en) Composite reinforced piston
Komatsubara et al. Fiber reinforced aluminum alloy for the moving parts of rotary compressor